

Ipsita Saha Kavli IPMU Postdoc Colloquium ⁶2020

Status of EWkinos in view of muon (g-2), WIMP and collider searches

IPMU POSTDOC COLLOQUIUM – 06/11/2020

東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

POST-HIGGS DISCOVERY ERA

Some Intriguing Questions:

- 1. Only one Higgs? Nature of interaction?
- 2. Why no new physics at LHC?
- 3. What is/are Dark Matter?—
- 4. Other anomalies !!

- Need more precision. HL-LHC, ILC.
 Sensitivity!! Are we looking at right direction?
- Experiments devoted to DM searches.
- Anomalous muon magnetic moment !!

Magnetic moment of charged muon

Quantum loop effects:

Anomalous magnetic moment

 $\bar{u}(p') \left| \gamma^{\mu} F_{1}(q^{2}) + \frac{i}{2m_{\mu}} \sigma^{\mu\nu} q_{\nu} F_{2}(q^{2}) \right| u(p) A_{\mu}$

$$a_{\mu} \equiv \frac{g-2}{2} = F_2(0)$$

ANOMALOUS MUON MAGNETIC MOMENT

LIFE OF A MUON: **THE g-2 EXPERIMENT**

One of 24 detectors in the ring.

Picture taken from webpage of BNL experiment

ANOMALOUS MUON MAGNETIC MOMENT

The current experimental and theoretical (SM) results:

160

Latest SM world average - Aoyama *et al* '20

A. Keshavarzia, D. Nomura, T. Teubner '19

WIMP STATUS

Spin-independent

Spin-dependent

MINIMAL SUPERSYMMETRIC STANDARD MODEL

Large uncolored EW Sector may be the hiding key to new physics!

• Modest production cross-section, mass bounds from LHC rather weak.

• Compelling evidence may come from Dark Matter experiments, $(g - 2)_{\mu}$ etc..

SUPERSYMMETRY

Standard particles

SUSY particles

MSSM SUPERPOTENTIAL

$$W_{\rm MSSM} = \bar{u}Y_uQH_u -$$

Soft Breaking Terms

$$\begin{aligned} \mathscr{L}_{\text{soft}}^{\text{MSSM}} &= -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + c \cdot c \right) \\ &- \left(\tilde{u} \, \mathbf{a}_{\mathbf{u}} \, \tilde{Q} H_u - \tilde{d} \, \mathbf{a}_{\mathbf{d}} \, \tilde{Q} H_d - \tilde{e} \, \mathbf{a}_{\mathbf{e}} \, \tilde{L} H_d + c \cdot c \right) \\ &- \tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \, \tilde{Q} - \tilde{L}^{\dagger} \, \mathbf{m}_{\mathbf{L}}^2 \, \tilde{L} - \tilde{u} \, \mathbf{m}_{\bar{\mathbf{u}}}^2 \, \tilde{u}^{\dagger} - \tilde{d} \, \mathbf{m}_{\bar{\mathbf{d}}}^2 \, \tilde{d}^{\dagger} - \tilde{e} \, \mathbf{m}_{\bar{\mathbf{e}}}^2 \, \tilde{e}^{\dagger} \\ &- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - \left(b H_u H_d + c \cdot c \right) \end{aligned}$$

 $\bar{d}Y_dQH_d - \bar{e}Y_eLH_d + \mu H_uH_d$

Masses and mixing are determined by U(1) and SU(2) gaugino masses M_1, M_2 and Higgs mass parameter μ .

 $\tilde{W^{3}}_{H_{u}^{0}} H_{u}^{0} = \begin{pmatrix}
M_{1} & 0 & -M_{Z} c_{\beta} s_{W} & M_{Z} s_{\beta} s_{W} \\
0 & M_{2} & M_{Z} c_{\beta} cW & -M_{Z} s_{\beta} cW \\
-M_{Z} c_{\beta} s_{W} & M_{Z} c_{\beta} c_{W} & 0 & -\mu \\
M_{Z} s_{\beta} s_{W} & -M_{Z} s_{\beta} c_{W} & -\mu & 0
\end{pmatrix}$

$$M_{C} = \begin{pmatrix} M_{2} & \sqrt{2}M_{W}c_{\beta} \\ \sqrt{2}M_{W}s_{\beta} & \mu \end{pmatrix}$$

LSP in RPC

DM

Slepton Mass Matrix

$$M_{\tilde{L}}^{2} = \begin{pmatrix} m_{l}^{2} + m_{LL}^{2} & m_{l}X_{l} \\ m_{l}X_{l} & m_{l}^{2} + m_{RR}^{2} \end{pmatrix}$$

PARAMETERS

$$m_{LL}^{2} = m_{\tilde{L}}^{2} + (I_{l}^{3L} - Q_{f}s_{w}^{2})M_{z}^{2}\cos 2\beta$$
$$m_{RR}^{2} = m_{\tilde{R}}^{2} + Q_{f}s_{w}^{2}M_{z}^{2}\cos 2\beta$$
$$X_{l} = A_{l} - \mu(\tan\beta)^{2I_{l}^{3L}}$$

 $M_1, M_2, \mu, \tan\beta, m_{\tilde{L}}, m_{\tilde{R}}$

MUON (G-2)

• Currently large discrepancy from the SM > (3σ) . $a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 7.37) \times 10^{-10}$

Kashavarzi, Nomura, Teubner '19

- Assuming upcoming Fermilab Run-I result to have the same central value and same exp uncertainty, combined data corresponds to > 5σ discrepancy. $a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 5.2) \times 10^{-10}$
- New "World average" appeared modest impact on our analysis Aoyama *et al* '20

K.Hagiwara, K.Ma, S. Mukhopadhyaya '17, T. Yanagida, W.Yu, N.Yokozaki '16, '20,

S. AbdusSalam et. al '11, E. Bagnashi et. al '15, P. Cox, C. Han, T. Yanagida '18, '19, M.Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara '20

SUSY contributions @ 1L from Chargino-Sneutrino and Smuon-Neutralino loop

OTHER CONSTRAINTS

Direct Searches at LHC

• LHC searches restricted to **simplified models**

- sparticles except those relevant to the signal are taken to be decoupled.
- $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are taken to be mass-degenerate and purely wino. $\tilde{\chi}_1^0$ is assumed to be purely bino.
- All three generations of sleptons and sneutrinos are assumed mass degenerate. In MSSM:

$$m_{\tilde{\nu}}^2 = m_{\tilde{l}}^2 + \frac{1}{2}m_Z^2\cos 2\beta$$

- Heavier gauginos $\tilde{\chi}_{3}^{0}$, $\tilde{\chi}_{4}^{0}$, $\tilde{\chi}_{2}^{\pm}$ assumed to be decoupled.
- No sensitivity to parameters like $\tan \beta$.

Proper recasting is important.

Indirect Constraints

- Relic abundance from PLANCK $\Omega_h^2 = 0.120 \pm 0.001.$
- Spin independent direct detection data from XENON1T.
- Indirect detection constraints of dark matter.

CURRENT SEARCHES AT THE LHC

Proper recasting is important.

CheckMATE

CURRENT SEARCHES AT THE LHC

Proper recasting is important.

CheckMATE

CHECKMATE IN BRIEF

Input for Implementation of new analysis

Model parameter test

- Home
- Downloads
- Latest Release @ CM GitHub
- CheckMATE LLP coming soon @ CM GitHub
- Previous CM versions
- News
- News
- Analyses Status
- Manuals and Documentation
- CheckMATE 1
- CheckMATE 2
- Analysis Manager
- Doxygen Documentation
- Analyses
- ATLAS 7 TeV
- CMS 7 TeV
- ATLAS 8 TeV
- CMS 8 TeV
- ATLAS 13 TeV (only in CM2)
- CMS 13 TeV (only in CM2)
- ATLAS 14 TeV, High Lumi
- CMS 14 TeV, High Lumi (coming soon)
- Tutorials
- Installation Tutorial (Ver 2)
- CheckMATE Tutorial (Ver 2)
- Questions/Comments/Bugs
- F.A.Q.
- Contact

CheckMATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any given model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future.

Current Members: Manimala Chakraborti, Nishita Desai, Florian Domingo, Jong Soo Kim, Krzysztof Rolbiecki, Roberto Ruiz de Austri, Ipsita Saha, Liangliang Shang, Mangesh Sonawane, Zeren Simon Wang, Yuanfang Yue

Former Members: Daniel Dercks, Manuel Drees, Herbert Dreiner, Frederic Ponzca, Jamie Tattersall, Thorsten Weber

Code References

CheckMATE is built upon the tools and hard work of many people. If CheckMATE is used in your publication it is *important* that all of the following citations are included, Delphes 3: JHEP 1402 (2014) 057 FastJet: Eur.Phys.J. C72 (2012) 1896 Phys.Lett. B641 (2006) 57-61 Anti-kt jet algorithm: JHEP 0804 (2008) 063 CLs prescription: J.Phys. G28 (2002) 2693-2704 For analyses that use the MT2 family of kinematical discriminants, Oxbridge Kinetics Library: www.hep.phy.cam.ac.uk/~lester/mt2/ Phys.Lett. B463 (1999) 99-103 J.Phys. G29 (2003) 2343-2363 Cheng and Han algorithm: JHEP 0812 (2008) 063 MT2bl: JHEP 1207 (2012) 110 For analyses that use the MCT family of kinematical discriminants, MctLib: mctlib.hepforge.org MCT: JHEP 0804 (2008) 034

ut. Phys. Commun. 196 omput. Phys. Com-

M. Chakraborti, S.Heinemeyer, IS :EPJC 80 (2020) 10, 984

M. Chakraborti, S.Heinemeyer, IS : Ongoing

DM CONSTRAINTS

PARAMETER SCANNING

<u>Chargino co-annihilation region:</u>

 $100 \text{ GeV} \le M_1 \le 1 \text{ TeV}, \quad M_1 \le M_2 \le 1.1 M_1,$ $1.1M_1 \le \mu \le 10M_1, \quad 5 \le \tan\beta \le 60,$ 100 GeV $\leq m_{\tilde{l}_L} \leq 1$ TeV, $m_{\tilde{l}_R} = m_{\tilde{l}_L}$.

<u>Slepton co-annihilation region:</u>

Case-L: SU(2) doublet

 $100 \text{ GeV} \le M_1 \le 1 \text{ TeV}, \quad M_1 \le M_2 \le 10M_1,$ $1.1M_1 \le \mu \le 10M_1, \quad 5 \le \tan \beta \le 60,$ $M_1 \text{ GeV} \le m_{\tilde{l}_L} \le 1.2M_1, \quad M_1 \le m_{\tilde{l}_R} \le 10M_1.$

Case-R: SU(2) singlet

 $100 \text{ GeV} \le M_1 \le 1 \text{ TeV}, \quad M_1 \le M_2 \le 10M_1,$ $1.1M_1 \le \mu \le 10M_1, \quad 5 \le \tan \beta \le 60,$ $M_1 \text{ GeV} \le m_{\tilde{l}_R} \le 1.2 M_1, \quad M_1 \le m_{\tilde{l}_L} \le 10 M_1.$

M. Chakraborti, S.Heinemeyer, IS: EPJC 80 (2020) 10, 984

SuSpect, SUSYHIT, GM2Calc, micrOMEGAs, CheckMATE etc.

CHARGINO CO-ANNIHILATION

Upper and lower bounds from $(g - 2)_{\mu}$ and LHC searches (compressed spectrum)

M. Chakraborti, S.Heinemeyer, IS: EPJC 80 (2020) 10, 984

CHARGINO CO-ANNIHILATION Chakraborti, S.Heinemeyer, IS :EPJC 80 (2020) 10, 984

-Slepton-pair production $\rightarrow (2l + \text{missing}E_T)$ provides important search channel. Right-sleptons are significantly heavy, Considerable BR for $\tilde{e}_L(\tilde{\mu}_L) \rightarrow \tilde{\chi}_1^{\pm} \nu_e(\nu_\mu)$ Less no. of signal leptons.

CHARGINO CO-ANNIHILATION

Right-sleptons are significantly heavy, Considerable BR for $\tilde{e}_L(\tilde{\mu}_L) \rightarrow \tilde{\chi}_1^{\pm} \nu_e(\nu_{\mu})$ — Less no. of signal leptons.

SLEPTON CO-ANNIHILATION: CASE-L

The left-sleptons and sneutrinos are close in mass to the LSP

SLEPTON CO-ANNIHILATION: CASE-L

Reduced limit attributed by significant $BR(\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau})$ and $BR(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau)$, $BR(\tilde{\chi}_2^0 \to \tilde{\nu}\nu)$

(3l + missingET)exclusion limit weakens

SLEPTON CO-ANNIHILATION: CASE-L

Reduced limit attributed by significant

(3l + missingET) exclusion limit weakens

SLEPTON CO-ANNIHILATION: CASE-R <u>Current $(g-2)_{\mu}$ limit</u>

Right-sleptons are close in mass to LSP. Get stringent constraint from LHC.

Left-sleptons can not be too heavy to have relevant contribution to $(g-2)_{\mu}$.

FURTHER COMMENTS

Larger tan β can easily satisfy $(g - 2)_{\mu}$.

Tension between DD and $(g-2)_{\mu}$.

LOWEST AND HIGHEST LSP : CHARGINO COANNIHILATION

	Sample points	→ C1	C 2	C3	Sample points	C1	C2	C3
Lowest LSP in Current (g-2)	M_1	133	579	430	$BR(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau)$	100	100	100
	M_2	144	583	444				
	μ	1329	1081	1024				
	aneta	5.1	59	52.7	$BR(\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau})$	100	100	100
	$m_{\tilde{l}_{I}} = m_{\tilde{l}_{R}}$	170	678	540				
	$m_{ ilde{\chi}_1^0}$	129	570	423				
Highest LSP in Current (g-2) Highest LSP in Future (g-2)	$m_{ ilde{\chi}^0_2}$	150	605	464				
	$m_{ ilde{\chi}^0_3}$	1338	1087	1032				
	$m_{\tilde{\chi}_4^0} \sim m_{\tilde{\chi}_2^\pm}$	1341	1093	1036	$BR(\tilde{e}_1 \to \tilde{\chi}_1^0 e$	20	14	16.4
	$m_{\tilde{\chi}_1^\pm}$	150	605	464	$\rightarrow \tilde{\chi}_2^0 e$	28	30	28.9
	$m_{ ilde{e}_1, ilde{\mu}_1}$	176	680	542	$\rightarrow \tilde{\chi}_1^{\pm} \nu_e)$	52	55	54.6
	$m_{ ilde{e}_2, ilde{\mu}_2}$	176	680	541				
	$m_{ ilde{ au}_1}$	140	582	437				
	$m_{ ilde{ au}_2}$	205	765	629				
	$m_{ ilde{ u}}$	159	675	536	$BR(\tilde{e}_2 \to \tilde{\chi}_1^0 e)$	99.9	99.7	99.9
	$\Omega_{ ilde{\chi}}h^2$	0.118	0.121	0.118	$ ightarrow ilde{\chi}_2^0 e$)	0.1	0.3	0.1
	$a_{\mu}^{\mathrm{SUSY}} \times 10^{10}$	$\boxed{21.1}$	15.6	20.14				
	$\sigma_p^{ m SI} imes 10^{10}$	0.39	2.3	1.12				

Searches for τ rich final states will be beneficial for further study.

BR in %

LOWEST AND HIGHEST LSP: SLEPTON COANNIHILATION

Sample points	L1	L2	L3	Sample points	L1	L2	L3	Sample points	R1	R2	R3	Sample points	R1	R2	
M_1	131	541	508	$BR(\tilde{\chi}_2^0 \to \tilde{l}_1 l$	32	32.4	28	M_1	111	525	408	$\mathrm{BR}(\tilde{\chi}_2^0 \to \tilde{l}_2 l$	0.72	_	2.
M_2	838	793	515	$\rightarrow \tilde{\tau}_1 \tau$	17	18.4	17.4	M_2	352	662	429	$ ightarrow ilde{ au}_2 au$	93.7	96.8	97
μ	720	1365	1012	$\rightarrow \tilde{\nu}\nu$	34.5	49.2	54.6	μ	812	1091	822	$\rightarrow \tilde{\chi}_1^0 h$	4.5	2.92	-
$\tan eta$	6.95	56.7	56	$\rightarrow \tilde{\chi}_1^0 h$	13	-	-	aneta	20.5	58.5	59	$\rightarrow \tilde{\chi}_1^0 Z$)	0.99	_	-
$m_{\tilde{l}_L}$	149	548	509	$\rightarrow \tilde{\chi}_1^0 Z$)	3.43	-	-	$m_{\tilde{l}_L}$	458	695	794				
$m_{\tilde{l}_B}$	1172	1278	2349					$m_{\tilde{l}_R}$	128	591	425				
$m_{ ilde{\chi}^0_1}$	126	533	499					$m_{ ilde{\chi}^0_1}$	109	518	402				
$m_{\tilde{\chi}^0_2}$	706	816	535					$m_{ ilde{\chi}^0_2}$	367	685	448	$\mathrm{BR}(\tilde{\chi}_1^{\pm} \to \tilde{l}_1 \nu_l$	_	_	-
$m_{ ilde{\chi}_3^0}$	731	1369	1019					$m_{ ilde{\chi}^0_3}$	823	1098	830	$\rightarrow \tilde{ au}_2 u_{ au}$	94.3	97	10
$m_{\tilde{\chi}_4^0} \sim m_{\tilde{\chi}_2^\pm}$	889	1374	1025	$\mathrm{BR}(\tilde{\chi}_1^{\pm} \to \tilde{\nu}_{l_1} l$	32	33.2	39.4	$m_{\tilde{\chi}_4^0} \sim m_{\tilde{\chi}_2^\pm}$	828	1105	838	$\rightarrow W \tilde{\chi}_1^0)$	5.7	2.8	-
$m_{\tilde{\chi}_1^{\pm}}$	706	816	535	$ ightarrow ilde{ u}_{ au_1} au$	17	17	20.4	$m_{\tilde{\chi}_1^{\pm}}$	367	685	448				
$m_{ ilde{e}_1, ilde{\mu}_1}$	155	549	511	$\rightarrow \tilde{l}_1 \nu_l$	23.2	31.8	25.2	$m_{ ilde{e}_1, ilde{\mu}_1}$	460	696	795				
$m_{ ilde{e}_2, ilde{\mu}_2}$	1173	1279	2349	$\rightarrow \tilde{ au}_1 u_{ au}$	11.7	17.7	15	$m_{ ilde{e}_2, ilde{\mu}_2}$	136	592	428	$BR(\tilde{e}_1 \to \tilde{\chi}_1^0 e)$	42	95	9.
$m_{ ilde{ au}_1}$	155	534	509	$\rightarrow W \tilde{\chi}_1^0$	16	-	-	$m_{ ilde{ au}_2}$	119	526	406	$\rightarrow \tilde{\chi}_2^0 e$	19.6	1.7	32
$m_{ ilde{ au}_2}$	1173	1286	2350					$m_{ ilde{ au}_1}$	464	747	807	$\rightarrow \tilde{\chi}_1^{\pm} \nu_e)$	38.3	3.2	58
$m_{ ilde{ u}}$	135	544	505					$m_{ ilde{ u}}$	453	692	792				
$\Omega_{ ilde{\chi}}h^2$	0.119	0.121	0.12	$BR(\tilde{e}_1 \to \tilde{\chi}_1^0 e)$	100	100	100	$\Omega_{ ilde{\chi}}h^2$	0.121	0.121	0.121				
$a_{\mu}^{\rm SUSY} \times 10^{10}$	19.7	14.06	21.1	$BR(\tilde{e}_2 \to \tilde{\chi}_1^0 e$	100	100	99.2	$a_{\mu}^{\mathrm{SUSY}} \times 10^{10}$	17.5	14.8	17.8	$BR(\tilde{e}_2 \to \tilde{\chi}_1^0 e)$	100	100	10
$\sigma_p^{\rm SI} \times 10^{10}$	0.8	0.46	2.13	$\rightarrow \tilde{\chi}_2^0 e)$	_	-	$\left \begin{array}{c} 0.5 \end{array} \right $	$\sigma_p^{\rm SI} \times 10^{10}$	0.23	1.2	3.1				
													'	<u> </u>	<u> </u>

Case-L

Lowest & Highest LSP mass in current (g-2) : L1, L2 (R1,R2)

Case-R

Highest LSP mass in Future (g-2) : L3 (R3)

TARGET FOR FUTURE COLLIDER : ILC/CLIC

Chargino coannihilation

Slepton coannihilation : Case L

OTHER POSSIBILITIES

HIGGSINO LSP Scenario (PRELIMINARY)

M. Chakraborti, S.Heinemeyer, IS : Ongoing

Much Compressed Spectrum.

 $\Omega_h^2 < \Omega_{Planck}$. ILC/CLIC needed to cover this scenario.

Ref: H. Fukuda, N. Nagata, H. Oide, H. Otono and S. Shirai *Phys.Rev.Lett.* 124 (2020) 10, 101801

Future bounds from HL-LHC Yellow Report.

CONCLUSIONS

- Direct LHC bounds still have ample room for sub-TeV EW SUSY particles.
- the direct collider limits.
- limits restrict the mass ranges from below.
- of ATLAS/CMS analysis relaxes the existing bound.
- searches needed to be more sensitive.
- We await the new experiments results on muon (g-2) from Fermilab, J-PARC. STAY TUNED!!!

• It is possible to constrain the EW MSSM with the help of indirect constraints along with

• DM and muon (g-2) constraint put effective upper limit on EW SUSY masses while LHC

• LHC exclusion bound strongly depends on EW gaugino composition. Proper recasting

• Searches for τ rich final states will be beneficial for further study. Compressed Spectrum

• Future colliders, HL-LHC, ILC/CLIC also have significant prospect for detection.

