

Probing the Duration of Quasar Accretion Episodes with He II Proximity Zones

Ilya Khrykin (Kavli IPMU, Japan) Joe Hennawi (UCSB/Leiden Uni.), Gabor Worseck (Uni. Potsdam), Fred Davies (MPIA)

IPMU Postdoc Colloquium | 20.11.2020

Part 1. Introduction.

- quasar lifetime and why should you care about it
- quasar proximity zones

Part 2. Inference algorithm.

- sample of observed quasars
- theory, simulations, and statistics

Part 3. Results.

- individual lifetime measurements
- distribution of quasar lifetimes

Part 1. Introduction.

Part 1. Quest for measuring quasar lifetime

Brief (and incomplete) history of lifetime measurement quest

Part 1. Lyman-alpha forest and quasar proximity zones

Credit: Andrew Pontzen

Part 1. Lyman-alpha forest and quasar proximity zones

Credit: Andrew Pontzen

Part 1. Lyman-alpha forest and quasar proximity zones

Credit: Andrew Pontzen

$$R_{\rm pz} = f\left(t_{\rm Q}\right)$$

to Earth $\leftarrow t_{\rm max} \simeq t_{\rm eq} \approx \Gamma_{\rm bkg}^{-1}$ (Khrykin+2016)

$$R_{\rm pz} = f\left(t_{\rm Q}\right)$$

to Earth $\leftarrow t_{\rm max} \simeq t_{\rm eq} \approx \Gamma_{\rm bkg}^{-1}$ (Khrykin+2016)

$$R_{\rm pz} = f(t_{\rm Q})$$

 $R_{\rm pz}\left(t_1\right)$

 $R_{\rm pz}\left(t_2\right)$

to Earth <

$$t_{\rm max} \simeq t_{\rm eq} \approx \Gamma_{\rm bkg}^{-1}$$
 (Khrykin+2016)

to Earth

$$t_{\rm max} \simeq t_{\rm eq} \approx \Gamma_{\rm bkg}^{-1}$$
 (Khrykin+2016)

Fan et al (2006) $R_{\rm pz}$

 $R_{\rm pz}(t_1)$

 $R_{\rm pz}(t_2)$

 $R_{\rm pz}$: T < 10%

IPMU Postdoc Colloquium

quasar lifetime (t_0) - duration of a single accretion episode

quasar lifetime (t_Q) - duration of a single accretion episode

quasar on-time (t_{on}) - lower limit on t_Q from proximity zone estimates (uniformly distributed from 0 to t_Q)

Part 2. Inference Algorithm.

HST/COS UV-spectra of 20 Hell transparent quasars at $z \sim 3-4$

Table 1. Sample of 20 quasars with measured He II proximity zones used in this study. From left to right the columns show: quasar name, quasar position, *HST*/COS spectral resolution at 1450Å, signal-to-noise ratio near He II Ly α , quasar redshift, redshift uncertainty, spectroscopic line that was used to measure the redshift, *i*-band magnitude, absolute magnitude at 1450Å, He II total photon production rate and Q_{4Ry} , measured size of the proximity zone R_{pz} with corresponding 1σ redshift uncertainty, and the inferred quasar on-time t_{on} .

Quasar	R.A. (J2000)	Decl. (J2000)	R	S/N	z	Δz km s ⁻¹	z line	<i>i-</i> mag	<i>M</i> ₁₄₅₀	$\frac{\log_{10}Q_{4\mathrm{Ry}}}{\mathrm{s}^{-1}}$	$\begin{array}{c} R_{\mathrm{pz}} \pm \sigma \left(R_{\mathrm{pz}} \right) \\ \mathrm{Mpc} \end{array}$	t _{on} Myr
HS 1700+6416 HS 1024+1849	17 ^h 01 ^m 00 ^s 61 10 ^h 27 ^m 34 ^s 13	+64°12′09″1 +18°34′27″5	2100 15000	15 5	2.7472 2.8521	273 273	Mg II Mg II	15.79 17.66	-29.33 -27.54	57.34 56.62	7.16 ± 1.01 9.38 ± 0.97	Spoiler
Q 1602+576 PC 0058+0215 SDSS J0936+2927	16 ⁿ 03 ^m 55 ^s 92 01 ^h 00 ^m 58 ^s 39 09 ^h 36 ^m 43 ^s 50	+57°30′54″4 +02°31′31″4 +29°27′13″6	15000 2200 2200	7 4 4	2.8608 2.8842 2.9248	273 273 44.4	Мд 11 Мд 11 [О 111]	17.22 18.77 18.06	-27.99 -26.46 -27.20	56.80 56.19 56.49	6.10 ± 0.97 7.10 ± 0.97 8.59 ± 0.15	
SDSS J0818+4908 HE2QS J2157+2330	08 ^h 18 ^m 50 ^s 01 21 ^h 57 ^m 43 ^s 63	+49°08'17".0 +23°30'37".3	2200 1600	4 4	2.9598 3.1465	656 44.4	Сту [Отг]	18.36 17.67	-26.93 -27.77	56.38 56.72	2.92 ± 2.25 17.40 ± 0.14	
Q 0302–003 HE2QS J0233–0149	12 ^h 3 ^h 48:99 03 ^h 04 ^m 49:85 02 ^h 33 ^m 06:01	+01°26°07°0 -00°08′13″5 -01°49′50″5	2400 19000 1700	4 3 4	3.1467 3.2850 3.3115	273 44.4 656	Мд II [О III] С IV	18.78 17.34 18.41	-26.66 -28.21 -27.17	56.27 56.89 56.47	1.77 ± 0.87 13.20 ± 0.13 4.71 ± 1.98	
HS 0911+4809 HE2QS J0916+2408	$09^{h}15^{m}10^{s}01$ $09^{h}16^{m}20^{s}85$ $12^{h}53^{m}53^{s}71$	+47°56′58″.8 +24°08′04″.6	10000 1800	6 4 7	3.3500 3.4231	400 656	Η <i>β</i> C ιν	17.77 18.52	-27.84 -27.12	56.74 56.45	4.21 ± 1.19 3.14 ± 1.91	Blu
SDSS J1233+6817 SDSS J2346-0016 HE2QS J2311-1417	23 ^h 46 ^m 25 ^s .66 23 ^h 11 ^m 45 ^s .46	$-00^{\circ}16'00''_{4}$ $-14^{\circ}17'52''_{1}1$	2600 2600 2300	7 8 4	3.5076 3.7003	273 656	Mg II C IV	17.68 18.11	-27.19 -27.97 -27.64	56.79 56.66	11.40 ± 0.12 2.66 ± 0.77 1.94 ± 1.72	ock
SDSS J1137+6237 HE2QS J1630+0435	11 ^h 37 ^m 21 ^s 72 16 ^h 30 ^m 56 ^s 34	+62°37′07″2 +04°35′59″4	2300 2000	4 4 3	3.7886 3.8101	656 400	C ιν Η <i>β</i>	19.31 17.51	-26.46 -28.37	56.19 56.92	4.92 ± 1.68 8.43 ± 1.02 2.72 ± 1.66	
SDSS J1014+4839 SDSS J1711+6052 SDSS J1319+5202	17 ^h 11 ^m 34 ^s 41 13 ^h 19 ^m 14 ^s 20	+48 59 58.8 +60°52′40″3 +52°02′00″1	2700 2700	3 4 2	3.8358 3.9166	656 400	C IV Η β	19.45 19.34 17.81	-26.34 -26.49 -28.02	56.19 56.82	2.72 ± 1.00 2.97 ± 1.65 3.62 ± 0.98	

Worseck+2019, Khrykin+2019, Worseck+ (in prep), Khrykin+ (tbs)

Part 2. Observational Schmple

MM

Part 2. Modelling the He II proximity zones

Part 2. Modelling the He II proximity zones

Part 2. RT simulations

IPMU Postdoc Colloquium

Grid of 410 models (41 on-times | 10 $x_{\text{HeII},0}$ | 1000 spectra) = 410 R_{pz} distributions per quasar

Grid of 410 models (41 on-times | 10 $x_{\text{HeII},0}$) = 410 R_{pz} distributions =

= 410
$$\mathscr{L}\left(R_{pz}^{data} | \log_{10} t_{on}, x_{HeII,0}\right)$$
 per quasar

Part 3. Results.

Part 3. Results.

3.1 Individual measurements

Part 3.1 Individual Measurements - MCMC Inference

IPMU Postdoc Colloquium

Part 3.1 Individual Measurements - MCMC Inference

IPMU Postdoc Colloquium

Khrykin+2019, Worseck+ (in prep), Khrykin+ (tbs)

Part 3. Results.

3.2 Quasar Lifetimes Distribution

Log-normal distribution of quasar lifetimes:

$$\mathcal{N}\left(\mu,\sigma\right)$$

$$\mu = \langle \log_{10} t_{\rm Q} \rangle$$

 $\sigma = \sigma_{\log_{10} t_{\rm Q}}$

Parameter grid

$$\mu = \langle \log_{10} t_{\rm Q} \rangle \in [-2.000, 2.000], \ \Delta = 0.125$$
$$\sigma = \sigma_{\log_{10} t_{\rm Q}} \in [0.01, 3.0], \ \Delta = 0.1$$

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q}$ }

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q} \}$

1. Sample QLD: draw N=1000 $\log_{10} t_{\rm Q}$ values

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q}$ }

1. Sample QLD: draw N=1000 $\log_{10}t_{\rm Q}$ values

2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q}$ }

1. Sample QLD: draw N=1000 $\log_{10}t_{\rm Q}$ values

2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$ 3. Get 10000 $x_{\text{HeII},0}$ by Monte-Carlo sampling

of Davies+2017 model at z in question.

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q} \}$

1. Sample QLD: draw N=1000 $\log_{10}t_{O}$ values

- 2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$
- 3. Get 10000 x_{HeII,0} by Monte-Carlo sampling

of Davies+2017 model at z in question.

4. For each t_{on} and $x_{HeII,0}$ find corresponding distribution of the PZ sizes

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q} \}$

1. Sample QLD: draw N=1000 $\log_{10}t_{O}$ values

- 2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$
- 3. Get 10000 $x_{\text{HeII},0}$ by Monte-Carlo sampling

of Davies+2017 model at z in question.

4. For each t_{on} and $x_{HeII,0}$ find corresponding distribution of the PZ sizes

5. Draw 500 $R_{\rm pz}$ values, combine them in a joint distribution. Fit joint distribution with KDE and evaluate at the $R_{\rm pz}^{\rm data}$ of quasar in question.

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q} \}$

1. Sample QLD: draw N=1000 $\log_{10}t_{O}$ values

- 2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$
- 3. Get 10000 $x_{\text{HeII},0}$ by Monte-Carlo sampling

of Davies+2017 model at z in question.

4. For each t_{on} and $x_{HeII,0}$ find corresponding distribution of the PZ sizes

5. Draw 500 $R_{\rm pz}$ values, combine them in a joint distribution. Fit joint distribution with KDE and evaluate at the $R_{\rm pz}^{\rm data}$ of quasar in question.

6. Repeat for each combination of $\{\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q}\}$

0. Choose { $\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q} \}$

1. Sample QLD: draw N=1000 $\log_{10}t_{O}$ values

- 2. Get on-times by sampling each $\log_{10} t_Q$ value: $t_{on} = \mathcal{U} \left[0, t_Q \right]$
- 3. Get 10000 $x_{\text{HeII},0}$ by Monte-Carlo sampling

of Davies+2017 model at z in question.

4. For each t_{on} and $x_{HeII,0}$ find corresponding distribution of the PZ sizes

5. Draw 500 $R_{\rm pz}$ values, combine them in a joint distribution. Fit joint distribution with KDE and evaluate at the $R_{\rm pz}^{\rm data}$ of quasar in question.

6. Repeat for each combination of $\{\langle \log_{10} t_Q \rangle; \sigma_{\log_{10} t_Q}\}$

Result: 990 likelihood values per quasar

Part 3.2 Distribution of Lifetimes - joint likelihood

Part 3.2 Distribution of Lifetimes - joint likelihood

Part 3.2 Distribution of Lifetimes - MCMC Inference

Part 3.2 Distribution of on-times

Khrykin+ (tbs)

Part 3.2 Distribution of on-times

Probability of finding a quasar younger than 1000,000 yrs

Eilers+2020: $P(\le 10^5 \text{ yrs}) \simeq 0.05 - 0.10$

Khrykin+ (tbs)

Part 3.2 Distribution of on-times

We created fully Bayesian statistical algorithm to study the LoS He II Proximity Effect in spectra of individual quasars and infer the timescales of accretion on the SMBH fully marginalised over unknown IGM ionization state.

We found a broad distribution of the on-times from the analysis of 20 quasars at *z* = 3 - 4

For the first time we estimated the shape of the underlying quasar lifetimes distribution. Assuming the log-normal distribution, we inferred:

$$\langle \log_{10} t_{\rm Q} \rangle = 0.374^{+0.191}_{-0.208} \sigma_{\log_{10} t_{\rm Q}} = 0.564^{+0.292}_{-0.255}$$

We derived a simple analytical suppression for the distribution of quasar on-times and predict that the probability of finding quasars with t_on < 10^5 yrs from the analysis of their proximity zones is $P(<10^5 \text{ yrs}) = 0.105^{+0.238}_{-0.056}$, comparable to the values found in observations (5-10%)