Factorisation and Vortices in 3d $\mathcal{N} = 4$ Gauge Theories

Samuel Crew DAMTP, University of Cambridge

IPMU, November 2020

Based on 2002.04573, 2010.09732 and 2010.09741 with M. Bullimore, N. Dorey and D. Zhang

Background

- Extended algebras acting on BPS states of supersymmetric field theories in various dimensions
 - Supersymmetric indices/partition functions as characters
 - Quantum algebras acting on homology, K-theory, elliptic cohomology of quiver varieties
 - 3d mirror symmetry and symplectic duality
- Exponential $N^{3/2}$ growth of states counted by indices. AdS₄ holography saddle points

- Quick review of 3d $\mathcal{N} = 4$ gauge theory ullet
- Quantised Higgs and Coulomb branch algebras. Modules \bullet induced by boundary conditions.
 - Verma modules and exceptional Dirichlet •
- Hemisphere partition functions $S^1 \times H^2$, factorisation and "IR ulletformulae"
 - Concrete examples \bullet
- Twisted indices, Hilbert series and Poincaré polynomials \bullet
- 3d ADHM theory \bullet

Background on 3d $\mathcal{N} = 4$ theories

- 8 supercharges $Q^{a\dot{a}}_{\alpha}$
- Gauge group G and representation $\mathscr{R} = R \oplus R^*$
- R-symmetry $SU(2)_H \times SU(2)_C$
- Global symmetry $G_H \times G_C$
- Generic mass and FI deformations \bullet

•
$$\overrightarrow{m} \in (\mathfrak{t}_H)^3$$
 and $\overrightarrow{t} \in (\mathfrak{t}_C)^3$

 \bullet

Deformation t. Background vev for anti-diagonal R-symmetry combination $\mathcal{N} = 2^*$

3d $\mathcal{N} = 4$ Quiver Lagrangians

- 3d $\mathcal{N} = 4$ vectormultiplet
 - • A_{μ} , σ , φ
- 3d $\mathcal{N} = 4$ hypermultiplets
 - (X, Y)

Moduli spaces of vacua

- Higgs branch \mathcal{M}_H and Coulomb branch \mathcal{M}_C \bullet
- \mathcal{M}_{H} and \mathcal{M}_{C} hyperkähler ullet
- G_H , G_C are tri-Hamiltonian isometries
- Assumption: flow to superconformal fixed point. Isolated massive vacua α \bullet
- \mathcal{M}_H and \mathcal{M}_C are symplectic resolutions with isolated singularities ullet
- $m \in \mathfrak{t}_H$ and $\xi \in \mathfrak{t}_C$ are resolution and deformation parameters. ullet

Vectormultiplet scalars with monopoles V_{\pm}

$$\mu_{\mathbb{R}} = X \cdot X^{\dagger} - Y \cdot Y^{\dagger}$$
$$\mu_{\mathbb{C}} = X \cdot Y$$
$$\mathcal{M}_{H} = \{\mu_{\mathbb{C}} = 0, \mu_{\mathbb{R}} = \xi\}/G$$

SQED[N]

U(1) gauge theory.

Fundamental hypermultiplets (X_i, Y_i) with i = 1, ..., N

$$G_H = SU(N)$$
 and $G_C = U(1)$

Masses m_1, \ldots, m_N and FI parameter η

N isolated vacua

$$x = e^m$$

Examples

Masses m_1, \ldots, m_N and FI parameters η_1, \ldots, η_N

Vacua labelled by $\sigma \in S_N$

and $\zeta = e^{\eta}$

Higgs and Coulomb algebras

- Fix $\mathcal{N} = 2$ subalgebra $U(1)_H \times U(1)_C \subset SU(2)_H \times SU(2)_C$
- Ring of chiral operators/holomorphic functions $\mathbb{C}[\mathscr{M}_H]$ and $\mathbb{C}[\mathscr{M}_C]$
- Hyperkähler geometry equips with Poisson bracket

<u>Quantisation</u>

 Ω background quantises chiral rings

 $\hat{\mathbb{C}}[\mathcal{M}_H]$ and $\hat{\mathbb{C}}[\mathcal{M}_C]$

Example: SQED[N]

Higgs algebra
$$\hat{\mathbb{C}}[\mathscr{M}_H]$$

 1

 N

Generated by X_i and Y_i

P.B. quantised: $[\hat{Y}_i, \hat{X}_j] = \epsilon \delta_{ij}$

Moment map $\sum_{i=1}^{N} : \hat{X}_i \hat{Y}_i := t_{\mathbb{C}}$

Central quotient of $U(\mathfrak{sl}_N)$

 $e_{ij} = \hat{X}_i \hat{Y}_j, \quad i < j$

 $f_{ij} = \hat{X}_i \hat{Y}_j, \quad i > j$

 $h_j = \hat{X}_j \hat{Y}_j - \hat{X}_{j+1} \hat{Y}_{j+1}$ j = 1, ..., N-1

We will discuss Verma modules later!

Coulomb algebra $\hat{\mathbb{C}}[\mathscr{M}_C]$

Generated by complex scalar φ and monopole operators v_+

$$[\hat{\varphi}, \hat{v}_{\pm}] = \pm \epsilon \hat{v}_{\pm}$$

$$\hat{v}_+ \hat{v}_- = \prod_{i=1}^N (\hat{\varphi} + m_{i,\mathbb{C}} - \frac{\epsilon}{2})$$

$$\hat{v}_{-}\hat{v}_{+} = \prod_{i=1}^{N} (\hat{\varphi} + m_{i,\mathbb{C}} + \frac{\epsilon}{2})$$

Spherical rational Cherednik algebra — finite W algebra

Vortex moduli spaces

- Theory admits $\frac{1}{2}$ BPS vortex solutions •
- Hilbert space of Ω -deformed theory in plane with mass deformations = Equivariant homology of VMS. ullet[Bullimore, Dimofte, Gaiotto, Hilburn, Kim]
- Relation between vortices and quasi-maps. lacksquare
- Kähler manifolds with isometries x, q \bullet

Algebraic description

K-theoretic vertex functions

Vortices are labelled by
$$d = \frac{1}{2\pi} \int_{S^2} \text{tr} F_i$$
 $X, Y \to \mathcal{M}_H$ at infinity
Identify $d \in H_2(\mathcal{M}_H, \mathbb{Z})$
Quasimap degree

$$QM^d_{\alpha}(\mathbb{P}^1 \to \mathscr{M}_H)$$
 [Okounkov]

q rotates \mathbb{P}^1 G_H global symmetries Isolated fixed points

Example: Laumon space/Handsaw quiver

Laumon spaces resolution of singu

Realisation as handsaw quiver variety [Nakajima]

Will discuss χ_t genera and Poincaré polynomials

ularities
$$\mathfrak{Q}^d_{\alpha} = \mathsf{QM}^d_{\alpha}(\mathbb{P}^1 \to \mathsf{flag})$$

• SQED[N] vortex moduli space

Example

Another Example

 $\mathcal{M}_H = \operatorname{Hilb}^N(\mathbb{C}^2)$

• $\mathsf{QM}^d_{\lambda}(\mathbb{P}^1 \to \mathsf{Hilb}^N(\mathbb{C}^2))$

Smooth quiver description?

• $\chi(\hat{O}_{Vir})$ – Localisation formula

- We compute partition function on hemisphere $S^1 \times H^2$ lacksquare
- $\mathcal{N} = (2,2)$ boundary condition \mathscr{B} on T^2

$$\mathcal{Z}_{S^1 \times H^2} = \mathcal{Z}_{\text{Classical}} \mathcal{Z}_{1\text{-loop}} \mathcal{Z}_{\text{Vortex}} \checkmark \mathcal{Z}_{1\text{-loop}} \mathcal{Z}_{1\text{-loop}}$$

[Benini and Peelaers] [Fujitsuka, Honda and Yoshida] Modification of [Yoshida and Sugiyama] – with particular B.C.

Hemisphere partition function

 $ds^2 = d\tau^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$ Twisted boundary conditions $\tau \sim \tau + \beta r$

State-operator map

Relate the hemisphere partition function to count of

Exceptional Dirichlet

- Boundary conditions \mathscr{B}_{α} associated to each vacua α
- Dirichlet \mathscr{D} for $\mathscr{N} = 4$ vector multiplet
- Lagrangian splitting of the hypers $L \oplus L^*$

$$\cdot Y_L|_{\partial} = c_L$$

- Fully breaks G, preserves T_H and T_C
- L chosen to give $\mathscr{L}_{\alpha} \subset \mathscr{M}_{H}$

Example: SQED[N]

$$\partial_{\perp} Y_j = 0, \qquad X$$

$$\partial_{\perp} X_j = 0, \qquad Y_j$$

First compute Dirichlet half-index:

$$\sum_{m \in \mathbb{Z}} \left(\xi \left(q^{\frac{1}{4}} t^{-\frac{1}{2}} \right)^{2i-N} \right)^m \frac{(tq)^2}{(tq)^2}$$

Effective CS level

Specialise fugacity
$$z = x_i^{-1}t^{-\frac{1}{2}}q^{-\frac{1}{4}}$$
 for non-zero

o chiral breaking combination of flavour, gauge and R-symmetry

From the hemisphere localisation

$$\begin{aligned} \mathcal{Z}_i^{\text{Cl}} &= e^{\phi_i} \,, \\ \mathcal{Z}_i^{\text{1-loop}} &= \prod_{j=1}^{i-1} \frac{\left(q\frac{x_i}{x_j};q\right)_{\infty}}{\left(q^{\frac{1}{2}}t\frac{x_i}{x_j};q\right)_{\infty}} \prod_{j=i+1}^{N} \frac{\left(q^{\frac{1}{2}}t^{-1}\frac{x_j}{x_i};q\right)_{\infty}}{\left(\frac{x_j}{x_i};q\right)_{\infty}} \\ \mathcal{Z}_i^{\text{Vortex}} &= \sum_{m \ge 0} \left(\left(q^{\frac{1}{4}}t^{-\frac{1}{2}}\right)^N \xi\right)^m \prod_{j=1}^{N} \frac{\left(q^{\frac{1}{2}}t\frac{x_i}{x_j};q\right)_m}{\left(q\frac{x_j}{x_j};q\right)_m} \end{aligned}$$

Vortex moduli space is handsaw quiver

- Exceptional Dirichlet mimics vacuum at infinity—factorisation
- Flow to thimbles in IR RW sigma model—associated to vacua
- General principle [Bullimore, Dimofte, Gaiotto and Hilburn] that \mathscr{B} yields modules for $\hat{\mathbb{C}}[\mathcal{M}_H]$ and $\hat{\mathbb{C}}[\mathcal{M}_C]$
- Exceptional Dirichlet \mathscr{B}_{α} yields Verma modules

"Casimir" e^{ϕ}

• $\mathcal{N} = 4$ limits of hemisphere partition functions are Verma module characters

Action on boundary operators

Equivariant homology VMS

Specialised limits

4 supercharges: Higgs operators (1-loop only)

 $\rho^{\phi_{\alpha}} \longrightarrow$

4 supercharges: Coulomb operators (vortex only)

Example: T[SU(2)]

Coulomb side

$$\mathcal{Z}_{\operatorname{Vortex},\alpha} = \sum_{m \ge 0} \xi^m \chi_t(\mathfrak{Q}^m_{\alpha})$$

$$\begin{split} [\hat{\varphi}, \hat{v}_{\pm}] &= \pm \epsilon \hat{v}_{\pm} \\ \hat{v}_{+} \hat{v}_{-} &= (\hat{\varphi} + m_{1,\mathbb{C}} - \frac{\epsilon}{2})(\hat{\varphi} + m_{2,\mathbb{C}} - \frac{\epsilon}{2}) \\ \hat{v}_{-} \hat{v}_{+} &= (\hat{\varphi} + m_{1,\mathbb{C}} + \frac{\epsilon}{2})(\hat{\varphi} + m_{2,\mathbb{C}} + \frac{\epsilon}{2}) \\ (\hat{\varphi} + m_{\alpha} + \frac{\epsilon}{2}) |\mathscr{B}_{\alpha}\rangle &= 0, \quad \hat{v}^{+} |\mathscr{B}_{\alpha}\rangle = 0 \end{split}$$

Lower with \hat{v}_{-}

<u>Verma</u>

Recap so far

- Compute hemisphere partition functions and half indices with exceptional Dirichlet boundary conditions
- Specialised limits give Verma modules of $\hat{\mathbb{C}}[\mathscr{M}_H]$ and $\hat{\mathbb{C}}[\mathscr{M}_C]$

$$\lim_{t \to q^{\pm \frac{1}{2}}} \mathcal{Z}_{\alpha}(x,$$

 $\xi; q, t) = \chi_{\alpha}^{\mathrm{H,C}}(x \operatorname{or} \xi)$

Factorisation

- • H_{α} holomorphic block [Beem, Dimofte and Pasquetti] 3d analogue of tt^* setup
- Gluing corresponds to Heegaard decomposition of \mathcal{M}_3
- Demonstrated in various cases by Coulomb branch localisation
- Examples include $\mathcal{M}_3 = S^2 \times_{A,B} S^1$, S_b^3 , $S^2 \times S^1$
- Factorisation into hemisphere is exact
- Demonstrated for SQED[N] and ADHM [SC, Bullimore, Zhang] and [SC, Dorey, Zhang]

 $\mathcal{Z}_{\mathcal{M}_3} = \sum H_{\alpha} \tilde{H}_{\alpha}$

Application: IR formulae

 $\mathcal{Z}_{\mathcal{M}_3} = \sum_{lpha} \mathcal{Z}^{lpha}_{S^1 imes H^2} \tilde{\mathcal{Z}}^{lpha}_{S^1 imes H^2}$

In the specialised
$$\mathcal{N} = 4$$
 limits we find e.g.

$$\mathcal{Z}_{SC}^{B} = \sum_{\alpha} \mathcal{X}_{\alpha}^{H}(x) \mathcal{X}_{\alpha}^{H}(x^{-1}), \qquad \mathcal{Z}_{SC}^{A} = \sum_{\alpha} \mathcal{X}_{\alpha}^{C}(\xi) \mathcal{X}_{\alpha}^{C}(\xi^{-1}),$$

$$\mathcal{Z}_{tw}^{B} = \sum_{\alpha} \mathcal{X}_{\alpha}^{H}(x) \mathcal{X}_{\alpha}^{H}(x), \qquad \mathcal{Z}_{tw}^{A} = \sum_{\alpha} \mathcal{X}_{\alpha}^{C}(\xi) \mathcal{X}_{\alpha}^{C}(\xi)$$

$$\mathcal{Z}_{S^{3}} = \sum_{\alpha} \hat{\mathcal{X}}_{\alpha}^{H}(x) \hat{\mathcal{X}}_{\alpha}^{C}(\xi),$$
[Gaiotto and Okazaki]

$$\lim_{t \to q^{\pm \frac{1}{2}}} \mathcal{Z}_{\alpha}(x,\xi,q,t) = \chi_{\alpha}^{H,C}(x \operatorname{or} \xi)$$

A and B twisted indices

Choose $R_A = 2U(1)_H$ or $R_B = 2U(1)_C$ and place theory on $S^2 \times_{A,B} S^1$ with background R-symmetry flux

E.g. Coulomb branch localisation [Benini and Zaffaroni]

$$\mathcal{Z}_{S^2 \times_{A,B} S^1} = \sum_{\alpha} H_{\alpha}(x,\xi;q,t) H_{\alpha}(x,\xi;q^{-1},t)$$

Angular momentum q is "Q-exact"

χ_t genus of compact space

Poincaré polynomial limit

$$\sum_{k\geq 0} \xi^k \sum_{\rm f.p.} t^{\rm Dim. \ attracting \ set}$$
[Bialyn

- Only vortices contribute in this limit R-charge graded Verma characters
- Mirror limit only 1-loop contributions generating function

 $\mathcal{Z}_{S^1 \times H^2} = \mathcal{Z}_{\text{Classical}} \mathcal{Z}_{1-\text{loop}} \mathcal{Z}_{\text{Vortex}}$

 $\mathcal{Z}_{1-\text{loop}}(t,x) = \text{Generating function}$

nicki-Birula]

ncaré polynomial

• IR duality of 3d gauge theories [Intriligator and Seiberg]

$$\mathcal{M}_H \leftrightarrow \mathcal{M}_C \qquad m \leftrightarrow \xi \qquad t \leftarrow$$

Boundary conditions transform non-trivially

$$\mathcal{Z}_{\alpha} \to U_{\alpha\beta} \mathcal{Z}_{\beta}$$
Elliptic stable

• Two simplifying limits

Exchanges perturbative and non-perturbative contributions

envelopes

Proof?

$$\mathcal{I}^{Y} = \mathcal{I}_{1\text{-loop}} \mathcal{I}_{\text{Vortex}} = \frac{(qx;q)_{\infty}}{(tqx;q)_{\infty}} \sum_{k \ge 0} \xi^{k} \frac{(tqx;q)_{k}}{(qx;q)_{k}}$$

$$\lim_{\text{Poincaré}} \mathcal{I}^Y = \mathcal{I}_{\text{Vortex}} = \sum_{k \ge 0} \xi^k$$

Generating function of handsaw quiver Poincaré polynomials [Nakajima]

T[SU(2)] Example

Self-mirror dual

$$\mathcal{I}^X = \mathcal{I}_{1\text{-loop}} \mathcal{I}_{\text{Vortex}} = \frac{(qx;q)_{\infty}}{(x;q)_{\infty}} \sum_{k>0} \left(t^{-1}q\xi\right)^k \frac{(tqx;q)_{\infty}}{(qx;q)_{\infty}}$$

Twisted index and Hilbert series

Twisted index on $\Sigma = S^2$ of 3d $\mathcal{N} = 4$ theories computes Hilbert series

Example T[SU(N)]

Twisted index/Hilbert series factorises:

$$\mathcal{Z}_{S^2 \times_A S^1} = \sum_{\alpha \in S_N} \mathcal{Z}_{S^1 \times H^2}(q, t) \mathcal{Z}_{S^1 \times H^2}(q^{-1}, t)$$

Free to send $q \rightarrow 0$ $\mathcal{Z}_{S^1 \times_A S^1} = \sum \left[\right]$ $\alpha {\in} {S_N} \ i {<}$

1-loop contributions only I.e. Poincaré polynomials

$$\mathbf{I}_{ij} \frac{1}{1 - tx_i/x_j} \prod_{i>j} \frac{1}{1 - tx_i/x_j} \checkmark$$

$$\sum_{\vec{d}} x^{\vec{d}} P_t(\mathfrak{Q}_{\alpha}^{\vec{d}})$$

 $= \prod_{i,j=1}^{i} \frac{1}{1 - tx_i/x_j} = \text{H.S.}(T[SU(N)])$

Recap so far

- Twisted index computes Hilbert series
- map space
- 3d mirror symmetry provides generating function of Poincaré polynomials
- Concrete for $T_{\rho}[SU(N)]$ theories Handsaw quivers
- Will now discuss more complicated, "speculative" example

• Factorising twisted index gives formula for Hilbert series in terms of Poincaré polynomial of quasi-

3d ADHM Example

 $\lim_{q \to 1} \oint e^{\frac{1}{\log(q)}}$

p = 1Worldvolume theory ND2 branes on single D6 in type IIA

BH entropy in Cardy limit [Choi and Hwang] from vortex partition functions

$$\overline{q}^{\mathcal{W}} = H^* \sim e^{\frac{1}{\log(q)}N^{\frac{3}{2}}\sqrt{\Delta_1 \Delta_2 \Delta_3 \Delta_4}}$$

- Mirror self dual \bullet
- Vacua labelled by partitions $|\lambda| = N$
- $\hat{\mathbb{C}}[\mathcal{M}_C]$ described by [Nakajima and Kodera]
 - Cyclotomic rational Cherednik algebra •
- $\mathbb{C}[\mathcal{M}_H]$ gauge invariant polynomials in (A, B, I, J)

 $\mathrm{QM}^{\boldsymbol{d}}_{\lambda}(\mathbb{P}^1 \to \mathrm{Hilb}^N(\mathbb{Q}))$

• Mirror self dual
•
$$\mathcal{M}_H = \operatorname{Hilb}^N(\mathbb{C}^2)$$
 with $G_H = U(1)$ and $R_H - R_C = U(1)$

$$(\mathbb{C}^2)) \qquad \mathcal{Z}_{\text{Vortex}} = \sum_{\boldsymbol{d}} \zeta^d \chi(\hat{\mathcal{O}}_{\text{Vir.}})$$

$$E_{k,t} = \sum_{a=1}^{N_k} \frac{\prod_b w_{k,a} - w_{k-1,b} - \epsilon_2}{\prod_{b \neq a} (w_{k,a} - w_{k,b})} w_{k,a}^t v_{k,a}$$

$$F_{k,t} = \sum_{a=1}^{N} \frac{\prod_{b} w_{k,a} - w_{k+1,b} + \epsilon_2}{\prod_{b \neq a} (w_{k,a} - w_{k,b})} v_{k,a}^{-1} w_{k,a}^{t+\delta}$$

 $-\delta_{0,k}$

ADHM hemisphere partition function

$$\mathcal{Z}_{S^1 \times D}^{\lambda} = \mathcal{Z}_{\text{Classical}}^{\lambda} \mathcal{Z}_{1\text{-loop}}^{\lambda} \mathcal{Z}_{\text{Vortex}}^{\lambda}$$

$$\mathcal{Z}_{\text{Classical}}^{\lambda} = e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log \zeta \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log v \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log u \log z}{\log q}} e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log u \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log u \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log u \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \zeta}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{$$

Familiar-ish

$$\begin{split} \mathbf{\hat{Z}}_{\text{Vortex}}^{\lambda} &= \sum_{\pi \in \text{RPP}(\lambda)} \left(\zeta t^{\frac{1}{2}} q^{-\frac{1}{4}} \right)^{|\pi|} \prod_{s \in \lambda} \frac{\left(u^2 v_s^{-1}; q \right)_{-\pi_s}}{\left(q v_s^{-1}; q \right)_{-\pi_s}} \prod_{\substack{s,t \in \lambda \\ s \neq t}} \frac{\left(q u^{-2} \frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}{\left(\frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}} \frac{\left(z u \frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}{\left(q z u^{-1} \frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}} \end{split}$$

$$u = t^{\frac{1}{2}}q^{\frac{1}{4}}, v = t^{-\frac{1}{2}}q^{\frac{1}{4}}$$
 Fuses

exactly!

Verma character limits

$$\mathcal{Z}_{\text{Vortex}}^{\lambda} = \sum_{\pi \in \text{RPP}(\lambda)} \left(\zeta t^{\frac{1}{2}} q^{-\frac{1}{4}} \right)^{|\pi|} \prod_{s \in \lambda} \frac{\left(u^2 v_s^{-1}; q \right)_{-\pi_s}}{\left(q v_s^{-1}; q \right)_{-\pi_s}} \prod_{\substack{s,t \in \lambda \\ s \neq t}} \frac{\left(q u^{-2} \frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}{\left(\frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}} \frac{\left(z u^{\frac{v}{v_s}} \right)^{\frac{v}{v_s}}}{\left(q z u^{-1} \right)^{\frac{v}{v_s}}}$$

$$Verma \ \text{limit}$$

$$\sum_{\pi \in \text{RPP}(\lambda)} \zeta^{|\pi|}$$
Fixed points on QM space

Mirror Verma limit

Generating function

Representation theory

- Verma modules of $\hat{\mathbb{C}}[\mathscr{M}_C]$?
- π boundary operators \longrightarrow Fixed points
- Action of $\hat{\mathbb{C}}[\mathcal{M}_C]$ on RPPs?

 $\mathcal{Z}_{ ext{Classical}}$

 $\chi_{\lambda}(\hat{\mathbb{C}}[\mathcal{M}_{C}]) = e^{\frac{\xi m}{2\beta}\sum_{s\in\lambda}c_{\lambda}(s) + \frac{\xi}{2}\sum_{s\in\lambda}h_{\lambda}(s)} \sum$

s on
$$QM^d_{\lambda}(Hilb^N(\mathbb{C}^2))$$

Poincaré polynomial limit

$$\mathcal{Z}_{\text{Vortex}}^{\lambda} = \sum_{\pi \in \text{RPP}(\lambda)} \left(\zeta t^{\frac{1}{2}} q^{-\frac{1}{4}} \right)^{|\pi|} \prod_{s \in \lambda} \frac{\left(u^2 v_s^{-1}; q \right)_{-\pi_s}}{\left(q v_s^{-1}; q \right)_{-\pi_s}} \prod_{\substack{s,t \in \lambda \\ s \neq t}} \frac{\left(q u^{-2} \frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}{\left(\frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}} \frac{1}{\left(\frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}} \frac{1}{\left(\frac{v_t}{v_s}; q \right)_{\pi_t - \pi_s}}}$$

$$\sum_{\pi \in \operatorname{RPP}(\lambda)} t^{\frac{1}{2}(\operatorname{ht}'(\pi) - \operatorname{ht}(\pi) + b(\pi))} z^{|\pi|}$$

Refined generating function of RPPs

Neumann boundary condition

- Throughout we have been using particular Dirichlet boundary conditions
- Neumann boundary condition is expected to yield simple modules [Bullimore, Dimofte, Gaiotto and Hilburn]
- Consider $p = N_f > 1$. I.e. general Jordan quiver
- $\mathcal{M}_H = \mathcal{M}_{N,p}$ instanton moduli space G

$$\tilde{\sigma}_H = SU(p)$$

T[SU(N)] analogy

Neumann boundary condition is computed via contour integral ullet

$$\mathcal{Z}_{S^{1} \times D}[z_{i}, \zeta_{i}; q, t] = \oint_{\Gamma} \prod_{a=1}^{N} \prod_{i=1}^{a} \frac{dx_{a}^{(i)}}{x_{i}^{(a)}} e^{\log\left(x_{i}^{(a)}\right) \log\left(\zeta_{i}^{(a)}\right)} \prod_{a=1}^{N-1} \frac{\prod_{i \neq j}^{a} \left(x_{j}^{(a)} / x_{i}^{(a)}; q\right)_{\infty}}{\prod_{i,j}^{N} \left(tqx_{j}^{(a)} / x_{i}^{(a)}; q\right)_{\infty}} \prod_{a=1}^{N-1} \prod_{i=1}^{a} \prod_{j=1}^{a+1} \frac{\left(tqx_{j}^{(a+1)} / x_{i}^{(a)}; q\right)_{\infty}}{\left(x_{j}^{(a+1)} / x_{i}^{(a)}; q\right)_{\infty}}$$

Integral form of Macdonald polynomial

$$\downarrow$$
 Verma limit
 S_{λ}

Equivalent for ADHM

$$\mathcal{Z}_{N,p}(\mathcal{B}) = rac{1}{N!} \oint_{(S^1)^N} \prod_{a=1}^N rac{ds_a}{2\pi i s_a} s_a^{-\zeta} rac{\prod_{a \neq b}^N \left(1 - s_a s_b^{-1}
ight)}{\prod_{a,b=1}^N \left(1 - z s_a s_b^{-1}
ight)} \prod_{a=1}^N rac{1}{ds_a} \sum_{a=1}^N rac{ds_a}{ds_a} \sum_{a=1}^N rac{1}{ds_a} \sum_{$$

$$\mathcal{Z}_{N,p}(\mathcal{B}) = Q'_{(\zeta)^N}(x_1,\ldots,x_p;z)$$

Milne polynomial $q \rightarrow 0$ of Haiman-Garcia Macdonald polynomial

Character of KR module / XXZ spin chain partition function

Simple module of Nakajima and Kodera $\hat{\mathbb{C}}[\mathscr{M}_C]$?

Refined Topological Vertex

- Quasi-maps to Hilb^N(\mathbb{C}^2) should be related to vertex
- $q \rightarrow 0$ limit coincides with the refined topological vertex

$$\lim_{q \to 0} \mathcal{Z}_{S^1 \times D}^{A,\lambda} = t_1^{\frac{1}{4}||\lambda||^2} t_2^{-\frac{1}{4}||\lambda|}$$

Classical piece = framing factors

$$C_{\emptyset,\emptyset,\lambda}^{(\text{IKV})}(t=t_2^{-1},q=t_1)$$

Twisted index gluing

- Twisted index = Hilbert series of Hilb^N(\mathbb{C}^2) ullet
- Identify the twisted index gluing with the gluing of vertices. \bullet

Poincaré polynomials

$$=\sum_{\substack{\lambda\\|\lambda|=N}}\prod_{s\in\lambda}\frac{z^{a_{\lambda}(s)+l_{\lambda}(s)+1}t^{\frac{1}{2}(-a_{\lambda}(s)+l_{\lambda}(s))}}{\left(1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1}t^{\frac{1}{2}(-a_{\lambda}(s)+l_{\lambda}(s)+1)}\right)\left(1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1}t^{\frac{1}{2}(-a_{\lambda}(s)+l_{\lambda}(s)-1)}\right)}$$

$$\sum_{\substack{\lambda \\ |\lambda|=N}} \lim_{q \to 0} \mathcal{Z}_{\text{Classical}}^{B,\lambda} \bar{\mathcal{Z}}_{\text{Classical}}^{B,\lambda} \mathcal{Z}_{1-\text{loop}}^{B,\lambda} \bar{\mathcal{Z}}_{1-\text{loop}}^{B,\lambda}$$

$$\begin{aligned} \mathcal{Z}_{\mathrm{Vortex}}^{A,\lambda} &= V_{\mathrm{PT}}^{\emptyset,\emptyset,\lambda} \\ \text{Interpret as conifold } \mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathbb{P}^1 \text{ amplitude} \\ \text{Independence of } q... \end{aligned}$$

Nekrasov's partition function

- Hemisphere partition functions realise factorisation
- Verma character formulae for \mathcal{M}_3 partition functions
 - Geometric interpretation
- Twisted index, Hilbert series and Poincaré polynomials
- Detailed study of ADHM example
 - Connections to topological vertex

Summary

Further directions

- Quasi-map interpretation of 1-loop contributions
- Mirror symmetry of boundary conditions
- $\lim_{q \to 1} \ \mathcal{Z}_{S^1 \times D}^{\lambda}$ Geometric interpretation of Cardy limit
 - Phase with non-trivial scaling of $N = |\lambda|$ i.e. $\sim e^{N^{3/2}}$
 - Relevance of Hanany-Tong lagrangian and simple modules?

Thanks