Factorisation and Vortices in 3d $\mathcal{N}=4$ Gauge Theories

Samuel Crew
DAMTP, University of Cambridge
IPMU, November 2020

Background

- Extended algebras acting on BPS states of supersymmetric field theories in various dimensions
- Supersymmetric indices/partition functions as characters
- Quantum algebras acting on homology, K-theory, elliptic cohomology of quiver varieties
- 3d mirror symmetry and symplectic duality
- Exponential $N^{3 / 2}$ growth of states counted by indices. AdS_{4} holography - saddle points

Outline

- Quick review of $3 \mathrm{~d} \mathcal{N}=4$ gauge theory
- Quantised Higgs and Coulomb branch algebras. Modules induced by boundary conditions.
- Verma modules and exceptional Dirichlet
- Hemisphere partition functions $S^{1} \times H^{2}$, factorisation and "IR formulae"
- Concrete examples

- Twisted indices, Hilbert series and Poincaré polynomials
- 3d ADHM theory

Background on 3d $\mathcal{N}=4$ theories

- 8 supercharges $\mathcal{Q}_{\alpha}^{a \dot{a}}$
- Gauge group G and representation $\mathscr{R}=R \oplus R^{*}$
- R-symmetry $S U(2)_{H} \times S U(2)_{C}$
- Global symmetry $G_{H} \times G_{C}$
- Generic mass and FI deformations
- $\vec{m} \in\left(\mathfrak{t}_{H}\right)^{3}$ and $\vec{t} \in\left(\mathfrak{t}_{C}\right)^{3}$
- Deformation t. Background vev for anti-diagonal R-symmetry combination $\mathcal{N}=2^{*}$

3d $\mathcal{N}=4$ Quiver Lagrangians

Bifundamental
-3d $\mathcal{N}=4$ vectormultiplet

- A_{μ}, σ, φ
-3d $\mathcal{N}=4$ hypermultiplets
- (X, Y)

Moduli spaces of vacua

Classical

- Higgs branch \mathscr{M}_{H} and Coulomb branch \mathscr{M}_{C}
- \mathscr{M}_{H} and \mathscr{M}_{C} hyperkähler
- G_{H}, G_{C} are tri-Hamiltonian isometries
- Assumption: flow to superconformal fixed point. Isolated massive vacua α

$$
\begin{aligned}
\mu_{\mathbb{R}} & =X \cdot X^{\dagger}-Y \cdot Y^{\dagger} \\
\mu_{\mathbb{C}} & =X \cdot Y \\
M_{H} & =\left\{\mu_{\mathbb{C}}=0, \mu_{\mathbb{R}}=\xi\right\} / G
\end{aligned}
$$

- \mathscr{M}_{H} and \mathscr{M}_{C} are symplectic resolutions with isolated singularities
- $m \in \mathfrak{t}_{H}$ and $\xi \in \mathfrak{t}_{C}$ are resolution and deformation parameters.

Examples

SQED[N]

$U(1)$ gauge theory.

Fundamental hypermultiplets $\left(X_{i}, Y_{i}\right)$ with $i=1, \ldots, N$
$G_{H}=S U(N)$ and $G_{C}=U(1)$

Masses m_{1}, \ldots, m_{N} and FI parameter η
N isolated vacua

$$
x=e^{m} \text { and } \zeta=e^{\eta}
$$

$T[S U(N)]$

$$
\begin{aligned}
& G=U(1) \times \ldots \times U(N-1) \\
& G_{H}=G_{C}=S U(N)
\end{aligned}
$$

Masses m_{1}, \ldots, m_{N} and FI parameters $\eta_{1}, \ldots, \eta_{N}$
Vacua labelled by $\sigma \in S_{N}$

Higgs and Coulomb algebras

- Fix $\mathcal{N}=2$ subalgebra $U(1)_{H} \times U(1)_{C} \subset S U(2)_{H} \times S U(2)_{C}$
- Ring of chiral operators/holomorphic functions $\mathbb{C}\left[\mathscr{M}_{H}\right]$ and $\mathbb{C}\left[\mathscr{M}_{C}\right]$
- Hyperkähler geometry equips with Poisson bracket

Quantisation

Ω background quantises chiral rings

$$
\hat{\mathbb{C}}\left[\mathscr{M}_{H}\right] \text { and } \hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]
$$

$$
Q_{H / C}^{2}=\epsilon \mathscr{L}_{V}
$$

$$
q=e^{\epsilon}
$$

Example: SQED[N]

Higgs algebra $\hat{\mathbb{C}}\left[\mathscr{M}_{H}\right]$

Generated by X_{i} and Y_{i}
P.B. quantised: $\left[\hat{Y}_{i}, \hat{X}_{j}\right]=\epsilon \delta_{i j}$

Moment map $\sum_{i=1}^{N}: \hat{X}_{i} \hat{Y}_{i}:=t_{\mathbb{C}}$

Central quotient of $U\left(\mathfrak{S l}_{N}\right)$

$$
\begin{aligned}
& e_{i j}=\hat{X}_{i} \hat{Y}_{j}, \quad i<j \\
& f_{i j}=\hat{X}_{i} \hat{Y}_{j}, \quad i>j \\
& h_{j}=\hat{X}_{j} \hat{Y}_{j}-\hat{X}_{j+1} \hat{Y}_{j+1} \quad j=1, \ldots, N-1
\end{aligned}
$$

Coulomb algebra $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$

Generated by complex scalar φ and monopole operators $v_{ \pm}$
$\left[\hat{\varphi}, \hat{v}_{ \pm}\right]= \pm \epsilon \hat{v}_{ \pm}$
$\hat{v}_{+} \hat{v}_{-}=\prod_{i=1}^{N}\left(\hat{\varphi}+m_{i, \mathbb{C}}-\frac{\epsilon}{2}\right)$
$\hat{v}_{-} \hat{v}_{+}=\prod_{i=1}^{N}\left(\hat{\varphi}+m_{i, C}+\frac{\epsilon}{2}\right)$

Spherical rational Cherednik algebra - finite W algebra

Vortex moduli spaces

- Theory admits $\frac{1}{2}$ BPS vortex solutions
- Hilbert space of Ω-deformed theory in plane with mass deformations = Equivariant homology of VMS.
[Bullimore, Dimofte, Gaiotto, Hilburn, Kim]
- Relation between vortices and quasi-maps.
- Kähler manifolds with isometries x, q

$$
\begin{aligned}
& \text { Vortices are labelled by } \boldsymbol{d}=\frac{1}{2 \pi} \int_{S^{2}} \operatorname{tr} F_{i} \quad X, Y \rightarrow \mathscr{M}_{H} \text { at infinity } \\
& \text { Identify } \boldsymbol{d} \in H_{2}\left(\mathscr{M}_{H}, \mathbb{Z}\right) \\
& \text { Quasimap degree }
\end{aligned}
$$

Algebraic description \longrightarrow	$\mathrm{QM}_{\alpha}^{d}\left(\mathbb{P}^{1} \rightarrow \mathscr{M}_{H}\right)$ [Okounkov]
	q rotates \mathbb{P}^{1}
K-theoretic vertex functions	G_{H} global symmetries
Isolated fixed points	

Example: Laumon space/Handsaw quiver

Laumon spaces resolution of singularities $\quad \mathfrak{Q}_{\alpha}^{d}=\mathrm{QM}_{\alpha}^{d}\left(\mathbb{P}^{1} \rightarrow\right.$ flag $)$

Realisation as handsaw quiver variety [Nakajima]

Will discuss χ_{t} genera and Poincaré polynomials

Example

- SQED[N] vortex moduli space

Another Example

- $\mathrm{QM}_{\lambda}^{d}\left(\mathbb{P}^{1} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)\right)$
- Smooth quiver description?
- $\chi\left(\hat{\mathcal{O}}_{\text {Vir }}\right)$-Localisation formula

$$
\mathscr{M}_{H}=\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)
$$

Hemisphere partition function

- We compute partition function on hemisphere $S^{1} \times H^{2}$
- $\mathcal{N}=(2,2)$ boundary condition \mathscr{B} on T^{2}
$\mathcal{Z}_{S^{1} \times H^{2}}=\mathcal{Z}_{\text {Classical }} \mathcal{Z}_{1 \text {-loop }} \mathcal{Z}_{\text {Vortex }} \curvearrowleft \mathcal{Z}_{\text {Vortex }} \sim \chi\left(\hat{\mathcal{O}}_{\text {Vir. }}\right)$
[Benini and Peelaers] [Fujitsuka, Honda and Yoshida] Modification of [Yoshida and Sugiyama] - with particular B.C.

$$
d s^{2}=d \tau^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Twisted boundary conditions $\tau \sim \tau+\beta r$

State-operator map

- Relate the hemisphere partition function to count of local operators.

- $\operatorname{Tr}_{\mathscr{H}}^{\mathscr{A}} 10(-1)^{F} q^{J+\frac{R_{V}+R_{A}}{2}} t^{\frac{R_{V}-R_{A}}{2}} x^{F_{H}} \xi^{F_{C}}$
- We will compute half index

Exceptional Dirichlet

- Boundary conditions \mathscr{B}_{α} associated to each vacua α
- Dirichlet \mathscr{D} for $\mathscr{N}=4$ vector multiplet
- Lagrangian splitting of the hypers $L \oplus L^{*}$
- Fully breaks G, preserves T_{H} and T_{C}
- L chosen to give $\mathscr{L}_{\alpha} \subset \mathscr{M}_{H}$

$$
\left.\cdot Y_{L}\right|_{\partial}=c_{L}
$$

Recipe for computing half index
Vector multiplet [Dimofte, Gaiotto and Paquette]
$\frac{\left(q^{\frac{1}{2}} t^{2} ; q\right)_{\infty}}{(q)_{\infty}} \sum_{m \in \mathbb{Z}} y^{k_{\text {eff }} m} \times[$ matter index $]\left(q^{m} u\right)$

Boundary monopoles

Boundary hypers

Example: SQED[N]

Fix chamber $\mathfrak{C}_{H}=\left\{m_{1}<\ldots<m_{N}\right\}$ and $\mathfrak{C}_{C}=\{\xi>0\}$

$$
\begin{aligned}
& \partial_{\perp} Y_{j}=0, \quad X_{j}=c \delta_{i j} \quad j \leq i \\
& \partial_{\perp} X_{j}=0, \quad Y_{j}=0 \quad j>i
\end{aligned}
$$

First compute Dirichlet half-index:

Specialise fugacity $z=x_{i}^{-1} t^{-\frac{1}{2}} q^{-\frac{1}{4}}$ for non-zero chiral breaking combination of flavour, gauge and R -symmetry

Result: SQED[$N]$

From the hemisphere localisation

$$
\begin{gathered}
\mathcal{Z}_{i}^{\mathrm{Cl}}=e^{\phi_{i}} \\
\mathcal{Z}_{i}^{1 \text {-loop }}=\prod_{j=1}^{i-1} \frac{\left(q \frac{x_{i}}{x_{j}} ; q\right)_{\infty}}{\left(q^{\frac{1}{2}} t \frac{x_{i}}{x_{j}} ; q\right)_{\infty}} \prod_{j=i+1}^{N} \frac{\left(q^{\frac{1}{2}} t^{-1} \frac{x_{j}}{x_{i}} ; q\right)_{\infty}}{\left(\frac{x_{j}}{x_{i}} ; q\right)_{\infty}} \\
\mathcal{Z}_{i}^{\text {Vortex }}=\sum_{m \geq 0}\left(\left(q^{\frac{1}{4}} t^{-\frac{1}{2}}\right)^{N} \xi\right)^{m} \prod_{j=1}^{N} \frac{\left(q^{\frac{1}{2}} t \frac{x_{i}}{x_{j}} ; q\right)_{m}}{\left(q \frac{x_{i}}{x_{j}} ; q\right)_{m}}
\end{gathered}
$$

- Vortex moduli space is handsaw quiver

$$
\mathcal{Z}_{i}^{\text {Vortex }}=\sum_{d \geq 0} \zeta^{d} \chi_{t}\left(\mathfrak{Q}_{\alpha}^{d}\right)
$$

Why exceptional Dirichlet?

- Exceptional Dirichlet mimics vacuum at infinity-factorisation
- Flow to thimbles in IR RW sigma model—associated to vacua
- General principle [Bullimore, Dimofte, Gaiotto and Hilburn] that \mathscr{B} yields modules for $\hat{\mathbb{C}}\left[\mathscr{M}_{H}\right]$ and $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$

- Exceptional Dirichlet \mathscr{B}_{α} yields Verma modules

$$
\text { "Casimir" } e^{\phi} \quad \longleftrightarrow \quad \text { Highest weight of Verma }
$$

- $\mathcal{N}=4$ limits of hemisphere partition functions are Verma module characters

Specialised limits

$$
\mathcal{I}_{\mathcal{B}}=\operatorname{Tr}_{\mathcal{H}_{\mathcal{B}}}(-1)^{F} q^{J+\frac{R_{V}+R_{A}}{4}} t^{\frac{R_{V}-R_{A}}{2}} x^{F_{H}} \xi^{F_{C}}
$$

$$
\mathcal{I}_{\mathcal{B}}^{(B)}:=\lim _{t^{\frac{1}{2}} \rightarrow q^{-\frac{1}{4}}} \mathcal{I}_{\mathcal{B}}=\operatorname{Tr}_{\mathcal{H}_{\mathcal{B}}^{(B)}} x^{F_{H}}
$$

4 supercharges: Higgs operators (1-loop only)

A-limit: $t \rightarrow q^{\frac{1}{2}}$

$$
\mathcal{I}_{\mathcal{B}}^{(A)}:=\lim _{t^{\frac{1}{2}} \rightarrow q^{\frac{1}{4}}} \mathcal{I}=\operatorname{Tr}_{\mathcal{H}_{\mathcal{B}}^{(A)}} \xi^{F_{C}}
$$

4 supercharges: Coulomb operators (vortex only)

Example: $T[S U(2)]$

Coulomb side
$T^{*} \mathbb{P}^{1}$
Vacua $\alpha=1,2$

$$
\left[\hat{\varphi}, \hat{v}_{ \pm}\right]= \pm \epsilon \hat{v}_{ \pm}
$$

$$
\hat{v}_{+} \hat{v}_{-}=\left(\hat{\varphi}+m_{1, \mathbb{C}}-\frac{\epsilon}{2}\right)\left(\hat{\varphi}+m_{2, \mathbb{C}}-\frac{\epsilon}{2}\right)
$$

$\mathcal{Z}_{\text {Vortex }, \alpha}=\sum_{m \geq 0}\left(q^{\frac{1}{2}} t^{-\frac{1}{4}} \xi\right)^{m} \prod_{j=1}^{2} \frac{\left(q^{\frac{1}{2}} t x_{\alpha} / x_{j} ; q\right)_{m}}{\left(q x_{\alpha} / x_{j} ; q\right)_{m}}$
$\hat{v}_{-} \hat{v}_{+}=\left(\hat{\varphi}+m_{1, \mathbb{C}}+\frac{\epsilon}{2}\right)\left(\hat{\varphi}+m_{2, \mathbb{C}}+\frac{\epsilon}{2}\right)$
$\left(\hat{\varphi}+m_{\alpha}+\frac{\epsilon}{2}\right)\left|\mathscr{B}_{\alpha}\right\rangle=0, \quad \hat{v}^{+}\left|\mathscr{B}_{\alpha}\right\rangle=0$

$$
\chi_{\alpha}^{C}=e^{\frac{\log (\xi) \log \left(\chi_{\alpha}\right)}{\log (q)}+\frac{1}{2}} \frac{1}{1-\xi}
$$

Highest weight
Half index Verma
Quasimaps

Lower with \hat{v}_{-}

Recap so far

- Compute hemisphere partition functions and half indices with exceptional Dirichlet boundary conditions
- Specialised limits give Verma modules of $\hat{\mathbb{C}}\left[\mathscr{M}_{H}\right]$ and $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$

$$
\lim _{t \rightarrow q^{ \pm \frac{1}{2}}} \mathcal{Z}_{\alpha}(x, \xi ; q, t)=\chi_{\alpha}^{\mathrm{H}, \mathrm{C}}(x \text { or } \xi)
$$

Factorisation

$$
\mathcal{Z}_{\mathcal{M}_{3}}=\sum_{\alpha} H_{\alpha} \tilde{H}_{\alpha}
$$

- H_{α} holomorphic block [Beem, Dimofte and Pasquetti] - 3d analogue of $t t^{*}$ setup
- Gluing corresponds to Heegaard decomposition of \mathscr{M}_{3}
- Demonstrated in various cases by Coulomb branch localisation
-Examples include $\mathscr{M}_{3}=S^{2} \times_{A, B} S^{1}, \quad S_{b}^{3}, \quad S^{2} \times S^{1}$ Factorise
- Factorisation into hemisphere is exact

$$
\mathcal{Z}_{\mathcal{M}_{3}}=\sum_{\alpha} \mathcal{Z}_{\text {Pert. }} \mathcal{Z}_{\text {Vor. }} \mathcal{Z}_{\text {Anti vor. }}
$$

- Demonstrated for SQED[N] and ADHM [SC, Bullimore, Zhang] and [SC, Dorey, Zhang]

Application: IR formulae

$$
\mathcal{Z}_{\mathcal{M}_{3}}=\sum_{\alpha} \mathcal{Z}_{S^{1} \times H^{2}}^{\alpha} \tilde{\mathcal{Z}}_{S^{1} \times H^{2}}^{\alpha} \quad \lim _{t \rightarrow q^{\frac{1}{2}}} \mathcal{Z}_{\alpha}(x, \xi, q, t)=\chi_{\alpha}^{H, C}(x \text { or } \xi)
$$

In the specialised $\mathcal{N}=4$ limits we find e.g.

$$
\begin{gathered}
\mathcal{Z}_{\mathrm{SC}}^{B}=\sum_{\alpha} \mathcal{X}_{\alpha}^{H}(x) \mathcal{X}_{\alpha}^{H}\left(x^{-1}\right), \quad \mathcal{Z}_{\mathrm{SC}}^{A}=\sum_{\alpha} \mathcal{X}_{\alpha}^{C}(\xi) \mathcal{X}_{\alpha}^{C}\left(\xi^{-1}\right) \\
\mathcal{Z}_{\mathrm{tw}}^{B}=\sum_{\alpha} \mathcal{X}_{\alpha}^{H}(x) \mathcal{X}_{\alpha}^{H}(x), \quad \mathcal{Z}_{\mathrm{tw}}^{A}=\sum_{\alpha} \mathcal{X}_{\alpha}^{C}(\xi) \mathcal{X}_{\alpha}^{C}(\xi) \\
\mathcal{Z}_{S^{3}}=\sum_{\alpha} \hat{\mathcal{X}}_{\alpha}^{H}(x) \hat{\mathcal{X}}_{\alpha}^{C}(\xi)
\end{gathered}
$$

A and B twisted indices

Choose $R_{A}=2 U(1)_{H}$ or $R_{B}=2 U(1)_{C}$ and place theory on $S^{2} \times_{A, B} S^{1}$ with background R-symmetry flux
E.g. Coulomb branch localisation [Benini and Zaffaroni]

$$
\mathcal{Z}_{S^{2} \times_{A, B} S^{1}}=\sum_{\alpha} H_{\alpha}(x, \xi ; q, t) H_{\alpha}\left(x, \xi ; q^{-1}, t\right)
$$

Geometry [SC, Dorey and Zhang]

$$
\sum_{\boldsymbol{d}} \xi^{\boldsymbol{d}} \chi_{t}\left(\mathcal{Q}^{\boldsymbol{d}}\right)=\mathcal{Z}_{S^{2} \times_{A} S^{1}}=\sum_{\alpha} H_{\alpha} \tilde{H}_{\alpha}=\sum_{\alpha}\left\|\sum_{\boldsymbol{d}} \xi^{\boldsymbol{d}} \chi_{t}\left(\mathfrak{Q}_{\alpha}^{\boldsymbol{d}}\right)\right\|^{2}
$$

Poincaré polynomial limit

$$
\mathcal{Z}_{S^{1} \times H^{2}}=\mathcal{Z}_{\text {Classical }} \mathcal{Z}_{1 \text {-loop }} \mathcal{Z}_{\text {Vortex }}
$$

$$
\mathcal{Z}_{\text {Vortex }}(x, \xi ; q, t)
$$

$$
\sum_{k \geq 0} \xi^{k} \sum_{\text {f.p. }} t^{\text {Dim. attracting set }}
$$

$$
\lim _{q \rightarrow 0} \chi_{t}(\mathfrak{Q})=P_{t}\left(\pi^{-1}(0)\right)
$$

Poincaré polynomial

- Only vortices contribute in this limit - R-charge graded Verma characters
- Mirror limit only 1-loop contributions - generating function

3d mirror symmetry $\quad X \leftrightarrow Y$

- IR duality of 3d gauge theories [Intriligator and Seiberg]

$$
\mathscr{M}_{H} \leftrightarrow \mathscr{M}_{C} \quad m \leftrightarrow \xi \quad t \leftrightarrow t^{-1}
$$

- Boundary conditions transform non-trivially
\subset Exceptional Dirichlet?
Dirichlet

$$
\mathcal{Z}_{\alpha} \rightarrow U_{\alpha \beta} \mathcal{Z}_{\beta}
$$

-Two simplifying limits

$$
\lim _{q t^{ \pm \frac{1}{2}} \rightarrow 0} \mathcal{I}_{\alpha}^{X}=\lim _{q t^{\mp \frac{1}{2}} \rightarrow 0} \mathcal{I}_{\alpha}^{Y} \quad \lim _{q \rightarrow t^{ \pm \frac{1}{2}}} \mathcal{I}_{\alpha}^{X}=\lim _{q \rightarrow t^{\mp \frac{1}{2}}} \mathcal{I}_{\alpha}^{Y}
$$

Proof?

- Exchanges perturbative and non-perturbative contributions

$T[S U(2)]$ Example

Self-mirror dual

$$
\mathcal{I}^{Y}=\mathcal{I}_{1-\text { loop }} \mathcal{I}_{\text {Vortex }}=\frac{(q x ; q)_{\infty}}{(t q x ; q)_{\infty}} \sum_{k \geq 0} \xi^{k} \frac{(t q x ; q)_{k}}{(q x ; q)_{k}} \quad \mathcal{I}^{X}=\mathcal{I}_{1-\text { loop }} \mathcal{I}_{\text {Vortex }}=\frac{(q x ; q)_{\infty}}{(x ; q)_{\infty}} \sum_{k \geq 0}\left(t^{-1} q \xi\right)^{k} \frac{(t q x ; q)_{k}}{(q x ; q)_{k}}
$$

$$
\lim _{\text {Poincaré }} \mathcal{I}^{Y}=\mathcal{I}_{\text {Vortex }}=\sum_{k \geq 0} \xi^{k} \quad \longrightarrow \quad \lim _{\text {Poincaré }} \mathcal{I}^{X}=\mathcal{I}_{1 \text {-loop }}=\frac{1}{1-x}
$$

Generating function of handsaw quiver Poincaré polynomials [Nakajima]

Twisted index and Hilbert series

Twisted index on $\Sigma=S^{2}$ of $3 \mathrm{~d} \mathcal{N}=4$ theories computes Hilbert series

Example $\quad T[S U(N)]$

Twisted index/Hilbert series factorises:

$$
\mathcal{Z}_{S^{2} \times A_{A} S^{1}}=\sum_{\alpha \in S_{N}} \mathcal{Z}_{S^{1} \times H^{2}}(q, t) \mathcal{Z}_{S^{1} \times H^{2}}\left(q^{-1}, t\right)
$$

1-loop contributions only I.e. Poincaré polynomials

Free to send $q \rightarrow 0$

$$
\begin{aligned}
\mathcal{Z}_{S^{1} \times{ }_{A} S^{1}} & =\sum_{\alpha \in S_{N}} \prod_{i<j} \frac{1}{1-t x_{i} / x_{j}} \prod_{i>j} \frac{1}{1-t x_{i} / x_{j}} \\
& =\prod_{\vec{d}} x^{N} \frac{1}{1-j=1} x_{P_{t}\left(\mathfrak{Q}_{\alpha}^{\vec{d}}\right)}^{1-t x_{i} / x_{j}}=\text { H.S. }(T[S U(N)])
\end{aligned}
$$

Recap so far

- Twisted index computes Hilbert series
- Factorising twisted index gives formula for Hilbert series in terms of Poincaré polynomial of quasimap space
-3d mirror symmetry provides generating function of Poincaré polynomials
- Concrete for $T_{\rho}[S U(N)]$ theories - Handsaw quivers
-Will now discuss more complicated, "speculative" example

3d ADHM Example

Worldvolume theory ND2 branes on single D6 in type IIA $\quad p=1$

$N M 2$ branes \longleftrightarrow SUGRA AdS $_{4} \times S^{7}$

BH entropy in Cardy limit [Choi and Hwang] from vortex partition functions

$$
\lim _{q \rightarrow 1} \oint e^{\frac{1}{\log (q)} \mathscr{V}}=H^{*} \sim e^{\frac{1}{\log (q)} N^{\frac{3}{2}} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}}
$$

- Mirror self dual

Torus action on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

- $\mathscr{M}_{H}=\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ with $G_{H}=U(1)$ and $R_{H}-R_{C}=U(1)$
- Vacua labelled by partitions $|\lambda|=N$

$$
E_{k, t}=\sum_{a=1}^{N_{k}} \frac{\Pi_{b} w_{k, a}-w_{k-1, b}-\epsilon_{2}}{\prod_{b \neq a}^{t}\left(w_{k, a}-w_{k, b}\right)} w_{k, a}^{t} v_{k, a}
$$

- $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$ described by [Nakajima and Kodera]

$$
F_{k, t}=\sum_{a=1}^{N} \frac{\prod_{b} w_{k, a}-w_{k+1, b}+\epsilon_{2}}{\prod_{b \neq a}\left(w_{k, a}-w_{k, b}\right)} v_{k, a}^{-1} w_{k, a}^{t+\delta_{0, k}}
$$

- Cyclotomic rational Cherednik algebra
- $\mathbb{C}\left[\mathscr{M}_{H}\right]$ gauge invariant polynomials in (A, B, I, J)

$$
\operatorname{QM}_{\lambda}^{d}\left(\mathbb{P}^{1} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)\right) \quad \mathcal{Z}_{\text {Vortex }}=\sum_{\boldsymbol{d}} \zeta^{d} \chi\left(\hat{\mathcal{O}}_{\text {Vir. }}\right)
$$

ADHM hemisphere partition function

$$
\mathcal{Z}_{S^{1} \times D}^{\lambda}=\mathcal{Z}_{\text {Classical }}^{\lambda} \mathcal{Z}_{1 \text {-loop }}^{\lambda} \mathcal{Z}_{\text {Vortex }}^{\lambda}
$$

$$
\mathcal{Z}_{\text {Classical }}^{\lambda}=e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log \zeta \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log v \log z}{\log q}} e^{\left[\sum_{s \in \lambda} h(s)\right] \frac{\log u \log \xi}{\log q}} e^{-\left[\sum_{s \in \lambda} c(s)\right] \frac{\log u \log v}{\log q}}
$$

New

$$
\mathcal{Z}_{1 \text {-loop }}^{\lambda}=\prod_{s \in \lambda} \frac{\left(q z^{a_{\lambda}(s)+l_{\lambda}(s)+1} u^{-a_{\lambda}(s)+l_{\lambda}(s)-1} ; q\right)_{\infty}}{\left(z^{a_{\lambda}(s)+l_{\lambda}(s)+1} u^{-a_{\lambda}(s)+l_{\lambda}(s)+1} ; q\right)_{\infty}}
$$

Familiar-ish

$$
u=t^{\frac{1}{2}} q^{\frac{1}{4}}, v=t^{-\frac{1}{2}} q^{\frac{1}{4}}
$$

Fuses exactly!

Verma character limits

$\mathcal{Z}_{\text {Vortex }}^{\lambda}=\sum_{\pi \in \operatorname{RPP}(\lambda)}\left(\zeta t^{\frac{1}{2}} q^{-\frac{1}{4}}\right)^{|\pi|} \prod_{s \in \lambda} \frac{\left(u^{2} v_{s}^{-1} ; q\right)_{-\pi_{s}}}{\left(q v_{s}^{-1} ; q\right)_{-\pi_{s}}} \prod_{\substack{s, t \in \lambda \\ s \neq t}} \frac{\left(q u^{-2} \frac{v_{t}}{v_{s}} ; q\right)_{\pi_{t}-\pi_{s}}}{\left(\frac{v_{t}}{v_{s}} ; q\right)_{\pi_{t}-\pi_{s}}} \frac{\left(z u \frac{v_{t}}{v_{s}} ; q\right)_{\pi_{t}-\pi_{s}}}{\left(q z u^{-1} \frac{v_{t}}{v_{s}} ; q\right)_{\pi_{t}-\pi_{s}}}$

$$
\mathcal{Z}_{1 \text {-loop }}^{\lambda}=\prod_{s \in \lambda} \frac{\left(q z^{a_{\lambda}(s)+l_{\lambda}(s)+1} u^{-a_{\lambda}(s)+l_{\lambda}(s)-1} ; q\right)_{\infty}}{\left(z^{a_{\lambda}(s)+l_{\lambda}(s)+1} u^{-a_{\lambda}(s)+l_{\lambda}(s)+1} ; q\right)_{\infty}}
$$

$$
\prod_{s \in \lambda} \frac{1}{1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1}}
$$

Fixed points on QM space

Generating function

Representation theory

- Verma modules of $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$?
- π boundary operators \longleftrightarrow Fixed points on $\mathrm{QM}_{\lambda}^{d}\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)\right)$
- Action of $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$ on RPPs?

Poincaré polynomial limit

$$
\begin{aligned}
& \text { "Poincaré limit } q \rightarrow 0 \text { " } \\
& \sum_{\pi \in \operatorname{RPP}(\lambda)} t^{\frac{1}{2}\left(\mathrm{ht}^{\prime}(\pi)-\mathrm{ht}(\pi)+b(\pi)\right)} z^{|\pi|} \\
& \prod_{s \in \lambda} \frac{1}{1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1} t^{\frac{1}{2}\left(-a_{\lambda}(s)+l_{\lambda}(s)+1\right)}}
\end{aligned}
$$

Refined generating function of RPPs

Neumann boundary condition

- Throughout we have been using particular Dirichlet boundary conditions
- Neumann boundary condition is expected to yield simple modules [Bullimore, Dimofte, Gaiotto and Hilburn]
- Consider $p=N_{f}>$ 1. I.e. general Jordan quiver
- $\mathscr{M}_{H}=\mathscr{M}_{N, p}$ instanton moduli space $G_{H}=S U(p)$

$T[S U(N)]$ analogy

- Neumann boundary condition is computed via contour integral

$$
\begin{aligned}
& \mathcal{Z}_{S^{1} \times D}\left[z_{i}, \zeta_{i} ; q, t\right]= \\
& \oint_{\Gamma} \prod_{a=1}^{N} \prod_{i=1}^{a} \frac{d x_{a}^{(i)}}{x_{i}^{(a)}} e^{\log \left(x_{i}^{(a)}\right) \log \left(\zeta_{i}^{(a)}\right)} \prod_{a=1}^{N-1} \frac{\prod_{i \neq j}^{a}\left(x_{j}^{(a)} / x_{i}^{(a)} ; q\right)_{\infty}}{\prod_{i, j}^{N}\left(t q x_{j}^{(a)} / x_{i}^{(a)} ; q\right)_{\infty}} \prod_{a=1}^{N-1} \prod_{i=1}^{a} \prod_{j=1}^{a+1} \frac{\left(t q x_{j}^{(a+1)} / x_{i}^{(a)} ; q\right)_{\infty}}{\left(x_{j}^{(a+1)} / x_{i}^{(a)} ; q\right)_{\infty}}
\end{aligned}
$$

Integral form of Macdonald polynomial

Verma limit

$$
s_{\lambda}
$$

Borel-Weil-Bott - compact Lagrangian core is complete flag

Equivalent for ADHM

$\mathcal{Z}_{S^{1} \times D}^{B}=\frac{1}{N!} \oint_{\mathrm{JK}} \prod_{a=1}^{N} \frac{d s_{a}}{2 \pi i s_{a}} s_{a}^{-\zeta} \frac{\prod_{a \neq b}^{N}\left(s_{a} s_{b}^{-1} ; q\right)_{\infty}}{\prod_{a, b=1}^{N}\left(s_{a} s_{b}^{-1} t^{-1} q ; q\right)_{\infty}} \prod_{a, b=1}^{N} \frac{\left(s_{a} s_{b}^{-1} z t^{-\frac{1}{2}} q ; q\right)_{\infty}}{\left(s_{a} s_{b}^{-1} z t^{\frac{1}{2}} ; q\right)_{\infty}}$
 $\prod_{a=1}^{N} \prod_{i=1}^{p} \frac{\left(s_{a} x_{i} t^{-\frac{1}{2}} q ; q\right)_{\infty}}{\left(s_{a} x_{i} t^{\frac{1}{2}} ; q\right)_{\infty}}$.

Choice of \mathscr{B}

Verma limit

$$
\mathcal{Z}_{N, p}(\mathcal{B})=\frac{1}{N!} \oint_{\left(S^{1}\right)^{N}} \prod_{a=1}^{N} \frac{d s_{a}}{2 \pi i s_{a}} s_{a}^{-\zeta} \frac{\prod_{a \neq b}^{N}\left(1-s_{a} s_{b}^{-1}\right)}{\prod_{a, b=1}^{N}\left(1-z s_{a} s_{b}^{-1}\right)} \prod_{a=1}^{N} \prod_{i=1}^{p} \frac{1}{1-x_{i} s_{a}}
$$

$$
\mathcal{Z}_{N, p}(\mathcal{B})=Q_{(\zeta)^{N}}^{\prime}\left(x_{1}, \ldots, x_{p} ; z\right)
$$

Milne polynomial $q \rightarrow 0$ of Haiman-Garcia Macdonald polynomial
Simple module of Nakajima and Kodera $\hat{\mathbb{C}}\left[\mathscr{M}_{C}\right]$?

Refined Topological Vertex

- Quasi-maps to $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ should be related to vertex
- $q \rightarrow 0$ limit coincides with the refined topological vertex

$$
\lim _{q \rightarrow 0} \mathcal{Z}_{S^{1} \times D}^{A, \lambda}=t_{1}^{\frac{1}{4}\|\lambda\|^{2}} t_{2}^{-\frac{1}{4}\left\|\lambda^{\vee}\right\|^{2}} \prod_{s \in \lambda} \frac{1}{1-t_{1}^{l_{\lambda}(s)+1} t_{2}^{-a_{\lambda}(s)}}
$$

Classical piece $=$ framing factors

$$
C_{\emptyset, \emptyset, \lambda}^{(\mathrm{IKV})}\left(t=t_{2}^{-1}, q=t_{1}\right)
$$

Twisted index gluing

$$
\sum_{\substack{\lambda \\|\lambda|=N}} \lim _{q \rightarrow 0} \mathcal{Z}_{\text {Classical }}^{B, \lambda} \overline{\mathcal{Z}}_{\text {Classical }}^{B, \lambda} \mathcal{Z}_{1-\text { loop }}^{B, \lambda} \overline{\mathcal{Z}}_{1 \text {-lioop }}^{B, \lambda}
$$

- Twisted index $=$ Hilbert series of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$
- Identify the twisted index gluing with the gluing of vertices.

Poincaré polynomials

$$
\begin{aligned}
& \lim _{q \rightarrow 0} \mathcal{Z}_{1-\operatorname{locp}}^{B, \lambda}(z, \zeta ; q, t)=\prod_{s \in \lambda} \frac{1}{1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1} t^{\frac{1}{2}\left(-a_{\lambda}(s)+l_{\lambda}(s)+1\right)}}, \\
& \lim _{q \rightarrow 0} \mathcal{Z}_{1-\text { oop }}^{B, \lambda}\left(z, \zeta ; q^{-1}, t\right)=\prod_{s \in \lambda} \frac{1}{1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1} \frac{1}{\frac{1}{2}\left(-a_{\lambda}(s)+l_{\lambda}(s)-1\right)}}, \\
& \lim _{q \rightarrow 0} \mathcal{Z}_{\text {Classical }}^{B, \lambda}(z, \zeta ; q, t)=z^{\frac{1}{2}} \sum_{s \in \lambda} \lambda_{\lambda}(s) t^{-\frac{1}{4}} \sum_{s \in \lambda} \lambda_{\lambda}(s), \\
& \lim _{q \rightarrow 0} \mathcal{Z}_{\text {Classical }}^{B, \lambda}\left(z, \zeta ; q^{-1}, t\right)=z^{\frac{1}{2} \sum_{s \in \lambda} h_{\lambda}(s)} t^{-\frac{1}{4} \sum_{s \in \lambda} c_{\lambda}(s)} . \\
& \mathcal{Z}_{\text {Vortex }}^{A, \lambda}=V_{\mathrm{PT}}^{\emptyset, \emptyset, \lambda} \\
& \text { Interpret as conifold } \mathcal{O}(-1) \oplus \mathcal{O}(-1) \rightarrow \mathbb{P}^{1} \text { amplitude } \\
& \text { Independence of } q \ldots
\end{aligned}
$$

$\left.=\sum_{|\lambda|=N} \prod_{s \in \lambda} \frac{\left.z^{a_{\lambda}(s)+l_{\lambda}(s)+1} \frac{1}{t^{\frac{1}{2}}\left(-a_{\lambda}(s)+l_{\lambda}(s)\right.}\right)}{\left(1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1} t^{\frac{1}{2}\left(-a_{\lambda}(s)+l_{\lambda}(s)+1\right)}\right)\left(1-z^{a_{\lambda}(s)+l_{\lambda}(s)+1} t^{\frac{1}{2}}\left(-a_{\lambda}(s)+l_{\lambda}(s)-1\right)\right.}\right)$

Summary

- Hemisphere partition functions realise factorisation
- Verma character formulae for \mathscr{M}_{3} partition functions
- Geometric interpretation
- Twisted index, Hilbert series and Poincaré polynomials
- Detailed study of ADHM example
- Connections to topological vertex

Further directions

- Quasi-map interpretation of 1-loop contributions
- Mirror symmetry of boundary conditions
- Geometric interpretation of Cardy limit $\lim _{q \rightarrow 1} \mathcal{Z}_{S^{1} \times D}^{\lambda}$
- Phase with non-trivial scaling of $N=|\lambda|$ i.e. $\sim e^{N^{3 / 2}}$
- Relevance of Hanany-Tong lagrangian and simple modules?

Thanks

