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Introduction

Costello, Witten & Yamazaki have introduced a beautiful new approach to
quantum integrable systems based on a 4d variant of Chern-Simons theory

S [A′] =
1

2πi

∫
Σ×C

ω ∧ CS(A′)

where Σ is a topological surface (we’ll take Σ ∼= R2) and C is a Riemann
surface with meromorphic (1,0)-form ω

Integrable spin chains arise from line operators along γ × {zi}, while
integrable field theories arise from including surface operators or
imposing boundary conditions on A′

A striking feature of this approach is that the spectral parameter of
the integrable system becomes part of the geometry, making
integrability manifest by construction

The aim of this talk is to relate this new story to a much older scheme for
organising integrable systems, at least at the classical level
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The ASDYM Equations

The anti-self-dual Yang-Mills equations on a four-manifold M state

F = − ? F

They are conformally invariant

They have real solutions in Euclidean and ultrahyperbolic signatures

They have long been known to be related to integrable systems

There is no entirely satisfactory action whose variation leads to these
equations

Introducing B ∈ Ω+(M, g) one has a conformally invariant action

S [A,B] =

∫
M
tr(B ∧ F )

Variation yields F+ = 0, but also dAB = 0

Other actions for ASDYM break some part of the conformal invariance
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Yang’s J-matrix
On R4 with metric ds2 = 2(dz dz̃ − dw dw̃) the ASDYM eqns become

Fwz = 0 , Fw̃ z̃ = 0 , Fww̃ = Fzz̃

Regarding the first two eqns as flatness conditions, introduce
h, h̃ ∈ Ω0(R4, g) by Dwh = Dzh = 0 and Dw̃ h̃ = Dz̃ h̃ = 0

Gauge transformations D 7→ g−1D g leave σ = h̃−1h invariant

The remaining equation Fww̃ = Fzz̃ becomes

ω ∧ ∂ (J−1∂̃J) = 0

where ω = dw ∧ dw̃ − dz ∧ dz̃ and J = −dσ σ−1

This arises as the eom of the 4d WZW action

S [σ] =
1

2

∫
R4

tr(J ∧ ?J) +
1

3

∫
R4×[0,1]

ω ∧ tr(J̃ ∧ J̃ ∧ J̃)

with J̃ = −d σ̃ σ̃−1 and σ̃ any homotopy from σ to 1 [Donaldson;Nair,Schiff;

Losev,Moore,Nekrasov,Shatashvili]
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Yang’s K -matrix
If we instead use the condition Fwz = 0 to fix the gauge Aw = Az = 0, the
remaining equations become

Fw̃ z̃ = 0 , ∂wAw̃ − ∂zAz̃ = 0

The final equation implies A = ∂zφ dw̃ + ∂wφ dz̃ for φ ∈ Ω0(R4, g)

The remaining equation is Fw̃ z̃ = 0, which becomes the condition

∆φ− [∂wφ, ∂zφ] = 0

This arises as the eom of the cubic action

S [φ] =

∫
R4

1

2
tr(dφ ∧ ?dφ) +

1

3
µ ∧ tr(φ dφ ∧ dφ)

where µ = dw̃ ∧ dz̃ [Leznov,Mukhtarov; Parkes; Mason,Woodhouse; Siegel]

Closely connected to N = 2 heterotic / open strings [Ooguri,Vafa;Berkovits,Vafa]
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Integrability from Symmetry Reduction
Many integrable systems arise as symmetry reductions of the ASDYM
equations by conformal symmetries [Ward;Hitchin;Mason,Woodhouse]

For example, requiring the field σ of the 4d WZW action is invariant
along the flow of V = ∂/∂w and V̄ = ∂/∂w̃ yields a 2d PCM with
WZW term

Many reductions are possible. For example, reducing by

- a single translation gives Bogomolny equations

- a translation and orthogonal rotation gives the Ernst equation [Penna]

- the Euclidean group on a non-null 2-plane gives Toda theory

- 2-plane and discrete subgroup of rotations gives extended Toda theory

- many more examples in Lorentzian & ultrahyperbolic signatures

It was once hoped that all integrable systems arise as symmetry
reductions of ASDYM (though the KP hierarchy in particular does
not appear to sit naturally in this framework)
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The Lax Connection and Twistor Space
Introducing a Weyl spinor πα̇, the ASDYM equations themselves can be
written in Lax form as

[πα̇Dαα̇, π
β̇Dββ̇] = 0 for all πα̇,

where Dαα̇ = σµαα̇Dµ and we take [πα̇] ∈ CP1

This description is best understood on twistor space PT, which in
Euclidean signature is just the bundle of projective spinors

PT has a natural C-str that combines the C-str on CP1 3 [πα̇] with
the statement that xαα̇πα̇ are holomorphic coords on C2 ∼= R4

As a C-mfld, PT is the total space of O(1)⊕O(1)→ CP1, and can
be thought of as CP3\CP1. We often describe it using homogeneous
coords [ZA] ∈ CP3

πα̇∂αα̇ is an anti-holomorphic derivative, so the Lax formulation says an
ASDYM connection on E4 pulls back to give a holomorphic bundle on PT
[Penrose,Ward]
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Holomorphic Chern-Simons Theory
Given a (partial) connection ∂̄ +A on a complex bundle E →W over a
CY 3-fold W , holomorphic Chern-Simons theory has action [Witten]

S [A] =
1

2πi

∫
W

Ω ∧ tr

(
A ∂̄A+

2

3
A ∧A ∧A

)
where Ω is the holomorphic (3,0)-form on W

The field equations imply E is holomorphic, as we want for the
Penrose-Ward transform. However, twistor space is not CY.
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Boundary Conditions

The (3,0)-form Ω = D3Z/(A · Z B · Z )2 has double poles on two CP2s in
CP3. Removing their CP1 intersection leaves us with

PT = (O(1)⊕O(1)→ CP1)

described using homog coordinates [πα̇] ∈ CP1 and ωα on the fibres

In these coords, A · Z = 〈απ〉 while B · Z = 〈βπ〉 with 〈αβ〉 = 1

These poles lead to boundary terms when varying the action

2πi δS =

∫
PT

Ω ∧ tr(δA ∧ F) +

∫
PT
∂̄Ω ∧ tr(δA ∧ A)

We may eliminate these by requiring A = 〈απ〉〈βπ〉ϕ for some
regular ϕ ∈ Ω0,1(PT,O(−2)⊗ g)

Similar conditions are imposed on gauge transformations
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Reduction to the Donaldson-Nair-Schiff action
The boundary conditions mean that gauge invariant information is
contained in

σ(x) = P exp

(
− 1

2πi

∫
X

〈dπ π〉
〈απ〉〈πβ〉

∧ A
)

We fix the gauge by requiring A|X = σ̂−1∂̄|X σ̂ where σ̂ = σ in a
neighbourhood of α and σ̂ = 1 in a neighbourhood of β

Then set A = (A′)σ̂ = σ̂−1∂̄σ̂ + σ̂−1A′σ̂

Imposing the partial eqns of motion F0ᾱ = 0 (involving the components of
F0,2 along the fibre of CP1 → PT→ R4) together with the boundary
conditions gives

A′α = πα̇Aαα̇(x) with Aαα̇ = −βα̇αβ̇
∂σ

∂xαβ̇
σ−1

All fibre dependence is now explicit, so can integrate out the CP1

Doing so we obtain the 4d WZW action [Donaldson;Nair,Schiff] for σ, with α
and β related to choice of coords (w , w̃ , z , w̃) above
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Reduction to the cubic action
Starting instead from hCS theory on PT with measure Ω = D3Z/〈απ〉4 we
must ask that A vanishes to second order at π = α

Here we fix the gauge by asking A|X be harmonic on the CP1 fibre,
leading to

A|X = 〈απ〉2 φ(x)
〈d π̂ π̂〉
〈ππ̂〉2

and we set σ̂ = exp

(
〈απ〉〈α̂π̂〉
〈ππ̂〉

φ(x)

)

In the gauge A = (A′)σ̂ = σ̂−1∂̄σ̂ + σ̂−1Aσ̂ as before, the partial
eom and boundary conditions fix

A′α = πα̇Aαα̇(x) with Aαα̇ = −αα̇αβ̇
∂φ

∂xαβ̇

Integrating over the CP1 fibres in this case gives the cubic action for
ASDYM in terms of φ [Leznov,Mukhtarov]

Helpful to note that σ̂, but not its derivatives along CP1, is invariant
under U(1) rotations of CP1 around the α,α̂ axis
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Exotica & Miscellany
Many other actions can be generated from further choices of Ω

If Ω has only simple poles

Ω =
D3Z

〈α+π〉〈α−π〉〈β+π〉〈β−π〉

we may impose the weaker boundary conditions

A|π=α±,β± ∈ l± where g = l+ ⊕ l− is a Manin triple

I Gauge fixing as before gives a ‘trigonometric’ action in 4d, with
interesting generalizations in 2d [Mason,Sparling]

Allowing simple zeros in Ω = D3Z
∏n

i=1〈αiπ〉〈βiπ〉/
∏n+2

j=1 〈γjπ〉2
means we can tolerate simple poles in A. This leads to a
(complicated) theory of coupled σ-models in 4d

I Not equivalent to ASDYM, but still has Lax connection and leads to
known integrable 2d theories[Costello,Yamazaki]

(Further examples are considered in the paper)
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4d Chern-Simons Theory
Instead of first moving to R4, then applying a symmetry reduction, one
can apply the reduction directly in twistor space

We lift the vectors V , V̄ to vector fields V, V̄ on PT by requiring they
generate transformations that preserve the C-str

For translations these lifts are trivial and we have simply

V = κ̂αµ̂α̇
∂

∂xαα̇
V̄ = καµα̇

∂

∂xαα̇

Contracting Ω ∧ hCS(A) with the bivector V ∧ V̄ and requiring
LVA = 0 = LV̄A gives the 4d Chern-Simons action [Costello,Witten,Yamazaki]

S [A′] =
1

2πi

∫
E2×CP1

ω ∧ tr

(
A′ ∧ d′A′ +

2

3
A′ ∧ A′ ∧ A′

)
where d′ = dE2 + ∂̄CP1 and ω = 〈dπ π〉 〈πµ〉〈πκ〉/〈απ〉2〈βπ〉2

Costello & Yamazaki show this 4d Chern-Simons theory is equivalent
to the 2d PCM model on E2
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The details of which theories are obtained depend on the choice of Ω and
choice of symmetry reduction

The relation may be summarized by the following commutative diagram:

Holomorphic Chern-Simons
theory on PT

4d Chern-Simons
theory on E2 × CP1

4d integrable
theory on E4

2d integrable
theory on E2

symmetry reduction solving along fibres

solving along fibres symmetry reduction

Note that both the twistor theory and 4d Chern-Simons theory include the
spectral parameter as part of the geometry. In this sense, they each make
integrability manifest.
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An example in 5d
Quotienting the ASDYM equations by a single non-null translation leads
to the Bogomolny equations on R3

Performing the quotient on twistor space gives minitwistor space MT

MT ∼= TCP1 is the space of oriented lines in R3, with u = x α̇β̇πα̇πβ̇

for [u, πα̇] ∈ TCP1 and x α̇β̇ = x β̇α̇ ∈ R3
[Hitchin]

The space of parametrized lines R×MT is a 5d space that may be
identified with the projective spin bundle S→ E3

Applying this reduction to the hCS theory on PT gives [Adamo,DS,Williams]

S [A′] =
1

2πi

∫
S
ω ∧ tr

(
A′ ∧ d′A′ +

2

3
A′ ∧ A′ ∧ A′

)
where d′ = dR + ∂̄TCP1 and ω = du ∧ 〈dπ π〉/〈απ〉2〈βπ〉2

This 5d theory bears the same relation to the 3d Bogomolny theory as
Costello-Yamazaki theory does to the 2d WZW model
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Anti Self-Dual Gravity [Bittleston,Ma,Sharma,DS] in progress

Deforming the C-str of twistor space deforms the conformal structure on
R4

[Penrose, Atiyah,Hitchin,Singer]. Perturbatively ∂̄ 7→ ∂̄ + V for V ∈ Ω0,1(PT,TPT)

If (∂̄ + V )2 = 0 then the Weyl tensor C on R4 is asd

Asd Einstein metrics arise if we require V = {h, · } where

{f , g} = εαβ
∂f

∂ωα
∧ ∂g

∂ωβ
and h ∈ Ω0,1(PT,O(2))

There is a beautiful twistor action for anti self-dual gravity [Mason,Wolf; DS]

S [h] =
1

2πi

∫
PT

Ω ∧
(
h ∂̄h +

1

3
h ∧ {h, h}

)
where Ω has two fourth-order poles (or one eigth-order pole)

We believe the 4th-order case gives the action [Plebanski; Ooguri,Vafa]

S [Φ] =

∫
R4

1

2
∂Φ∂̄Φ +

1

3
Φ ∂∂̄Φ ∂∂̄Φ

where Φ is a deformation of the (pseudo-)Kähler potential
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A glimpse at quantization
One motivation for examining the relation between hCS and ASDYM at
the level of the action is as preparation for quantization

hCS theory is a chiral theory, so there is a potential gauge anomaly on PT

In 6d the local anomaly comes from a box diagram

This is non-vanishing, but Costello claims that for G = SO(8) it can
be made to cancel via a 6d version of the Green-Schwarz mechanism

For G 6= SO(8) the 4d theory is not anomalous, but no longer comes
from a twistor progenitor. Integrability is expected to be broken at
the quantum level
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Conclusions
hCS theory on PT with a meromorphic (3,0)-form describes a 4d
integrable theory on space-time

If Ω is nowhere vanishing, the 4d theory has eom equivalent to the
ASDYM eqns, but more general systems can also be obtained

Performing a symmetry reduction of the 4d theory gives an action for
a lower dimensional integrable system

Performing this reduction directly in PT gives the partially
holomorphic Chern-Simons description of this system [Costello,Yamazaki]

There are many open directions for future work, including

Further reductions should lead to Toda, sine-Gordon, NLS integrable
systems. Some of the systems we obtain are not just symmetry
reductions of ASDYM; are there others?

Implement the symmetry reduction at the quantum level (perhaps by
a partial topological twist?)

The connection to N = 2 strings seems central and clearly deserves
further exploration
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Thank You
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