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In a nutshell

A TQFT is a functor

Z: Spacetime Caricature — Algebra

Summary:
— n-dimensional closed TQFTs = algebras
— n-dimensional defect TQFTs = mn-categories

— orbifolds = representation theory in n-categories

Applications for n T 4:
n = 2: Landau—Ginzburg models
n = 3: Chern-Simons and Reshetikhin—Turaev theory

n = 4: Crane—Yetter and Douglas—Reutter theory



Motivation 1: basic features of quantum physics

— physical states: vector space V'
— observables: linear operators on V

— time evolution of ¥ € V described by linear map Us:

o

i =HY W(t) = Uy ¥(0) Uy = e 1

Uty = Ug o Uy

Think of quantum field theory as a map

Spacetime — Algebra
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Let G be a group. A G-representation is a functor

BG -2 Vect
a AN

single object * and End(x) = G vector spaces and linear maps
* > plx) =V
End(x) =G > g +— p(g) € End(V)

Functoriality means p(e) = idy and p(gh) = p(g)p(h), so we have a
group homomorphism

G — Aut(V)
g +— plg)

Think of QFT as a representation of spacetime on algebra.
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Topological quantum field theory
A 2-dimensional closed TQFT is a symmetric monoidal functor

Bordgi\/ect
st zShH=V

Stu...ust — VeV
g — k
— (Vev - S v
gy — o)
V — (Vin/@v)
a — (vink)
@o& = @ — ((—,—):V@V%k

Atiyah 1988
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Topological quantum field theory
A 2-dimensional closed TQFT is a symmetric monoidal functor
Bords i> Vect

Sto— Vv (vector space)

& — (,u: Vev — V) (associative multiplication)

@ — (<—, =) VeV — ]k) (nondegenerate p-compatible pairing)

Theorem. {2d TQFTs} = {commutative Frobenius algebras}
Proof sketch:

Multiplication Z assoaatwe pairing Z nondegenerate

AX/A[@J



Topological quantum field theory
A 2-dimensional closed TQFT is a symmetric monoidal functor
Bords i> Vect

Sl — v

(vector space)

& — (,u: VeV — V) (associative multiplication)

@ —  ((=,—): V®V — k) (nondegenerate s-compatible pairing)

Theorem. {2d TQFTs} = {commutative Frobenius algebras}

Examples.
— V =kG and (g, h) = §, 1 for finite abelian group G
- V - C[xl, .. xn]/ 83;1W 3on (pairing (—, —) from residue theory)

\ W2
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How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

Bords — Vect

Options:
— Increase “spacetime” dimension.

Promote source and target to higher categories.
— extended TQFTs
Consider other tangential structures.
(unoriented, framed, spin, m-spin, G-bundle, ...)
Decompose bordisms without higher categories as input.
— defect TQFTs

Consider targets other than nVect.

Study non-topological QFT. ..
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Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord$eH(D) — Vect

depending on defect data D consisting of:
— set Dy of bulk theories
— set Dy of line defects
— set Dy of junction fields

(0%
B a L
a € Dy B
X € Dy i i 9
objects:

Davydov/Kong/Runkel 2011



Examples of 2d defect TQFTs
Trivial defect TQFT Ztiv:

Dy = {k}
Dy := {finite—dimensional k-vector spaces}

Dy = {Iinear maps}

. V1
Ztrlv (Q ) def Vi ® @V,

Ztriv( (Y ) def (evaluate O- und 1-strata as string diagrams in Vect)

1
/224



Examples of 2d defect TQFTs
Trivial defect TQFT Ztiv:

Dy = {k}
Dy := {finite—dimensional k-vector spaces}

Dy = {Iinear maps}

. Vi
Ztrlv (Q ) def Vi Vm

Ztriv( (Y ) def (evaluate O- und 1-strata as string diagrams in Vect)

17
/224

B-twisted sigma models:
Calabi—Yau manifolds and holomorphic vector bundles

Landau—Ginzburg models:
isolated singularities and homological algebra



A-separable symmetric Frobenius algebra (over k)
A € Vect with

,uzA:A@A—)A

Az\T/:A—>A®A
such that

4 1)

Z

:

—_—0 O

AR

NW

(A need not be commutative.)



State sum models

Input: A-separable symmetric Frobenius k-algebra (A, u, A)

(1) Choose oriented triangulation t for every bordism ¥ in Bord,
(2) Decorate Poincaré-dual graph with (k, A, u, A):

A Al x Ja
k k k k k 2 k
A i
Al « Na A

(3) Obtain ¥4 in Bord$e!(D') and define Z5(X) = 2V (xh4)

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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State sum models

Input: A-separable symmetric Frobenius C-algebra (A, 1, A)
(1) Choose oriented triangulation ¢ for every bordism X in Bordy
(2) Decorate Poincaré-dual graph with (C, A, i1, A):
4 A5 A
< © < © < <
2 af e a A

(3) Obtain = in Bord§/(D'"™) and define Z3(5) = 2'¥(s44)




State sum models

I - le symmetri jus C- a

2) Decorate Poincaré-dual graph with (C, A, i, A):
4 A
A
< © < © < <
2 af e a A

(3) Obtain = in Bord§/(D'"™) and define Z3(5) = 2'¥(s44)




State sum models

Input: A-separable symmetric Frobenius C-algebra (A, . A)

(1) Choose oriented triangulation ¢ for every bordism X in Borda
(2) Decorate Poincaré-dual graph with (C, A, p, A):
vy A

< )
A

A

c ¢ ¢ N\ ¢
m

af ¢ Xa A

(3) Obtain 44 in Bord§®(D'"1") and define Z5§(X) = Z¥(uh4)




State sum models

Input: A-separable symmetric Frobenius C-algebra (A, i, A)

(1) Choose oriented triangulation ¢ for every bordism X in Borda
(2) Decorate Poincaré-dual graph with (C, A, p, A):
vy A

A
< a4 © N ¢ ¢
Af ¢ \a A

(3) Obtain 44 in Bord§®(D'"1") and define Z5§(X) = Z¥(uh4)




State sum models

Input: A-separable symmetric Frobenius C-algebra (A, i, A)

(1) Choose oriented triangulation ¢ for every bordism X in Bords
(2) Decorate Poincaré-dual graph with (C, 4, 11, A):
A /

A A

G 5

n C ¢ N ¢ ¢
Af ¢ \a A

(3) Obtain =44 in Bordd* (D) and define |Z5(5) = Z¥(st4).

H))* >
/
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State sum models

Input: A-separable symmetric Frobenius k-algebra (A, u, A)

(1) Choose oriented triangulation t for every bordism ¥ in Bord,
(2) Decorate Poincaré-dual graph with (k, A, u, A):

A Al k JA
k A k k M k k o k
Al k A A
(3) Obtain ¥4 in Bord$e!(D') and define Z5(X) = 2V (xh4)

Theorem. Construction yields TQFT Z%: Bordy — Vect.

Proof sketch: Defining properties of (A, u, A) encode invariance under
Pachner moves — independent of choice of triangulation:

2-2
— <—>

A= A
Ao YooY

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006




State sum models

Input: A-separable symmetric Frobenius k-algebra (A, i, A)

(1) Choose oriented triangulation ¢ for every bordism X in Bords
(2) Decorate Poincaré-dual graph W|th (k, A, p, A

(3) Obtain X4 in Borddef( ]Dtler and define Z5(2 Zt“" »nhA4)

Theorem. Construction yields TQFT Z%: Bords — Vect.

No need to consider only algebras over k!



Orbifolds
Definition. Let Z: Bord$® (D) — Vect be defect TQFT.

Carqueville/Runkel 2012, Frshlich/Fuchs/Runkel /Schweigert 2009



Orbifolds
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An orbifold datum for Z is A= (o, A, u, A

e AT Y
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Orbifolds

Definition. Let Z: Bord$®!(ID) — Vect be defect TQFT.
An orbifold datum for Z is A= (o, A, u, A

e AT Y

a € Do A€ Dy € Do A € Dy

such that Pachner moves become identities under Z:

AN =) Y)Y

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z: Bordo — Vect

Carqueville/Runkel 2012, Frshlich/Fuchs/Runkel /Schweigert 2009
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Algebraic characterisation

Theorem.
2d defect TQFT Z = pivotal 2-category Bz
Proof idea:
— objects = closed TQFTs
— 1-morphisms = line defects (= codimension-1 defects)

— 2-morphisms = point defects (= codimension-2 defects)
— adjunctions from orientation reversal

Davydov/Kong/Runkel 2011
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Algebraic characterisation

Theorem.
2d defect TQFT Z = pivotal 2-category Bz

Examples.

vector spaces: Bvecty

*, finite-dimensional k-vector spaces, linear maps

algebras over k

separable symmetric Frobenius k-algebras, bimodules, intertwiners
algebraic geometry

Calabi—Yau varieties, Fourier—Mukai kernels, RHom

symplectic geometry

symplectic manifolds, Lagrangian correspondences, Floer homology
Landau—Ginzburg models

isolated singularities, matrix factorisations

differential graded categories

smooth and proper dg categories, dg bimodules, intertwiners
categorified quantum groups

weights, functors &;, F; ..., string diagrams. ..

Davydov/Kong/Runkel 2011
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Algebraic characterisation of orbifolds
Theorem.

2d defect TQFT Z — pivotal 2-category Bz

Lemma.

{orbifold data for Z} = {A—separable symmetric Frobenius algebras in Bg}

Aty 91 Wty AL

—

AN () (YY)

Davydov/Kong/Runkel 2011
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Theorem.

2d defect TQFT Z = pivotal 2-category Bz

Lemma.

{orbifold data for Z} = { A-separable symmetric Frobenius algebras in Bz}

Examples.

— A-separable symmetric Frobenius algebras in BVect

= A-separable symmetric Frobenius k-algebras ®©
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Theorem.
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Lemma.

{orbifold data for Z} = { A-separable symmetric Frobenius algebras in Bz}

Examples.

— A-separable symmetric Frobenius algebras in BVect
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Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT Z = pivotal 2-category Bz

Lemma.

{orbifold data for Z} = { A-separable symmetric Frobenius algebras in Bz}
Examples.

— A-separable symmetric Frobenius algebras in BVect
= A-separable symmetric Frobenius k-algebras ©
= Z¥ = (Z'V) 4 (“State sum models are orbifolds of the trivial TQFT.")

— A G-action in Bz is 2-functor p: BG — Bz.
Lemma. Ag := GagEG p(g) is A-separable Frobenius algebra in Bz.

= G-orbifolds are orbifolds: Z% = Z,. C%=mode(Ag) ©

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011, Fréhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014



Orbifold equivalence: main idea

Let X: o — [ be line defect such that X@ % 0 in correlators.
g

Then with 4 := XT® X: a — a we have:

Theorem. (orbifold equivalence o ~ 3)

(theory B) = (A-orbifold of theory )

Carqueville/Runkel 2012



Orbifold equivalence

Orbifold completion of pivotal 2-category B is pivotal 2-category Bop:

— objects: A-separable symmetric Frobenius algebras A € B(a, a)
— I-morphisms (o, A) — (3, B): B-A-bimodules in B(«a, )
— 2-morphisms: bimodule maps

Lemma. B — Byp = (Bowb)orb

Carqueville/Runkel 2012



Orbifold equivalence

Orbifold completion of pivotal 2-category B is pivotal 2-category Bop:

— objects: A-separable symmetric Frobenius algebras A € B(a, a)
— I-morphisms (o, A) — (3, B): B-A-bimodules in B(«a, )
— 2-morphisms: bimodule maps

Lemma. B — By = (Borb)orb

Theorem & Definition. (Orbifold equivalence a ~ 3)
If X € B(w, ) has invertible dim(X') € End(13), then:

- A:= X' ® X is separable symmetric Frobenius algebra in B(a, )
- X: (a,A) == (B,15) : X1 is adjoint equivalence in By,

Remark.
Bo:b as oriented gapped condensation of topological phases of matter

Carqueville/Runkel 2012



Orbifold equivalence

Orbifold completion of 2-category B is 2-category Bey:

— objects: A-separable Frobenius algebras A € B(a, o)
— I-morphisms (o, A) — (3, B): B-A-bimodules in B(«a, )
— 2-morphisms: bimodule maps

Lemma. B — Borb = (Borb)orbr B — Beq = (BGQ)eq

Theorem & Definition. (Orbifold equivalence a ~ 3)
If X € B(c,B) has invertible dim(X') € End(1g), then:

- A:= XT ® X is separable symmetric Frobenius algebra in B(c, )
- X: (a,A) == (B,15) : X1 is adjoint equivalence in By,

Remark.
Bo:b as oriented gapped condensation of topological phases of matter
Beq = “condensation completion”

Carqueville/Runkel 2012, Gaiotto/Johnson-Freyd 2019
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Theorem. There is a (graded) pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )]

— LG(W, V') = homotopy category of matrix factorisations D of V — W

Carqueville/Murfet 2012
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Orbifolds of Landau—Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )]

— LG(W, V') = homotopy category of matrix factorisations D of V — W
str(I; 0=, D) (11, 0:,D) da
- =R —— ] for D: W 14
D@V ° [ O W ... 0y W o -

Why care?

— symmetric monoidal pivotal 2-category under very good control!

Carqueville/Murfet 2012



Orbifolds of Landau—Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )]
— LG(W, V') = homotopy category of matrix factorisations D of V — W

tr(TT. 8, D) (T]. 0, D) d
- @ —Res[sr(nl D)1, 2-,P) dx for D: W — V
& Vv

O W ... 05, W

Why care?

— symmetric monoidal pivotal 2-category under very good control!
CFT/LG correspondence
CY/LG correspondence

— derived geometry & representation theory

— homological knot invariants

surface defects in Rozansky—Witten models

Carqueville/Murfet 2012, Buchweitz 1986, Khovanov/Rozansky 2004, Orlov 2005, Kajiura/Saito/Takahashi 2005, . ..



Orbifolds of Landau—Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )]

— LG(W, V') = homotopy category of matrix factorisations D of V — W
str(]]. 0..D .0,.D) dx
- D@/ —Res[ (Héxl;/V)(g[;nW; ) forD: W —V

Theorem. (Orbifold equivalences in LG)

2yt~ w402 (Diy1 ~ Ag_1)
Byt~ w2 40? (E6 ~ AH)
234 zyd o~ uf® 40P (E7 ~ A17)
B+~ w304 ? (Es ~ Ago)

Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013



Orbifolds of Landau—Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:
— objects = isolated singularities W € Clxy, ..., )]
— LG(W, V') = homotopy category of matrix factorisations D of V — W

tr(TT. 9, D) (. 0. D) d
- D@ —Res[sr(nz D)1, 2-,P) dx for D: W —s V
/

O W ... 05, W

Theorem. (Orbifold equivalences in LG)

2+ 2y~ WP +? (Dig1 ~ Agg—1)
Byt~ w2 40? (E6 ~ AH)

234 zyd o~ uf® 40P (E7 ~ Ai7)
B+~ w304 ? (Es ~ Ago)

Py +yd o~ wdv 40P (E13 ~ Z11)
S+ + 22~ vwd 403+ dPw (Z13 ~ Qn)

Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017



Aside: Non-semisimple fully extended TQFTs

Theorem.
For every W € LG, the associated Landau—Ginzburg model
Bords — Vect can be lifted to a fully extended TQFT
Bordgr,LO — LG
pty — W

Sto— (D[:L"l,...,J:n]/(axlI/V,...,(‘)on)

Remarks.

— Jacobi algebra C[z1, ..., x4]/ (85, W, ..., 0, W) is non-semisimple.

Carqueville/Montiel Montoya 2018



Aside: Non-semisimple fully extended TQFTs

Theorem.
For every W € LG, the associated Landau—Ginzburg model
Bords — Vect can be lifted to a fully extended TQFT
Bordgr,LO — LG
pty — W

Sto— (D[:Ul,...,J:n]/(ﬁxlI/V,...,(‘)on)

Remarks.

— Jacobi algebra C[z1, ..., %4]/ (85, W, ..., 0, W) is non-semisimple
— Get oriented TQFT from SO(2)-homotopy fixed points, i.e.

trivialisations of Serre automorphism Sy = 1y [n].
— Get 7-spin TQFTs in £G and LGq.

Carqueville/Montiel Montoya 2018, Hesse/Valentino 2017, Carqueville/Szegedy 2021
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Summary so far
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2d orbifolds
— encode triangulation invariance in algebraic structure
— representation theory of algebras in 2-categories
— unify gauging of symmetry groups and state sum models
— new relations in Landau—Ginzburg models, algebra and geometry



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord™® (D) — Vect

in any dimension n > 1.

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl 2021



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vect
in any dimension n > 1.
n-dimensional orbifolds

— triangulation invariance — algebraic structures

» n = 2: Frobenius algebras in 2-categories
» n = 3: spherical fusion categories in 3-categories

— representation theory internal to n-categories

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl 2021



The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z: Bord® (D) — Vect
in any dimension n > 1.

n-dimensional orbifolds
— triangulation invariance — algebraic structures
» n = 2: Frobenius algebras in 2-categories
» n = 3: spherical fusion categories in 3-categories
— representation theory internal to n-categories
— Applications:
unify gauging of symmetry groups and state sum models
lift Reshetikhin—Turaev theory to defect TQFT
Reshetikhin—Turaev theories close under orbifolds
models for topological quantum computation

vy vV VY

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl 2021



n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord®*H(DD) — Vect

that depends on defect data DD, consisting of:
— sets D;, whose elements decorate j-strata of bordisms

— rules how strata are allowed to meet (defined recursively via cones and cylinders)

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-18, Kapustin/Rozansky/Saulina 2009 + wip



n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord®*H(DD) — Vect

that depends on defect data DD, consisting of:

— sets D;, whose elements decorate j-strata of bordisms
— rules how strata are allowed to meet

(defined recursively via cones and cylinders)
Examples of 3d defect TQFTs.

— quantum Chern—Simons theory (C Reshetikhin—Turaev theory Z€)
» D3 = {gauge group} (more generally: modular tensor category C)
> Dy = {A—separable symmetric Frobenius algebras in C}
» Dy = {cyclic modules} > {Wilson line labels}

— Rozansky—Witten theory
» Dj3 = {holomorphic symplectic manifolds}

» Dy = { “generalised Landau-Ginzburg models” }
» Dy = { “fibred matrix factorisations” }

(conjecturally)

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017-18, Kapustin/Rozansky/Saulina 2009 + wip



Reshetikhin—Turaev theory with defects

Theorem.

For modular tensor category C, there is a defect TQFT Z€ with
D3 ={C}

Dy = {A-separable symmetric Frobenius algebras A € C}
Dy = {"cyclic modules” }
that lifts Reshetikhin—-Turaev theory ZCET,

Kapustin/Saulina 2009, Carqueville/Runkel/Schaumann 2017



Reshetikhin—Turaev theory with defects

Theorem.

For modular tensor category C, there is a defect TQFT Z€ with
D3 ={C}
Dy = {A-separable symmetric Frobenius algebras A € C}
Dy = {"cyclic modules” }

that lifts Reshetikhin—-Turaev theory ZCET,

Proof idea:

— replace A-decorated 2-strata by trivalent network of A-ribbons
— evaluate with ZGRT

— model X-ribbons by 1- and 2-strata:

Kapustin/Saulina 2009, Carqueville/Runkel/Schaumann 2017



Reshetikhin—Turaev theory with surface defects

/ surface defect

A

\‘ Lng. defect



Reshetikhin—Turaev theory with surface defects
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Reshetikhin—Turaev theory with surface defects




Reshetikhin—Turaev theory with surface defects




Reshetikhin—Turaev theory with defects

Carqueville/Runkel /Schaumann 2017



Triangulations

n+1 n+1
standard n-simplex A" := {Ztiei t; >0, Zti = 1} c R**!
i=1 i=1

simplicial complex C'is collection of simplices such that

» all faces of all 0 € C are also in C
» o000 eC = oNd' =g o oNo =face

triangulation of manifold M is simplicial complex C' with
homeomorphism ¢: |C| — M

(details for smooth, oriented, ...)



Pachner moves

Let ¢: |C| —» M be triangulated n-manifold.
Let £ Cc OA™! C C be n-dimensional subcomplex.

A Pachner move “glues the other side of 9A™ ! into M":

M (08 F| Uy, (M @(F))

2-2 ij 1-3 ;|;
n=2: = —
n=3: — PiaiiN

Theorem. If triangulated PL manifolds are PL isomorphic, then there

exists a finite sequence of Pachner moves between them.
Pachner 1991




Orbifolds in any dimension n

An orbifold datum A for Z: Bord®®!(ID) — Vect consists of
- AjeDjforall je{l,...,n},
- Af, Ay € Dy,
— such that “Pachner moves become identities”
» compatibility:
Aj; is allowed decoration of (n — j)-simplices dual to j-strata
» triangulation invariance:
Let B, B’ be A-decorated n-balls dual to two sides of a Pachner move.
Then: Z(B) = Z(B’) .

n = 2 is special case:

AN =) =)+ (Y)

Carqueville/Runkel /Schaumann 2017



Orbifolds in any dimension n

An orbifold datum A for Z: Bord®®!(ID) — Vect consists of
- AjeDjforall je{l,...,n},
- Af, Ay € Dy,
— such that “Pachner moves become identities”
» compatibility:
Aj; is allowed decoration of (n — j)-simplices dual to j-strata
» triangulation invariance:
Let B, B’ be A-decorated n-balls dual to two sides of a Pachner move.
Then: Z(B)=Z(B’).

n = 2 is special case:

AN =) =)+ (Y)

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

Z 4 Bord, — Vect

Carqueville/Runkel /Schaumann 2017



Orbifold datum A for n = 3




3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl 2021



3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.

Spherical fusion categories in Tz are orbifold data for Z.

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018



3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.

Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev—Viro—Barrett—Westbury models are orbifolds of ZVect

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018



3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.
Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev—Viro—Barrett—Westbury models are orbifolds of ZVect:
From spherical fusion category A get orbifold datum

— Az =

- A=A (equivalently: C7# simples of A)
- A= AxA— A (equivalently: fusion rules of A)
— AZ = associator®! (equivalently: F-matrices of A)

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018



3d orbifolds

Theorem.
3d defect TQFT Z = 3-category Tz

Theorem.
Spherical fusion categories in Tz are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.")
Turaev—Viro—Barrett—Westbury models are orbifolds of ZVect:
From spherical fusion category A get orbifold datum

-Ay=A (equivalently: C7# simples of A)

- A= AxA— A (equivalently: fusion rules of A)

- A(jf = associator®! (equivalently: F-matrices of A)
Theorem.

Orbifolds of Reshetikhin—Turaev theories are Reshetikhin—Turaev theories.

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017-2018, C/Mulevitius/Runkel/Schaumann/Scherl 2021



In a nutshell

A TQFT is a functor

Z: Spacetime Caricature — Algebra

Summary:
— n-dimensional closed TQFTs = algebras
— n-dimensional defect TQFTs = n-categories
— orbifolds = representation theory in n-categories

Applications for n g 4:
n = 2: Landau—Ginzburg models

n = 3: Chern-Simons and Reshetikhin—Turaev theory

n = 4: Crane—Yetter and Douglas—Reutter theory



In a nutshell

A TQFT is a functor

Z: Spacetime Caricature — Algebra

Summary:
— n-dimensional closed TQFTs = algebras
— n-dimensional defect TQFTs = mn-categories
— orbifolds = representation theory in n-categories
[unify and extend state sum models and symmetry gauging]

Applications for n g 4:
n = 2: Landau—Ginzburg models:
[new dualities; fully extended framed/oriented /spin TQFTs]
n = 3: Chern-Simons and Reshetikhin—Turaev theory:
[surface defects; close under orbifolds]
n = 4: Crane—Yetter and Douglas—Reutter theory






Application: topological quantum computation

Interpretation of Reshetikhin—Turaev theory Z¢:

objects u; in C: anyonic quasiparticles in 2+1 dimensions

ZC(Euh,,Wm): qubit storage on surface ¥ with m anyons

braiding matrices (3, ,;: quantum gates
- <,6’ui7uj> dense in U(N) for N > 1: universal quantum computation

Fact. C = Ising category not universal.
“Gauging” of Sa-symmetry of C X C is universal!

Conjecture. Orbifolds of Z€ construct universal quantum computers
with larger qubit storages Z¢(Zu, )
in particular

— p: BSy — Bimodg with p(¥) = C®N

— C-C’-bimodules with “invertible quantum bubble”

Kitaev 1997, Freedman/Kitaev/Larsen/Wang 2001, Barkeshli/Jian/Qi 2012, Fuchs/Schweigert 2013



