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In a nutshell

A TQFT is a functor

Z : Spacetime Caricature −→ Algebra

Summary:

– n-dimensional closed TQFTs =⇒ algebras

– n-dimensional defect TQFTs =⇒ n-categories

– orbifolds =⇒ representation theory in n-categories

Applications for n / 4:

n = 2: Landau–Ginzburg models

n = 3: Chern–Simons and Reshetikhin–Turaev theory

n = 4: Crane–Yetter and Douglas–Reutter theory



Motivation 1: basic features of quantum physics

– physical states: vector space V

– observables: linear operators on V

– time evolution of Ψ ∈ V described by linear map Ut:

i
∂Ψ

∂t
= H Ψ Ψ(t) = Ut Ψ(0) Ut = e−iHt

Ut+t′ = Ut ◦ Ut′

Think of quantum field theory as a map

Spacetime −→ Algebra



Motivation 2: group representations

Let G be a group. A GGG-representation is a functor

BG
ρ−→ Vect

↖
vector spaces and linear maps

↗
single object ∗ and End(∗) = G

∗ 7−→ ρ(∗) =: V

End(∗) = G 3 g 7−→ ρ(g) ∈ End(V )

Functoriality means ρ(e) = idV and ρ(gh) = ρ(g)ρ(h), so we have a
group homomorphism

G −→ Aut(V )

g 7−→ ρ(g)

Think of QFT as a representation of spacetime on algebra.
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Topological quantum field theory

A 222-dimensional closed TQFT is a symmetric monoidal functor

Bord2
Z−→ Vect

S1 7−→ Z(S1) =: V

S1 t · · · t S1 7−→ V ⊗ · · · ⊗ V
∅ 7−→ k

7−→
(
V ⊗ V µ−→ V

)
7−→

(
V

∆−→ V ⊗ V
)

7−→
(
V

tr−→ k
)

◦ = 7−→
(
〈−,−〉 : V ⊗ V tr◦µ−−→ k

)

Atiyah 1988
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Topological quantum field theory

A 222-dimensional closed TQFT is a symmetric monoidal functor
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Topological quantum field theory

A 222-dimensional closed TQFT is a symmetric monoidal functor

Bord2
Z−→ Vect

S1 7−→ V (vector space)

7−→
(
µ : V ⊗ V −→ V

)
(associative multiplication)

7−→
(
〈−,−〉 : V ⊗ V −→ k

)
(nondegenerate µ-compatible pairing)

Theorem.
{

2d TQFTs
} ∼= {commutative Frobenius algebras

}
Proof sketch:

Multiplication Z
( )

associative, pairing Z
( )

nondegenerate:

= = etc.
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Topological quantum field theory

A 222-dimensional closed TQFT is a symmetric monoidal functor

Bord2
Z−→ Vect

S1 7−→ V (vector space)

7−→
(
µ : V ⊗ V −→ V

)
(associative multiplication)

7−→
(
〈−,−〉 : V ⊗ V −→ k

)
(nondegenerate µ-compatible pairing)

Theorem.
{

2d TQFTs
} ∼= {commutative Frobenius algebras

}
Examples.

– V = kG and 〈g, h〉 = δg,h−1 for finite abelian group G
– V = C[x1, . . . , xn]/(∂x1W, . . . , ∂xnW ) (pairing 〈−,−〉 from residue theory)



How to make this more interesing?

A 222-dimensional closed TQFT is a symmetric monoidal functor

Bord2 −→ Vect

Options:

– Increase “spacetime” dimension.

– Promote source and target to higher categories.

– Consider other tangential structures.

– Decompose bordisms without higher categories as input.
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Defect TQFT

A 222-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
2 (D) −→ Vect

depending on defect data D consisting of:

– set D2 of bulk theories
– set D1 of line defects
– set D0 of junction fields

α ∈ D2

αβ

X ∈ D1

+

ϕ ∈ D0

α

β

γ

−
ψ ∈ D0

α′

β′

γ′

objects:

X

Y

Z

α

β

γ morphisms:

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs

Trivial defect TQFT Ztriv:

D2 :=
{
k
}

D1 :=
{

finite-dimensional k-vector spaces
}

D0 :=
{

linear maps
}

Ztriv
( V1...

Vm

)
def
= V1 ⊗ · · · ⊗ Vm

Ztriv
( )

def
= (evaluate 0- und 1-strata as string diagrams in Vect)

B-twisted sigma models:
Calabi–Yau manifolds and holomorphic vector bundles

Landau–Ginzburg models:
isolated singularities and homological algebra
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∆∆∆-separable symmetric Frobenius algebra (over kkk)

A ∈ Vect with

µ = : A⊗A −→ A : k −→ A

∆ = : A −→ A⊗A : A −→ k

such that

= = = = = =

= = =

(A need not be commutative.)



State sum models

Input: ∆-separable symmetric Frobenius k-algebra (A,µ,∆)

(1) Choose oriented triangulation t for every bordism Σ in Bord2

(2) Decorate Poincaré-dual graph with (k, A, µ,∆):

k k
A

k k

kA A

A

µ k k

kA A

A

∆

(3) Obtain Σt,A in Borddef
2 (Dtriv) and define Zss

A (Σ) = Ztriv(Σt,A)

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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Theorem. Construction yields TQFT Zss
A : Bord2 −→ Vect.

Proof sketch: Defining properties of (A,µ,∆) encode invariance under
Pachner moves =⇒ independent of choice of triangulation:

2-2←→ 1-3←→

←→ ←→
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State sum models

Input: ∆-separable symmetric Frobenius k-algebra (A,µ,∆)

(1) Choose oriented triangulation t for every bordism Σ in Bord2

(2) Decorate Poincaré-dual graph with (k, A, µ,∆):

k k
A

k k
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A

µ k k
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∆

(3) Obtain Σt,A in Borddef
2 (Dtriv) and define Zss

A (Σ) = Ztriv(Σt,A)

Theorem. Construction yields TQFT Zss
A : Bord2 −→ Vect.

No need to consider only algebras over k!



Orbifolds

Definition. Let Z : Borddef
2 (D) −→ Vect be defect TQFT.

An orbifold datum for Z is A ≡ (α,A, µ,∆):

α

α ∈ D2

A

α α

A ∈ D1

α α

αA A

A

µ

µ ∈ D0

α α

αA A

A

∆

∆ ∈ D0

such that Pachner moves become identities under Z:

Z

( )
!

= Z

( )
Z

( )
!

= Z

( )

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

ZA : Bord2 −→ Vect

Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009
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Algebraic characterisation

Theorem.
2d defect TQFT Z =⇒ pivotal 2-category BZ

Proof idea:

– objects = closed TQFTs
– 1-morphisms = line defects (= codimension-1 defects)
– 2-morphisms = point defects (= codimension-2 defects)
– adjunctions from orientation reversal

Davydov/Kong/Runkel 2011
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Algebraic characterisation

Theorem.
2d defect TQFT Z =⇒ pivotal 2-category BZ

Examples.

– vector spaces: Bvectk
∗, finite-dimensional k-vector spaces, linear maps

– algebras over kkk
separable symmetric Frobenius k-algebras, bimodules, intertwiners

– algebraic geometry
Calabi–Yau varieties, Fourier–Mukai kernels, RHom

– symplectic geometry
symplectic manifolds, Lagrangian correspondences, Floer homology

– Landau–Ginzburg models
isolated singularities, matrix factorisations

– differential graded categories
smooth and proper dg categories, dg bimodules, intertwiners

– categorified quantum groups
weights, functors Ei,Fj . . ., string diagrams. . .
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Theorem.
2d defect TQFT Z =⇒ pivotal 2-category BZ

Lemma.{
orbifold data for Z

} ∼= {∆-separable symmetric Frobenius algebras in BZ
}

= = = =

⇐⇒

Z

( )
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Z
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} ∼= {∆-separable symmetric Frobenius algebras in BZ
}

Examples.

– ∆-separable symmetric Frobenius algebras in BVect
= ∆-separable symmetric Frobenius k-algebras ,

=⇒ Zss
A = (Ztriv)A (“State sum models are orbifolds of the trivial TQFT.”)

– A GGG-action in BZ is 2-functor ρ : BG −→ BZ .

Lemma. AG :=
⊕

g∈G ρ(g) is ∆-separable Frobenius algebra in BZ .

=⇒ G-orbifolds are orbifolds: ZG = ZAG CG ∼= modC(AG) ,

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011
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Orbifold equivalence: main idea

Let X : α −→ β be line defect such that

β

α
X

6= 0 in correlators.

Then with A := X† ⊗X : α −→ α we have:

Z

(
β

)
∼ Z

(
β

αX

)

= Z

( )
= Z

(
α

A

)

Theorem. (orbifold equivalence α ∼ β)(
theory β

) ∼= (
A-orbifold of theory α

)
Carqueville/Runkel 2012



Orbifold equivalence

Orbifold completion of pivotal 2-category B is pivotal 2-category Borb:

– objects: ∆-separable symmetric Frobenius algebras A ∈ B(α, α)
– 1-morphisms (α,A) −→ (β,B): B-A-bimodules in B(α, β)
– 2-morphisms: bimodule maps

Lemma. B ↪−→ Borb
∼= (Borb)orb

Theorem & Definition. (Orbifold equivalence α ∼ β)
If X ∈ B(α, β) has invertible dim(X) ∈ End(1β), then:

– A := X† ⊗X is separable symmetric Frobenius algebra in B(α, α)
– X : (α,A) −−→←−− (β, 1β) :X† is adjoint equivalence in Borb

Remark.
Borb as oriented gapped condensation of topological phases of matter

Carqueville/Runkel 2012
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Orbifold equivalence

Orbifold completion of 2-category B is 2-category Beq:

– objects: ∆-separable Frobenius algebras A ∈ B(α, α)
– 1-morphisms (α,A) −→ (β,B): B-A-bimodules in B(α, β)
– 2-morphisms: bimodule maps

Lemma. B ↪−→ Borb
∼= (Borb)orb, B ↪−→ Beq

∼= (Beq)eq

Theorem & Definition. (Orbifold equivalence α ∼ β)
If X ∈ B(α, β) has invertible dim(X) ∈ End(1β), then:

– A := X† ⊗X is separable symmetric Frobenius algebra in B(α, α)
– X : (α,A) −−→←−− (β, 1β) :X† is adjoint equivalence in Borb

Remark.
Borb as oriented gapped condensation of topological phases of matter
Beq = “condensation completion”

Carqueville/Runkel 2012, Gaiotto/Johnson-Freyd 2019



Orbifolds of Landau–Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:

– objects = isolated singularities W ∈ C[x1, . . . , xn]

– LG(W,V ) = homotopy category of matrix factorisations D of V −W

–

V

W
D

= Res

[
str
(∏

i ∂xiD
)(∏

j ∂zjD
)

dx

∂x1W . . . ∂xnW

]
for D : W −→ V

Carqueville/Murfet 2012
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i ∂xiD
)(∏
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)
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∂x1W . . . ∂xnW

]
for D : W −→ V

Why care?

– symmetric monoidal pivotal 2-category under very good control!

– CFT/LG correspondence

– CY/LG correspondence

– derived geometry & representation theory

– homological knot invariants

– surface defects in Rozansky–Witten models

Carqueville/Murfet 2012
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– CFT/LG correspondence

– CY/LG correspondence

– derived geometry & representation theory

– homological knot invariants

– surface defects in Rozansky–Witten models

Carqueville/Murfet 2012, Buchweitz 1986, Khovanov/Rozansky 2004, Orlov 2005, Kajiura/Saito/Takahashi 2005, . . .



Orbifolds of Landau–Ginzburg models

Theorem. There is a (graded) pivotal 2-category LG with:

– objects = isolated singularities W ∈ C[x1, . . . , xn]

– LG(W,V ) = homotopy category of matrix factorisations D of V −W

–

V

W
D

= Res

[
str
(∏

i ∂xiD
)(∏

j ∂zjD
)

dx

∂x1W . . . ∂xnW

]
for D : W −→ V

Theorem. (Orbifold equivalences in LG)

xk + xy2 ∼ u2k + v2
(
Dk+1 ∼ A2k−1

)
x3 + y4 ∼ u12 + v2

(
E6 ∼ A11

)
x3 + xy3 ∼ u18 + v2

(
E7 ∼ A17

)
x3 + y5 ∼ u30 + v2

(
E8 ∼ A29

)

x5y + y3 ∼ u3v + v5
(
E13 ∼ Z11

)
x6 + xy3 + z2 ∼ vw3 + v3 + u2w

(
Z13 ∼ Q11

)

Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013
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)
Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017



Aside: Non-semisimple fully extended TQFTs

Theorem.
For every W ∈ LG, the associated Landau–Ginzburg model
Bord2 −→ Vect can be lifted to a fully extended TQFT

Bordfr
2,1,0 −→ LG
pt+ 7−→ W

S1
1 7−→ C[x1, . . . , xn]

/
(∂x1W, . . . , ∂xnW )

Remarks.

– Jacobi algebra C[x1, . . . , xn]
/

(∂x1W, . . . , ∂xnW ) is non-semisimple.

– Get oriented TQFT from SO(2)-homotopy fixed points, i. e.
trivialisations of Serre automorphism SW = 1W [n].

– Get r-spin TQFTs in LG and LGeq.

Carqueville/Montiel Montoya 2018
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Remarks.

– Jacobi algebra C[x1, . . . , xn]
/

(∂x1W, . . . , ∂xnW ) is non-semisimple.
– Get oriented TQFT from SO(2)-homotopy fixed points, i. e.

trivialisations of Serre automorphism SW = 1W [n].
– Get r-spin TQFTs in LG and LGeq.

Carqueville/Montiel Montoya 2018, Hesse/Valentino 2017, Carqueville/Szegedy 2021



Summary so far

∼

A11 E6

∼

S11 W13

CG ∼= mod
(
C AG⊗(−)−−−−−−→ C

)
Zss
A = (Ztriv)A

2d orbifolds

– encode triangulation invariance in algebraic structure

– representation theory of algebras in 2-categories

– unify gauging of symmetry groups and state sum models

– new relations in Landau–Ginzburg models, algebra and geometry
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The orbifold construction can be generalised to
n-dimensional defect TQFTs

Z : Borddef
n (D) −→ Vect

in any dimension n > 1.

n-dimensional orbifolds

– triangulation invariance =⇒ algebraic structures
I n = 2: Frobenius algebras in 2-categories
I n = 3: spherical fusion categories in 3-categories

– representation theory internal to n-categories

– Applications:
I unify gauging of symmetry groups and state sum models
I lift Reshetikhin–Turaev theory to defect TQFT
I Reshetikhin–Turaev theories close under orbifolds
I models for topological quantum computation

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017–2018, C/Mulevičius/Runkel/Schaumann/Scherl 2021
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n-dimensional defect TQFTs

An nnn-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
n (D) −→ Vect

that depends on defect data D, consisting of:

– sets Dj , whose elements decorate j-strata of bordisms

– rules how strata are allowed to meet (defined recursively via cones and cylinders)

Examples of 3d defect TQFTs.

– quantum Chern–Simons theory (⊂ Reshetikhin–Turaev theory ZC)
I D3 =

{
gauge group

}
(more generally: modular tensor category C)

I D2 =
{

∆-separable symmetric Frobenius algebras in C
}

I D1 =
{

cyclic modules
}
⊃
{

Wilson line labels
}

– Rozansky–Witten theory (conjecturally)

I D3 =
{

holomorphic symplectic manifolds
}

I D2 =
{

“generalised Landau–Ginzburg models”
}

I D1 =
{

“fibred matrix factorisations”
}

Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017–18, Kapustin/Rozansky/Saulina 2009 + wip
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Reshetikhin–Turaev theory with defects

Theorem.
For modular tensor category C, there is a defect TQFT ZC with

D3 = {C}
D2 = {∆-separable symmetric Frobenius algebras A ∈ C}
D1 = {“cyclic modules”}

that lifts Reshetikhin–Turaev theory ZC,RT.

Proof idea:

– replace A-decorated 2-strata by trivalent network of A-ribbons

– evaluate with ZC,RT

– model X-ribbons by 1- and 2-strata:

X 7−→ X 1

1

Kapustin/Saulina 2009, Carqueville/Runkel/Schaumann 2017
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Reshetikhin–Turaev theory with surface defects
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Reshetikhin–Turaev theory with surface defects



Reshetikhin–Turaev theory with defects

ρ2φ

Y1 Y2 . . . Ym

X1 X2 . . . Xn

7−→

Y1 Y2 Ym

X1 X2 Xn

1 1

1

1 1

φ

Carqueville/Runkel/Schaumann 2017



Triangulations

standard nnn-simplex ∆n :=

{
n+1∑
i=1

tiei

∣∣∣ ti > 0 ,

n+1∑
i=1

ti = 1

}
⊂ Rn+1

∆2 = ∆3 =

simplicial complex C is collection of simplices such that
I all faces of all σ ∈ C are also in C
I σ, σ′ ∈ C =⇒ σ ∩ σ′ = ∅ or σ ∩ σ′ = face

triangulation of manifold M is simplicial complex C with

homeomorphism ϕ : |C|
∼=−→M

(details for smooth, oriented, . . . )



Pachner moves

Let ϕ : |C|
∼=−→M be triangulated n-manifold.

Let F ⊂ ∂∆n+1 ⊂ C be n-dimensional subcomplex.

A Pachner move “glues the other side of ∂∆n+1 into M”:

M 7−→
∣∣∂∆n+1 \

◦
F
∣∣ ∪ϕ||∂F | (M \ ϕ(|F |)

)
n = 2 :

2-2←→ 1-3←→

n = 3 :
2-3←→ 1-4←→

Theorem. If triangulated PL manifolds are PL isomorphic, then there
exists a finite sequence of Pachner moves between them.
Pachner 1991



Orbifolds in any dimension n

An orbifold datum A for Z : Borddef
n (D) −→ Vect consists of

– Aj ∈ Dj for all j ∈ {1, . . . , n},
– A+

0 ,A
−
0 ∈ D0,

– such that “Pachner moves become identities”
I compatibility:
Aj is allowed decoration of (n− j)-simplices dual to j-strata

I triangulation invariance:
Let B,B′ be A-decorated n-balls dual to two sides of a Pachner move.

Then: Z(B) = Z(B′) .

n = 2 is special case:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

ZA : Bordn −→ Vect

Carqueville/Runkel/Schaumann 2017
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( )
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Z

( )
= Z
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Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

ZA : Bordn −→ Vect
Carqueville/Runkel/Schaumann 2017



Orbifold datum A for n = 3

Poincaré←→ +
Poincaré←→ −

A2 A3

A3

A2A2 A2

A2

A1

A3
A3

A3

A1

A+
0 +

A1
A1

A1

A1

A−0 −
A1

A1 A1

2-3←→ dual to ←→



3d orbifolds

Theorem.
3d defect TQFT Z =⇒ 3-category TZ

Theorem.
Spherical fusion categories in TZ are orbifold data for Z.

Theorem. (“State sum models are orbifolds of the trivial TQFT.”)

Turaev–Viro–Barrett–Westbury models are orbifolds of Zvect:
From spherical fusion category A get orbifold datum

– A3 = ∗
– A2 = A (equivalently: C# simples of A)

– A1 = ⊗ : A×A −→ A (equivalently: fusion rules of A)

– A±0 = associator±1 (equivalently: F-matrices of A)

Theorem.
Orbifolds of Reshetikhin–Turaev theories are Reshetikhin–Turaev theories.

C/Meusburger/Schaumann 2016, C/Runkel/Schaumann 2017–2018, C/Mulevičius/Runkel/Schaumann/Scherl 2021
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From spherical fusion category A get orbifold datum

– A3 = ∗
– A2 = A (equivalently: C# simples of A)

– A1 = ⊗ : A×A −→ A (equivalently: fusion rules of A)

– A±0 = associator±1 (equivalently: F-matrices of A)

Theorem.
Orbifolds of Reshetikhin–Turaev theories are Reshetikhin–Turaev theories.
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In a nutshell

A TQFT is a functor

Z : Spacetime Caricature −→ Algebra

Summary:

– n-dimensional closed TQFTs =⇒ algebras

– n-dimensional defect TQFTs =⇒ n-categories

– orbifolds =⇒ representation theory in n-categories

Applications for n / 4:

n = 2: Landau–Ginzburg models

n = 3: Chern–Simons and Reshetikhin–Turaev theory

n = 4: Crane–Yetter and Douglas–Reutter theory



In a nutshell

A TQFT is a functor

Z : Spacetime Caricature −→ Algebra

Summary:

– n-dimensional closed TQFTs =⇒ algebras

– n-dimensional defect TQFTs =⇒ n-categories

– orbifolds =⇒ representation theory in n-categories
[unify and extend state sum models and symmetry gauging]

Applications for n / 4:

n = 2: Landau–Ginzburg models:
[new dualities; fully extended framed/oriented/spin TQFTs]

n = 3: Chern–Simons and Reshetikhin–Turaev theory:
[surface defects; close under orbifolds]

n = 4: Crane–Yetter and Douglas–Reutter theory





Application: topological quantum computation

Interpretation of Reshetikhin–Turaev theory ZC :

– objects ui in C: anyonic quasiparticles in 2+1 dimensions

– ZC(Σu1,...,um): qubit storage on surface Σ with m anyons

– braiding matrices βui,uj : quantum gates

–
〈
βui,uj

〉
dense in U(N) for N � 1: universal quantum computation

Fact. C = Ising category not universal.
“Gauging” of S2-symmetry of C � C is universal!

Conjecture. Orbifolds of ZC construct universal quantum computers
with larger qubit storages ZC(Σu1,...,um);
in particular

– ρ : BSN −→ BimodC with ρ(∗) = C�N

– C-C′-bimodules with “invertible quantum bubble”

Kitaev 1997, Freedman/Kitaev/Larsen/Wang 2001, Barkeshli/Jian/Qi 2012, Fuchs/Schweigert 2013


