Orbifolds of

topological quantum field theories

Nils Carqueville

Universität Wien

https://www.carqueville.net/nils/2021-02-08_IPMU.pdf

In a nutshell

A TQFT is a functor

$$
\mathcal{Z}: \text { Spacetime Caricature } \longrightarrow \text { Algebra }
$$

Summary:

- n-dimensional closed TQFTs \Longrightarrow algebras
- n-dimensional defect TQFTs $\Longrightarrow n$-categories
- orbifolds \Longrightarrow representation theory in n-categories

Applications for $\boldsymbol{n} \lesssim 4$:
$n=2$: Landau-Ginzburg models
$n=3$: Chern-Simons and Reshetikhin-Turaev theory
$n=4$: Crane-Yetter and Douglas-Reutter theory

Motivation 1: basic features of quantum physics

- physical states: vector space V
- observables: linear operators on V
- time evolution of $\Psi \in V$ described by linear map U_{t} :

$$
\mathrm{i} \frac{\partial \Psi}{\partial t}=H \Psi \quad \Psi(t)=U_{t} \Psi(0) \quad U_{t}=\mathrm{e}^{-\mathrm{i} H t}
$$

$$
U_{t+t^{\prime}}=U_{t} \circ U_{t^{\prime}}
$$

Think of quantum field theory as a map
Spacetime \longrightarrow Algebra

Motivation 2: group representations

Let G be a group. A G-representation is a functor

$$
\mathrm{B} G \xrightarrow{\rho} \text { Vect }
$$

Motivation 2: group representations

Let G be a group. A G-representation is a functor

Motivation 2: group representations

Let G be a group. A G-representation is a functor

$$
\begin{aligned}
* & \longmapsto \rho(*)=: V \\
\operatorname{End}(*)=G \ni g & \longmapsto \rho(g) \in \operatorname{End}(V)
\end{aligned}
$$

Motivation 2: group representations

Let G be a group. A G-representation is a functor

$$
\begin{aligned}
* & \longmapsto \rho(*)=: V \\
\operatorname{End}(*)=G \ni g & \longmapsto \rho(g) \in \operatorname{End}(V)
\end{aligned}
$$

Functoriality means $\rho(e)=\mathrm{id}_{V}$ and $\rho(g h)=\rho(g) \rho(h)$, so we have a group homomorphism

$$
\begin{aligned}
G & \longrightarrow \operatorname{Aut}(V) \\
g & \longmapsto \rho(g)
\end{aligned}
$$

Motivation 2: group representations

Let G be a group. A G-representation is a functor

$$
\begin{array}{rlll}
\mathrm{B}_{\nearrow}^{\mathrm{B}} G & & \stackrel{\rho}{\longrightarrow} & \mathrm{Vect} \\
\text { single object } * \operatorname{and} \operatorname{End}(*)=G & & \text { vector spaces and linear maps } \\
& & \\
\operatorname{End}(*)=G & \longmapsto g & \longmapsto \rho(*)=: V \\
\ni & g & \longmapsto \rho(g) \in \operatorname{End}(V)
\end{array}
$$

Functoriality means $\rho(e)=\mathrm{id}_{V}$ and $\rho(g h)=\rho(g) \rho(h)$, so we have a group homomorphism

$$
\begin{aligned}
G & \longrightarrow \operatorname{Aut}(V) \\
g & \longmapsto \rho(g)
\end{aligned}
$$

Think of QFT as a representation of spacetime on algebra.

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
vector spaces and linear maps

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

orient. circles S^{1} and surfaces with bdry./diffeom.
vector spaces and linear maps

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
& \text { Bord }_{2} \xrightarrow{\mathcal{Z}} \\
& \text { Vect } \\
& S^{1} \longmapsto \mathcal{Z}\left(S^{1}\right)=: V
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \xrightarrow[\mathcal{Z}]{\longrightarrow} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\operatorname{Bord}_{2} & \xrightarrow[\mathcal{Z}]{\longmapsto} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\varnothing & \longmapsto \mathbb{k}
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \xrightarrow{\mathcal{Z}} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\varnothing & \longmapsto \mathbb{k} \\
6 & \longmapsto(V \otimes V \xrightarrow{\mu} V)
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \stackrel{\mathcal{Z}}{\longrightarrow} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\varnothing & \longmapsto \mathbb{k} \\
\hdashline & \longmapsto \\
& (V \otimes V \xrightarrow{\mu} V)
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\text { Bord }_{2} & \stackrel{\mathcal{Z}}{\longrightarrow} \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\varnothing & \longmapsto \mathbb{k} \\
\hdashline & \longmapsto(V \otimes V \xrightarrow{\mu} V) \\
\hdashline & \longmapsto(V \xrightarrow{\Delta} V \otimes V) \\
& (V \xrightarrow{\operatorname{tr}} \mathbb{k})
\end{aligned}
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\begin{aligned}
\operatorname{Bord}_{2} & \xrightarrow[\mathcal{Z}]{ } \text { Vect } \\
S^{1} & \longmapsto \mathcal{Z}\left(S^{1}\right)=: V \\
S^{1} \sqcup \cdots \sqcup S^{1} & \longmapsto V \otimes \cdots \otimes V \\
\varnothing & \longmapsto \mathbb{k}
\end{aligned}
$$

$$
\wp \longmapsto(V \otimes V \xrightarrow{\mu} V)
$$

$$
\longmapsto(V \stackrel{\Delta}{\longrightarrow} V \otimes V)
$$

$$
\theta \longmapsto(V \xrightarrow{\operatorname{tr}} \mathbb{k})
$$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V \quad$ (vector space)
$\begin{array}{lr}\text { のn } \longmapsto(\mu: V \otimes V \longrightarrow V) & \text { (associative multiplication) } \\ \text { @ } \longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{k}) & \text { (nondegenerate } \mu \text {-compatible pairing) }\end{array}$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V \quad$ (vector space)

气. $\longmapsto(\mu: V \otimes V \longrightarrow V) \quad$ (associative multiplication)
๑) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{k}) \quad$ (nondegenerate μ-compatible pairing)

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V$
(vector space)
气. $\longmapsto(\mu: V \otimes V \longrightarrow V)$
(associative multiplication)
๑) $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{k}) \quad$ (nondegenerate μ-compatible pairing)

Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$
Proof sketch:
Multiplication $\mathcal{Z}($ 亿) associative, pairing $\mathcal{Z}($ ®) $)$ nondegenerate:

Topological quantum field theory

A 2-dimensional closed TQFT is a symmetric monoidal functor
Bord $_{2} \xrightarrow{\mathcal{Z}}$ Vect
$S^{1} \longmapsto V$
气. $\longmapsto(\mu: V \otimes V \longrightarrow V)$
(associative multiplication)
๑๐ $\longmapsto(\langle-,-\rangle: V \otimes V \longrightarrow \mathbb{k}) \quad$ (nondegenerate μ-compatible pairing)
Theorem. $\{2 \mathrm{~d}$ TQFTs $\} \cong\{$ commutative Frobenius algebras $\}$

Examples.

- $V=\mathbb{k} G$ and $\langle g, h\rangle=\delta_{g, h^{-1}}$ for finite abelian group G
- $V=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$
(pairing $\langle-,-\rangle$ from residue theory)

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor Bord $_{2} \longrightarrow$ Vect

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\operatorname{Bord}_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories.
- Consider other tangential structures.
- Decompose bordisms without higher categories as input.

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories. \Longrightarrow extended TQFTs
- Consider other tangential structures.
- Decompose bordisms without higher categories as input.

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories. \Longrightarrow extended TQFTs
- Consider other tangential structures.
(unoriented, framed, spin, r-spin, G-bundle, ...)
- Decompose bordisms without higher categories as input.

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories. \Longrightarrow extended TQFTs
- Consider other tangential structures.
(unoriented, framed, spin, r-spin, G-bundle, ...)
- Decompose bordisms without higher categories as input. \Longrightarrow defect TQFTs

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories. \Longrightarrow extended TQFTs
- Consider other tangential structures.
(unoriented, framed, spin, r-spin, G-bundle, ...)
- Decompose bordisms without higher categories as input. \Longrightarrow defect TQFTs
- Consider targets other than n Vect.

How to make this more interesing?

A 2-dimensional closed TQFT is a symmetric monoidal functor

$$
\text { Bord }_{2} \longrightarrow \text { Vect }
$$

Options:

- Increase "spacetime" dimension.
- Promote source and target to higher categories. \Longrightarrow extended TQFTs
- Consider other tangential structures.
(unoriented, framed, spin, r-spin, G-bundle, ...)
- Decompose bordisms without higher categories as input. \Longrightarrow defect TQFTs
- Consider targets other than n Vect.
- Study non-topological QFT...

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect

Defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

depending on defect data \mathbb{D} consisting of:

- set D_{2} of bulk theories
- set D_{1} of line defects
- set D_{0} of junction fields

morphisms:

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:
$D_{2}:=\{\mathbb{k}\}$
$D_{1}:=\{$ finite-dimensional \mathbb{k}-vector spaces $\}$
$D_{0}:=\{$ linear maps $\}$
$\mathcal{Z}^{\text {triv }}\left(\int_{V_{m}}^{V_{1}} \begin{array}{c}\vdots \\ V_{m}\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m}$
$\mathcal{Z}^{\text {triv }}\left(\begin{array}{l}0 \\ =\end{array} \stackrel{\text { def }}{=}\right.$ (evaluate 0 - und 1 -strata as string diagrams in Vect)

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}^{\text {triv }}$:

$$
\begin{aligned}
& D_{2}:=\{\mathbb{k}\} \\
& D_{1}:=\{\text { finite-dimensional } \mathbb{k} \text {-vector spaces }\} \\
& D_{0}:=\{\text { linear maps }\} \\
& \mathcal{Z}^{\text {triv }}\left(\sim_{V_{m}}^{V_{1}} \begin{array}{l}
\vdots \\
V_{m}
\end{array}\right) \stackrel{\text { def }}{=} V_{1} \otimes \cdots \otimes V_{m} \\
& \mathcal{Z}^{\text {triv }}\left({ }^{0}\right) \stackrel{\text { def }}{=} \text { (evaluate } 0 \text { - und 1-strata as string diagrams in Vect) }
\end{aligned}
$$

B-twisted sigma models:
Calabi-Yau manifolds and holomorphic vector bundles
Landau-Ginzburg models:
isolated singularities and homological algebra

Δ-separable symmetric Frobenius algebra (over k)

$A \in$ Vect with

$$
\begin{array}{ll}
\mu=\{: A \otimes A \longrightarrow A & !: \mathbb{k} \longrightarrow A \\
\Delta=\{: A \longrightarrow A \otimes A & !: A \longrightarrow \mathbb{k}
\end{array}
$$

such that

$$
\delta=\mid=\emptyset
$$

 $p=\mid=\|$

(A need not be commutative.)

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord_{2}
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(D^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\mathrm{ss}}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\mathrm{ss}}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius C -algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord ${ }_{2}$
(2) Decorate Poincaré-dual graph with (C, A, μ, Δ):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):
c A_{A} c
(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(D^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

\square
$\underbrace{A}_{A} A_{A}^{A} \mathrm{c}$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.
Proof sketch: Defining properties of (A, μ, Δ) encode invariance under Pachner moves \Longrightarrow independent of choice of triangulation:

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}^{\text {ss }}:$ Bord $_{2} \longrightarrow$ Vect.

No need to consider only algebras over \mathbb{k} !

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(\alpha, A, \mu, \Delta)$:

$\alpha \in D_{2}$

$A \in D_{1}$

$\mu \in D_{0}$

$\Delta \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv(\alpha, A, \mu, \Delta)$:

$\alpha \in D_{2}$

$A \in D_{1}$

$\mu \in D_{0}$

$\Delta \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with $\mathcal{Z}=\mathcal{A}$-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \text { Bord }_{2} \longrightarrow \text { Vect }
$$

Algebraic characterisation

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Proof idea:

- objects = closed TQFTs
- 1-morphisms $=$ line defects ($=$ codimension-1 defects)
- 2-morphisms $=$ point defects (= codimension-2 defects)
- adjunctions from orientation reversal

Algebraic characterisation

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Examples.

- vector spaces: Bvect $_{k}$
*, finite-dimensional \mathbb{k}-vector spaces, linear maps
- algebras over \mathbb{k} separable symmetric Frobenius \mathbb{k}-algebras, bimodules, intertwiners
- algebraic geometry

Calabi-Yau varieties, Fourier-Mukai kernels, RHom

- symplectic geometry
symplectic manifolds, Lagrangian correspondences, Floer homology
- Landau-Ginzburg models
isolated singularities, matrix factorisations
- differential graded categories
smooth and proper dg categories, dg bimodules, intertwiners
- categorified quantum groups
weights, functors $\mathcal{E}_{i}, \mathcal{F}_{j} \ldots$, string diagrams. .

Algebraic characterisation of orbifolds

Theorem.

2 d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$

Algebraic characterisation of orbifolds

Theorem.
2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect $=\Delta$-separable symmetric Frobenius \mathbb{k}-algebras

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{k}-algebras
$\Longrightarrow \quad \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect
$=\Delta$-separable symmetric Frobenius \mathbb{k}-algebras
$\Longrightarrow \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {tiv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2 -functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{B}_{\mathcal{Z}}$.
$\Longrightarrow G$-orbifolds are orbifolds: $\quad \mathcal{Z}^{G}=\mathcal{Z}_{A_{G}} \quad \mathcal{C}^{G} \cong \bmod _{\mathcal{C}}\left(A_{G}\right)$

Algebraic characterisation of orbifolds

Theorem.

ad defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{B}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{B}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect $=\Delta$-separable symmetric Frobenius \mathbb{k}-algebras
$\Longrightarrow \mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {tiv }}\right)_{A}$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{B}_{\mathcal{Z}}$ is 2-functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{B}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{B}_{\mathcal{Z}}$.
$\Longrightarrow G$-orbifolds are orbifolds: $\quad \mathcal{Z}^{G}=\mathcal{Z}_{A_{G}} \quad \mathcal{C}^{G} \cong \bmod _{\mathcal{C}}\left(A_{G}\right)$
Orbifolds unify gauging of symmetry groups and state sum models.

Orbifold equivalence: main idea

Let $X: \alpha \longrightarrow \beta$ be line defect such that

Then with $A:=X^{\dagger} \otimes X: \alpha \longrightarrow \alpha$ we have:

Theorem. (orbifold equivalence $\alpha \sim \beta$)
$($ theory $\beta) \cong(A$-orbifold of theory $\alpha)$

Orbifold equivalence

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category $\mathcal{B}_{\text {orb }}$:

- objects: Δ-separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- 1-morphisms $(\alpha, A) \longrightarrow(\beta, B): B$ - A-bimodules in $\mathcal{B}(\alpha, \beta)$
- 2-morphisms: bimodule maps

Lemma. $\mathcal{B} \longleftrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}$

Orbifold equivalence

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category $\mathcal{B}_{\text {orb }}$:

- objects: Δ-separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- 1-morphisms $(\alpha, A) \longrightarrow(\beta, B): B$ - A-bimodules in $\mathcal{B}(\alpha, \beta)$
- 2-morphisms: bimodule maps

Lemma. $\mathcal{B} \longleftrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}$

Theorem \& Definition. (Orbifold equivalence $\alpha \sim \beta$)
If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\operatorname{dim}(X) \in \operatorname{End}\left(1_{\beta}\right)$, then:

- $A:=X^{\dagger} \otimes X$ is separable symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$
$-X:(\alpha, A) \rightleftarrows\left(\beta, 1_{\beta}\right): X^{\dagger}$ is adjoint equivalence in $\mathcal{B}_{\text {orb }}$

Remark.

$\mathcal{B}_{\text {orb }}$ as oriented gapped condensation of topological phases of matter

Orbifold equivalence

Orbifold completion of \quad 2-category \mathcal{B} is \quad 2-category $\mathcal{B}_{\text {eq }}$:

- objects: Δ-separable

Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$

- 1-morphisms $(\alpha, A) \longrightarrow(\beta, B): B$ - A-bimodules in $\mathcal{B}(\alpha, \beta)$
- 2-morphisms: bimodule maps

Lemma. $\mathcal{B} \hookrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}, \quad \mathcal{B} \longleftrightarrow \mathcal{B}_{\text {eq }} \cong\left(\mathcal{B}_{\text {eq }}\right)_{\text {eq }}$

Theorem \& Definition. (Orbifold equivalence $\alpha \sim \beta$)
If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\operatorname{dim}(X) \in \operatorname{End}\left(1_{\beta}\right)$, then:

- $A:=X^{\dagger} \otimes X$ is separable symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$
$-X:(\alpha, A) \rightleftarrows\left(\beta, 1_{\beta}\right): X^{\dagger}$ is adjoint equivalence in $\mathcal{B}_{\text {orb }}$

Remark.

$\mathcal{B}_{\text {orb }}$ as oriented gapped condensation of topological phases of matter $\mathcal{B}_{\text {eq }}=$ "condensation completion"

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$\left.-{ }_{\mathcal{D}} W\right)_{V}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}}^{W}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$

Why care?

- symmetric monoidal pivotal 2-category under very good control!

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}}^{W}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$

Why care?

- symmetric monoidal pivotal 2-category under very good control!
- CFT/LG correspondence
- CY/LG correspondence
- derived geometry \& representation theory
- homological knot invariants
- surface defects in Rozansky-Witten models

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}} \underbrace{}_{V}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$
Theorem. (Orbifold equivalences in $\mathcal{L G}$)

$$
\begin{array}{rlr}
x^{k}+x y^{2} & \sim u^{2 k}+v^{2} & \left(\mathrm{D}_{k+1} \sim \mathrm{~A}_{2 k-1}\right) \\
x^{3}+y^{4} & \sim u^{12}+v^{2} & \left(\mathrm{E}_{6} \sim \mathrm{~A}_{11}\right) \\
x^{3}+x y^{3} & \sim u^{18}+v^{2} & \left(\mathrm{E}_{7} \sim \mathrm{~A}_{17}\right) \\
x^{3}+y^{5} & \sim u^{30}+v^{2} & \left(\mathrm{E}_{8} \sim \mathrm{~A}_{29}\right)
\end{array}
$$

Orbifolds of Landau-Ginzburg models

Theorem. There is a (graded) pivotal 2-category $\mathcal{L G}$ with:

- objects $=$ isolated singularities $W \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{L G}(W, V)=$ homotopy category of matrix factorisations \mathcal{D} of $V-W$
$-{ }_{\mathcal{D}} \underbrace{}_{V}=\operatorname{Res}\left[\frac{\operatorname{str}\left(\prod_{i} \partial_{x_{i}} \mathcal{D}\right)\left(\prod_{j} \partial_{z_{j}} \mathcal{D}\right) \mathrm{d} x}{\partial_{x_{1}} W \ldots \partial_{x_{n}} W}\right]$ for $\mathcal{D}: W \longrightarrow V$
Theorem. (Orbifold equivalences in $\mathcal{L G}$)

$$
\begin{array}{rlr}
x^{k}+x y^{2} & \sim u^{2 k}+v^{2} & \left(\mathrm{D}_{k+1} \sim \mathrm{~A}_{2 k-1}\right) \\
x^{3}+y^{4} & \sim u^{12}+v^{2} & \left(\mathrm{E}_{6} \sim \mathrm{~A}_{11}\right) \\
x^{3}+x y^{3} & \sim u^{18}+v^{2} & \left(\mathrm{E}_{7} \sim \mathrm{~A}_{17}\right) \\
x^{3}+y^{5} & \sim u^{30}+v^{2} & \left(\mathrm{E}_{8} \sim \mathrm{~A}_{29}\right) \\
x^{5} y+y^{3} & \sim u^{3} v+v^{5} & \left(\mathrm{E}_{13} \sim \mathrm{Z}_{11}\right) \\
x^{6}+x y^{3}+z^{2} & \sim v w^{3}+v^{3}+u^{2} w & \left(\mathrm{Z}_{13} \sim \mathrm{Q}_{11}\right)
\end{array}
$$

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every $W \in \mathcal{L G}$, the associated Landau-Ginzburg model Bord $_{2} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0}^{\mathrm{fr}} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S_{1}^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Remarks.

- Jacobi algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$ is non-semisimple.

Aside: Non-semisimple fully extended TQFTs

Theorem.

For every $W \in \mathcal{L G}$, the associated Landau-Ginzburg model Bord $_{2} \longrightarrow$ Vect can be lifted to a fully extended TQFT

$$
\begin{aligned}
\operatorname{Bord}_{2,1,0}^{\mathrm{fr}} & \longrightarrow \mathcal{L G} \\
\mathrm{pt}_{+} & \longmapsto W \\
S_{1}^{1} & \longmapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)
\end{aligned}
$$

Remarks.

- Jacobi algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right)$ is non-semisimple.
- Get oriented TQFT from $\mathrm{SO}(2)$-homotopy fixed points, i. e. trivialisations of Serre automorphism $S_{W}=1_{W}[n]$.
- Get r-spin TQFTs in $\mathcal{L G}$ and $\mathcal{L G}$ eq.

Summary so far

Summary so far

$$
\mathcal{C}^{G} \cong \bmod \left(\mathcal{C} \xrightarrow{A_{G} \otimes(-)} \mathcal{C}\right)
$$

$$
\mathcal{Z}_{A}^{\text {ss }}=\left(\mathcal{Z}^{\text {triv }}\right)_{A}
$$

2d orbifolds

- encode triangulation invariance in algebraic structure
- representation theory of algebras in 2-categories
- unify gauging of symmetry groups and state sum models
- new relations in Landau-Ginzburg models, algebra and geometry

The orbifold construction can be generalised to

 n-dimensional defect TQFTs$\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect
in any dimension $n \geqslant 1$.

The orbifold construction can be generalised to n-dimensional defect TQFTs

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures
- $n=2$: Frobenius algebras in 2-categories
- $n=3$: spherical fusion categories in 3-categories
- representation theory internal to n-categories

The orbifold construction can be generalised to n-dimensional defect TQFTs

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \text { Vect }
$$

in any dimension $n \geqslant 1$.

n-dimensional orbifolds

- triangulation invariance \Longrightarrow algebraic structures
- $n=2$: Frobenius algebras in 2-categories
- $n=3$: spherical fusion categories in 3-categories
- representation theory internal to n-categories
- Applications:
- unify gauging of symmetry groups and state sum models
- lift Reshetikhin-Turaev theory to defect TQFT
- Reshetikhin-Turaev theories close under orbifolds
- models for topological quantum computation

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

that depends on defect data \mathbb{D}, consisting of:

- sets D_{j}, whose elements decorate j-strata of bordisms
- rules how strata are allowed to meet
(defined recursively via cones and cylinders)

n-dimensional defect TQFTs

An n-dimensional defect TQFT is a symmetric monoidal functor

$$
\mathcal{Z}: \operatorname{Bord}_{n}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \operatorname{Vect}
$$

that depends on defect data D , consisting of:

- sets D_{j}, whose elements decorate j-strata of bordisms
- rules how strata are allowed to meet
(defined recursively via cones and cylinders)

Examples of 3d defect TQFTs.

- quantum Chern-Simons theory (\subset Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{C}}$)
- $D_{3}=$ \{gauge group $\}$
- $D_{2}=\{\Delta$-separable symmetric Frobenius algebras in $\mathcal{C}\}$
- $D_{1}=\{$ cyclic modules $\} \supset\{$ Wilson line labels $\}$
- Rozansky-Witten theory
- $D_{3}=$ \{holomorphic symplectic manifolds $\}$
- $D_{2}=\{$ "generalised Landau-Ginzburg models" $\}$
- $D_{1}=\{$ "fibred matrix factorisations" $\}$

Reshetikhin-Turaev theory with defects

Theorem.

For modular tensor category \mathcal{C}, there is a defect TQFT $\mathcal{Z}^{\mathcal{C}}$ with
$D_{3}=\{\mathcal{C}\}$
$D_{2}=\{\Delta$-separable symmetric Frobenius algebras $A \in \mathcal{C}\}$
$D_{1}=\{$ "cyclic modules" $\}$
that lifts Reshetikhin-Turaev theory $\mathcal{Z} \mathcal{C}, \mathrm{RT}$.

Reshetikhin-Turaev theory with defects

Theorem.

For modular tensor category \mathcal{C}, there is a defect TQFT $\mathcal{Z}^{\mathcal{C}}$ with
$D_{3}=\{\mathcal{C}\}$
$D_{2}=\{\Delta$-separable symmetric Frobenius algebras $A \in \mathcal{C}\}$
$D_{1}=\{$ "cyclic modules" $\}$
that lifts Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{C}, R T}$.
Proof idea:

- replace A-decorated 2-strata by trivalent network of A-ribbons
- evaluate with $\mathcal{Z}^{\mathcal{C}, R T}$
- model X-ribbons by 1- and 2-strata:

Reshetikhin-Turaev theory with surface defects

Reshetikhin-Turaev theory with surface defects

Reshetikhin-Turaev theory with surface defects

Reshetikhin-Turaev theory with surface defects

Reshetikhin-Turaev theory with defects

Triangulations

standard n-simplex $\Delta^{n}:=\left\{\sum_{i=1}^{n+1} t_{i} e_{i} \mid t_{i} \geqslant 0, \quad \sum_{i=1}^{n+1} t_{i}=1\right\} \subset \mathbb{R}^{n+1}$

simplicial complex C is collection of simplices such that

- all faces of all $\sigma \in C$ are also in C
- $\sigma, \sigma^{\prime} \in C \quad \Longrightarrow \quad \sigma \cap \sigma^{\prime}=\varnothing$ or $\sigma \cap \sigma^{\prime}=$ face
triangulation of manifold M is simplicial complex C with homeomorphism $\varphi:|C| \stackrel{\cong}{\cong} M$
(details for smooth, oriented, ...)

Pachner moves

Let $\varphi:|C| \xrightarrow{\cong} M$ be triangulated n-manifold.
Let $F \subset \partial \Delta^{n+1} \subset C$ be n-dimensional subcomplex.
A Pachner move "glues the other side of $\partial \Delta^{n+1}$ into M ":

$$
M \longmapsto\left|\partial \Delta^{n+1} \backslash \stackrel{\circ}{F}\right| \cup_{\left.\varphi\right|_{|\partial F|}}(M \backslash \varphi(|F|))
$$

Theorem. If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them.

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$,
- such that "Pachner moves become identities"
- compatibility:
\mathcal{A}_{j} is allowed decoration of $(n-j)$-simplices dual to j-strata
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls dual to two sides of a Pachner move.
Then: $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.
$n=2$ is special case:

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z}: \operatorname{Bord}_{n}^{\text {def }}(\mathbb{D}) \longrightarrow$ Vect consists of
$-\mathcal{A}_{j} \in D_{j}$ for all $j \in\{1, \ldots, n\}$,

- $\mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-} \in D_{0}$,
- such that "Pachner moves become identities"
- compatibility:
\mathcal{A}_{j} is allowed decoration of $(n-j)$-simplices dual to j-strata
- triangulation invariance:

Let B, B^{\prime} be \mathcal{A}-decorated n-balls dual to two sides of a Pachner move.
Then: $\mathcal{Z}(B)=\mathcal{Z}\left(B^{\prime}\right)$.
$n=2$ is special case:

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with $\mathcal{Z}=\mathcal{A}$-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \operatorname{Bord}_{n} \longrightarrow \text { Vect }
$$

Orbifold datum \mathcal{A} for $n=3$

dual to

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$
Theorem.
Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$
Theorem.
Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.")
Turaev-Viro-Barrett-Westbury models are orbifolds of $\mathcal{Z}^{\text {vect }}$

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

Theorem.

Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.") Turaev-Viro-Barrett-Westbury models are orbifolds of $\mathcal{Z}^{\text {vect }}$:
From spherical fusion category \mathcal{A} get orbifold datum

$$
\begin{aligned}
& -\mathcal{A}_{3}=* \\
& -\mathcal{A}_{2}=\mathcal{A} \\
& -\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\
& -\mathcal{A}_{0}^{ \pm}=\text {associator }^{ \pm 1}
\end{aligned}
$$

$$
\text { (equivalently: } \mathbb{C}^{\# \text { simples of } \mathcal{A}} \text {) }
$$

$$
\text { (equivalently: fusion rules of } \mathcal{A} \text {) }
$$

$$
\text { (equivalently: F-matrices of } \mathcal{A} \text {) }
$$

3d orbifolds

Theorem.

3d defect TQFT $\mathcal{Z} \Longrightarrow$ 3-category $\mathcal{T}_{\mathcal{Z}}$

Theorem.

Spherical fusion categories in $\mathcal{T}_{\mathcal{Z}}$ are orbifold data for \mathcal{Z}.
Theorem. ("State sum models are orbifolds of the trivial TQFT.") Turaev-Viro-Barrett-Westbury models are orbifolds of $\mathcal{Z}^{\text {vect }}$:
From spherical fusion category \mathcal{A} get orbifold datum

$$
\begin{aligned}
& -\mathcal{A}_{3}=* \\
& -\mathcal{A}_{2}=\mathcal{A} \\
& -\mathcal{A}_{1}=\otimes: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A} \\
& -\mathcal{A}_{0}^{ \pm}=\text {associator }^{ \pm 1}
\end{aligned}
$$

$$
\text { (equivalently: } \mathbb{C}^{\#} \text { simples of } \mathcal{A} \text {) }
$$

Theorem.

Orbifolds of Reshetikhin-Turaev theories are Reshetikhin-Turaev theories.

In a nutshell

A TQFT is a functor

$$
\mathcal{Z}: \text { Spacetime Caricature } \longrightarrow \text { Algebra }
$$

Summary:

- n-dimensional closed TQFTs \Longrightarrow algebras
- n-dimensional defect TQFTs $\Longrightarrow n$-categories
- orbifolds \Longrightarrow representation theory in n-categories

Applications for $n \lesssim 4$:
$n=2$: Landau-Ginzburg models
$n=3$: Chern-Simons and Reshetikhin-Turaev theory
$n=4$: Crane-Yetter and Douglas-Reutter theory

In a nutshell

A TQFT is a functor

$$
\mathcal{Z}: \text { Spacetime Caricature } \longrightarrow \text { Algebra }
$$

Summary:

- n-dimensional closed TQFTs \Longrightarrow algebras
- n-dimensional defect TQFTs $\Longrightarrow n$-categories
- orbifolds \Longrightarrow representation theory in n-categories [unify and extend state sum models and symmetry gauging]

Applications for $n \lesssim 4$:
$n=2$: Landau-Ginzburg models:
[new dualities; fully extended framed/oriented/spin TQFTs]
$n=3$: Chern-Simons and Reshetikhin-Turaev theory: [surface defects; close under orbifolds]
$n=4$: Crane-Yetter and Douglas-Reutter theory

Application: topological quantum computation

Interpretation of Reshetikhin-Turaev theory $\mathcal{Z}^{\mathcal{C}}$:

- objects u_{i} in \mathcal{C} : anyonic quasiparticles in $2+1$ dimensions
$-\mathcal{Z}^{\mathcal{C}}\left(\Sigma_{u_{1}, \ldots, u_{m}}\right)$: qubit storage on surface Σ with m anyons
- braiding matrices $\beta_{u_{i}, u_{j}}$: quantum gates
- $\left\langle\beta_{u_{i}, u_{j}}\right\rangle$ dense in $\mathrm{U}(N)$ for $N \gg 1$: universal quantum computation

Fact. $\mathcal{C}=$ Ising category not universal.
"Gauging" of S_{2}-symmetry of $\mathcal{C} \boxtimes \mathcal{C}$ is universal!

Conjecture. Orbifolds of $\mathcal{Z}^{\mathcal{C}}$ construct universal quantum computers with larger qubit storages $\mathcal{Z}^{\mathcal{C}}\left(\Sigma_{u_{1}, \ldots, u_{m}}\right)$;
in particular
$-\rho: \mathrm{B} S_{N} \longrightarrow \operatorname{Bimod}_{\mathbb{C}}$ with $\rho(*)=\mathcal{C}^{\boxtimes N}$
$-\mathcal{C}$ - \mathcal{C}^{\prime}-bimodules with "invertible quantum bubble"

