Topological String Theory and S-duality

Philsang Yoo
Yau Mathematical Sciences Center
Tsinghua University

Mathematics - String Theory Seminar
Kavli Institute for the Physics and Mathematics of the Universe February 15, 2021

Motivation and Plan

Any original result I will discuss today is based on a joint work in progress with Surya Raghavendran. Here are my motivations:

- S-duality is an equivalence between two different-looking physical theories. I wanted to understand a general principle.
- Based on works with C. Elliott, I conjectured a physical setup for geometric Langlands correspondence in a way different from Kapustin-Witten; I wanted to find the evidence.
- A study of twisted supersymmetric theory led to rich mathematics. Ours is a first step for twisted supergravity.

Here is an outline:
(1) Type IIB Superstring theory and Topological String Theory
(2) Main Definitions and Justification
(3) Applications

Summary: What have we done?

(P) mathematical understanding of S-duality of (a part of) massless sector of the physical type IIB supergravity;
(M) recovering old conjectures and formulating new conjectures in geometric representation theory;easy calculation of how S-duality acts on further deformations of twists of supersymmetric gauge theory;
(!) setting up a framework that can be useful for future works; e.g., introducing a modified version of Kodaira-Spencer theory of gravity of Bershadsky-Cecotti-Ooguri-Vafa, and constructing $\mathrm{SL}_{2}(\mathbb{Z})$ action on it

Disclaimer: I am a string theory newbie!

Type IIB Superstring Theory

- Type IIB superstring theory on a 10 -manifold M^{10}; need to consider the moduli spaces of Riemann surfaces;
- D-brane gauge theory for $D_{2 k-1}$-branes wrapping on $N^{2 k} \subset M^{10}$; a $2 k$-dimensional field theory; e.g.,
- D3 branes on $\mathbb{R}^{4} \subset \mathbb{R}^{10}$ yield $4 \mathrm{~d} \mathcal{N}=4$ SYM theory;
- D5 branes on $\mathbb{R}^{6} \subset \mathbb{R}^{10}$ yield 6d $\mathcal{N}=(1,1)$ SYM theory;
- Closed string field theory on M^{10}; field theory on M^{10} describing string theory;
- Type IIB supergravity theory on a 10 -manifold M^{10}; classical field theory on M^{10} realized as a low-energy limit of closed string field theory;
- Coupling between closed string field theory and D-brane gauge theory; closed string state yields a deformation of D-brane gauge theory; e.g., a twist of D-brane gauge theory;
- Existence of $\mathrm{SL}_{2}(\mathbb{Z})$ symmetry or S-duality

Question: How much can we capture mathematically?
Answer: Most of it, for topological string theory.

Topological Quantum Field Theory

Definition

A d-dimensional TQFT is a symmetric monoidal functor

$$
Z:\left(\underline{\text { Bord }}_{d}, \amalg\right) \rightarrow\left(\text { Vect }_{\mathbb{C}}, \otimes\right)
$$

Here $\left(\right.$ Vect $\left._{\mathbb{C}}, \otimes\right)$ is a symmetric monoidal category of \mathbb{C}-vector spaces and $\underline{\text { Bord }}_{d}$ is a category where

- an object is a closed $(d-1)$-manifold;
- a morphism is a cobordism up to diffeomorphism;
- the composition is a gluing of cobordisms;
- the monoidal structure is a disjoint union \amalg.

2d TQFT

A closed 1-manifold is copies of S^{1}. Let us write $Z\left(S^{1}\right)=A$.
Theorem
A 2d TQFT is the same as a commutative Frobenius algebra.

morphism in Bord $_{2}$	morphism in Vect $_{\mathbb{C}}$
$\emptyset \rightarrow S^{1}$	$u: \mathbb{C} \rightarrow A$
$S^{1} \rightarrow \emptyset$	$\operatorname{Tr}: A \rightarrow \mathbb{C}$
$S^{1} \amalg S^{1} \rightarrow S^{1}$	$m: A \otimes A \rightarrow A$
$S^{1} \rightarrow S^{1} \amalg S^{1}$	$\Delta: A \rightarrow A \otimes A$

One should think of this as (baby) (topological) string theory, where $Z\left(S^{1}\right)$ is the space of string states.
To be more precise, $Z\left(S^{1}\right)$ is the space of closed string states, where closed refers to the fact that our string S^{1} has no boundary. We want to see an open string (interval) floating around as well.

Extended 2d TQFT

Roughly, an extended 2d TQFT is a symmetric monoidal functor

$$
Z:\left(\operatorname{Bord}_{2}, \amalg\right) \rightarrow\left(\mathrm{DGCat}_{\mathbb{C}}, \otimes\right)
$$

Bord $_{2}$	DGCat $_{\mathbb{C}}$
closed 2-manifold	complex number
closed 1-manifold cobordism of 1-manifolds	\mathbb{C}-vector space \mathbb{C}-linear map
closed 0-manifold cobordism of 0-manifolds	\mathbb{C}-linear category
\mathbb{C}-linear functor	

Theorem (Costello, Hopkins-Lurie, Lurie)
An extended 2d TQFT Z is the same as a Calabi-Yau category $Z(\mathrm{pt})=\mathcal{C}$.

Physically speaking, $Z(\mathrm{pt})=\mathcal{C}$ captures where an open string can end; hence the name of \mathcal{C} is the category of boundary conditions; then $\operatorname{Hom}_{\mathcal{C}}\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ is to be interpreted as the space of open string states which end at \mathcal{B}_{1} and \mathcal{B}_{2}.

Topological String Theory as 2d Extended TQFT

By topological string, we mean such a 2d extended TQFT determined by CY 5-category. In this case, a boundary condition is also called a D-brane. Let X be a CY 5-fold with a holomorphic volume form Ω_{X}. Here are the two main examples:

	A-model	B-model
$Z(\mathrm{pt})=\mathcal{C}$	$\operatorname{Fuk}(X)$	$\operatorname{Coh}(X)$
$Z\left(S^{1}\right)=\mathrm{HH}(\mathcal{C})$	$\mathrm{QH}(X)$	$\mathrm{PV}(X)$

Here $\mathrm{PV}(X)=\bigoplus \mathrm{PV}^{i, j}(X)$ is the space of polyvector fields, where $\mathrm{PV}^{i, j}(X)=\Omega^{0, j}\left(X, \wedge^{i} T_{X}\right)$, with a differential $\bar{\partial}: \mathrm{PV}^{i, j} \rightarrow \mathrm{PV}^{i, j+1}$.
For future reference, note that using the isomorphism
$(-) \vee \Omega_{X}: \mathrm{PV}^{i, j}(X) \cong \Omega^{d-i, j}(X)$, one has $\partial: \mathrm{PV}^{i, j} \rightarrow \mathrm{PV}^{i-1, j}$.
Type IIB string theory on $M^{10} \rightsquigarrow$ Calabi-Yau 5-category \mathcal{C}
Example

- $\mathcal{C}=\operatorname{Coh}\left(X^{5}\right)$ for CY 5-fold X
- $\mathcal{C}=\operatorname{Fuk}\left(T^{*} N\right) \otimes \operatorname{Coh}\left(X^{3}\right)$ for a smooth 2-manifold N

(M) Classical Field Theory and BV Formalism

A d-dimensional classical field theory is described by

- a spacetime manifold $M=M^{d}$;
- a space of fields \mathcal{F};
- an action functional $S: \mathcal{F} \rightarrow \mathbb{C}$.

In what follows, we use the BV formalism, where space of fields \mathcal{E} is a (-1)-shifted "symplectic" space with a differential Q and a Lie bracket $[-,-]$, giving $S(\phi)=\int_{M} \frac{1}{2}\langle\phi, Q \phi\rangle+\frac{1}{6}\langle\phi,[\phi, \phi]\rangle$.

Example

- Free scalar field theory has $\mathcal{E}=C^{\infty}(M) \oplus C^{\infty}(M)[-1]$ with $Q=\Delta$. This means $S(\phi)=\int_{M}\langle\phi, \Delta \phi\rangle$.
- Chern-Simons theory has $\mathcal{E}=\Omega^{\bullet}\left(M^{3}\right) \otimes \mathfrak{g}[1]$ with $Q=d$ and natural $[-,-]$, giving $S(A)=\int_{M} \frac{1}{2}\langle A, d A\rangle+\frac{1}{6}\langle A,[A, A]\rangle$.

For us, things will be mostly $\mathbb{Z} / 2$-graded, although we write in such a manner that a \mathbb{Z}-grading is respected when possible.

D-brane Gauge Theory

(P) Open strings ending on branes \mathcal{B} yield D-brane gauge theory.
(M) [Brav-Dyckerhoff] The moduli $\mathcal{M}_{\mathcal{C}}$ of objects is $(2-d)$ shifted symplectic and $\mathbb{T}_{\mathcal{B}}[-1] \mathcal{M}_{\mathcal{C}} \cong \mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})$ for $\mathcal{B} \in \mathcal{C}$.

D-brane gauge theory on $N^{2 k} \subset M^{10} \rightsquigarrow \mathcal{E}=\mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})[1]$
\mathcal{C} a DG category \rightsquigarrow associative and hence Lie on $\mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})$
\mathcal{C} a $C Y$ category \rightsquigarrow a shifted symplectic structure on $\mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})[1]$
Example

- If $\mathcal{C}=\operatorname{Coh}(X)$, then N D-branes on $Y \subset X$, or $\mathcal{B}=\mathcal{O}_{Y}^{N} \in \operatorname{Coh}(X)$, gives $\mathcal{E}=\Omega^{0, \bullet}\left(Y, \wedge^{\bullet} N_{X / Y}\right) \otimes \mathfrak{g l}_{N}[1] . N$ D3 on $\mathbb{C}^{2} \subset \mathbb{C}^{5}$ give $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{Hol}}\left(\mathbb{C}^{2}\right):=\Omega^{0, \bullet}\left(\mathbb{C}^{2}\right)\left[\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right] \otimes \mathfrak{g l}_{N}[1]$, or the holomorphic twist of $4 \mathrm{~d} \mathcal{N}=4 \mathfrak{g l}_{N}$ gauge theory.
- If $\mathcal{C}=\operatorname{Fuk}\left(\mathbb{R}^{4}\right) \otimes \operatorname{Coh}\left(X^{3}\right)$, a D-brane should be of the form $\mathbb{R}^{2} \times Y \subset \mathbb{R}_{A}^{4} \times X_{B}$. Then N D3 branes on $\mathbb{R}^{2} \times \mathbb{C} \subset \mathbb{R}^{4} \times \mathbb{C}^{3}$ yield $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}\right):=\Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}(\mathbb{C})\left[\varepsilon_{1}, \varepsilon_{2}\right] \otimes \mathfrak{g l}_{N}[1]$, or the holomorphic-topological twist.

Closed String Field Theory

Recall $Z\left(S^{1}\right)$ is the space of closed string states, but note that
(P) The worldsheet theory, being coupled with gravity theory, should be invariant under $\operatorname{Diff}\left(S^{1}\right)$. This motivates $Z\left(S^{1}\right)^{S^{1}}$.
(M) Here $Z\left(S^{1}\right)=\mathrm{HH}(\mathcal{C})$ admits an S^{1}-action which corresponds to so-called Connes' B operator, so $Z\left(S^{1}\right)^{S^{1}}=\operatorname{Cyc}(\mathcal{C})$.
(M) [Brav-Rozenblyum $] \mathbb{T}_{\mathcal{C}}[-1] \mathcal{M}_{\mathrm{CY}} \cong \mathrm{Cyc}^{\bullet}(\mathcal{C})[1]$ where $\mathcal{M}_{\mathrm{CY}}$ is the moduli space of Calabi-Yau categories.

Closed string field theory on $M^{10} \rightsquigarrow \mathcal{E}=\mathrm{Cy}{ }^{\bullet}(\mathcal{C})[2]$ where \mathcal{E} is understood in the framework of [Butson-Y.].

Example (Bershadsky-Cecotti-Ooguri-Vafa, Costello-Li) If $\mathcal{C}=\operatorname{Coh}\left(X^{5}\right)$, then $Z\left(S^{1}\right) \cong \operatorname{PV}(X)$ and $B=\partial$; hence the corresponding closed string field theory is given by $(\operatorname{ker} \partial \subset \operatorname{PV}(X)[2], \bar{\partial})$ or $\mathcal{E}=(\operatorname{PV}(X) \llbracket t][2], \bar{\partial}+t \partial)$.

Supergravity

(P) Supergravity is a theory of low-energy limit of closed string field theory where we see neither non-perturbative effects nor non-propagating fields.

Supergravity on $M^{10} \rightsquigarrow$ non-propagating part of $\mathrm{Cyc}^{\bullet}(\mathcal{C})[2]$
The non-propagating part of BCOV theory can be identified:
Definition
Let $\left(X, \Omega_{X}\right)$ be a Calabi-Yau d-fold. A minimal BCOV theory is $\mathcal{E}_{\mathrm{m}}(X)=\mathcal{E}_{\mathrm{mBCOV}}(X)=\bigoplus_{i+k \leq d-1} t^{k} \mathrm{PV}^{i, \bullet}(X)$.

Example

If $\mathcal{C}=\operatorname{Coh}\left(X^{3}\right)\left(\right.$ or $\left.\mathcal{C}=\operatorname{Fuk}\left(\mathbb{R}^{4}\right) \otimes \operatorname{Coh}\left(X^{3}\right)\right)$, then it is $\mathcal{E}_{\mathrm{m}}\left(X^{3}\right)$
(or $\Omega^{\bullet}\left(\mathbb{R}^{4}\right) \otimes \mathcal{E}_{\mathrm{m}}\left(X^{3}\right)$), where $\mathcal{E}_{\mathrm{m}}\left(X^{3}\right)$ is

$$
\frac{-2}{\mathrm{PV}^{0}, \bullet} \quad \underline{-1} \quad \underline{0} \quad \underline{1} \quad \underline{2}
$$

$$
\mathrm{PV}^{1, \bullet} \rightarrow t \mathrm{PV}^{0, \bullet}
$$

$$
\mathrm{PV}^{2, \bullet} \rightarrow t \mathrm{PV}^{1, \bullet} \rightarrow t^{2} \mathrm{PV}^{0, \bullet}
$$

Coupling of Open and Closed Sectors

Coupling of closed string field theory and D-brane gauge theory \rightsquigarrow closed-open map $\operatorname{Cyc}^{\bullet}(\mathcal{C})[1] \rightarrow \operatorname{Cyc}^{\bullet}\left(\mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{F})\right)[1]$

Theorem (Kontsevich, Willwacher-Calaque)
The formality $\mathrm{PV}(X) \xrightarrow{\simeq} \mathrm{HH}(\operatorname{Coh}(X))$ gives
$\mathrm{PV}(X) \rightarrow \mathrm{HH}\left(\mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{F})\right)$ for $\mathcal{F} \in \operatorname{Coh}(X)$, or its cyclic version.
Example

- If $\mathcal{C}=\operatorname{Coh}\left(X^{5}\right)$, for N D3 branes on $\mathbb{C}_{z_{1}, z_{2}}^{2} \subset \mathbb{C}_{z_{1}, z_{2}, w_{1}, w_{2}, w_{3}}^{5}$, or $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{Hol}}=\Omega^{0, \bullet}\left(\mathbb{C}_{z_{1}, z_{2}}^{2}\right)\left[\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right] \otimes \mathfrak{g l}_{N}[1]$, the CO map is

$$
\operatorname{PV}\left(\mathbb{C}_{z_{1}, z_{2}}^{2} \times \mathbb{C}_{w_{1}, w_{2}, w_{3}}^{3}\right) \rightarrow \operatorname{HH}\left(\Omega^{0, \bullet}\left(\mathbb{C}_{z_{1}, z_{2}}^{2}\right)\left[\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right]\right)
$$

where the RHS is $\mathrm{HH}\left(\mathcal{O}\left(\mathbb{C}^{2 \mid 3}\right)\right) \cong \mathbb{C}\left[z_{i}, \partial_{z_{i}}, \varepsilon_{j}, \partial_{\varepsilon_{j}}\right]$, is given by $z_{i}, \partial_{z_{i}}, w_{j}, \partial_{w_{j}} \mapsto z_{i}, \partial_{z_{i}}, \partial_{\varepsilon_{j}}, \varepsilon_{j}$.

- If $\mathcal{C}=\operatorname{Fuk}\left(\mathbb{R}^{4}\right) \otimes \operatorname{Coh}(X)$, for $\mathbb{R}^{2} \times \mathbb{C}_{z} \subset \mathbb{R}^{4} \times \mathbb{C}_{z, w_{1}, w_{2}}^{3}$, or $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}=\Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}\left(\mathbb{C}_{z}\right)\left[\varepsilon_{1}, \varepsilon_{2}\right] \otimes \mathfrak{g l}_{N}[1]$, the CO map is $\operatorname{PV}\left(\mathbb{C}_{z} \times \mathbb{C}_{w_{1}, w_{2}}^{2}\right) \rightarrow \operatorname{HH}\left(\Omega^{0, \bullet}\left(\mathbb{C}_{z}\right)\left[\varepsilon_{1}, \varepsilon_{2}\right]\right)$ given by $z, \partial_{z}, w_{j}, \partial_{w_{j}} \mapsto z, \partial_{z}, \partial_{\varepsilon_{j}}, \varepsilon_{j}$.

Modification of BCOV Theory

Definition
Minimal BCOV theory with potential $\widetilde{\mathcal{E}}_{\mathrm{m}}(X)$ is a cochain complex

$$
\begin{array}{ccccc}
\frac{-2}{\mathrm{PV}^{0,}} & \underline{-1} & \underline{0} & \underline{1} & \underline{2} \\
& \mathrm{PV}^{1, \bullet} \rightarrow t \mathrm{PV}^{0, \bullet} & & \\
& \mathrm{PV}^{3, \bullet} &
\end{array}
$$

with additional structures.
(M) There is a "map" $\Phi: \widetilde{\mathcal{E}}_{\mathrm{m}} \rightarrow \mathcal{E}_{\mathrm{m}}$ that has $\partial: \mathrm{PV}^{3, \bullet} \rightarrow \mathrm{PV}^{2, \bullet}$, respecting structures of interest.
(P) The modification amounts to introducing Ramond-Ramond forms as a potential for Ramond-Ramond field strengths.

S-duality

Definition/Theorem (Raghavendran-Y.)
Let $\left(X, \Omega_{X}\right)$ be a Calabi-Yau 3-fold. Recall
$\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \left.\quad T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \right\rvert\, S^{4}=1,(S T)^{3}=S^{2}\right\rangle$.
Then there is an action of $\mathrm{SL}_{2}(\mathbb{Z})$ on
$\widetilde{\mathcal{E}}_{\mathrm{m}}(X)=\mathrm{PV}^{0, \bullet}(X)[2] \oplus\left(\mathrm{PV}^{1, \bullet}(X)[1] \rightarrow t \mathrm{PV}^{0, \bullet}(X)\right) \oplus \mathrm{PV}^{3, \bullet}(X):$
$S \mapsto\left(\begin{array}{lll} & & -(-) \vee \Omega_{X} \\ (-) \wedge \Omega_{X}^{-1} & \text { Id } & \end{array}\right), \quad T \mapsto\left(\begin{array}{lll}\text { ld } & & (-) \vee \Omega_{x} \\ & \text { Id } & \\ & & \text { Id }\end{array}\right)$

For example, $\alpha \in \mathrm{PV}^{0, \bullet}(X) \rightsquigarrow S(\alpha)=\alpha \wedge \Omega_{X}^{-1} \in \operatorname{PV}^{3, \bullet}(X)$ and $\gamma \in \operatorname{PV}^{3, \bullet}(X) \rightsquigarrow T(\gamma)=\alpha+\gamma \in \operatorname{PV}^{0, \bullet}(X) \oplus \mathrm{PV}^{3, \bullet}(X)$ where α is such that $\gamma=\alpha \wedge \Omega_{X}^{-1}$.

Consistency Checks

(P) S-duality is an action of $S \in \mathrm{SL}_{2}(\mathbb{Z})$ on type IIB string theory induced from the diagram

- M stands for M-theory;
- IIA stands for type IIA string theory;
- red_{M} is an equivalence from the "fact" that a circle reduction of M-theory is equivalent to type IIA theory;
- T-duality \mathbf{T} is an equivalence between type II string theories;
$-\mathrm{SL}_{2}(\mathbb{Z})$-action on M-theory is on $S_{M}^{1} \times S_{r}^{1}$;
- $\mathrm{SL}_{2}(\mathbb{Z})$-action on IIB string theory is transferred from the $\mathrm{SL}_{2}(\mathbb{Z})$-action on M -theory through equivalences.
We find its twisted versions (based on [Costello-Li]).

(P)
We have some further consistency checks with "twisted supergravity".

Summary

- S-duality is a duality of type IIB string theory.
- By simplifying type IIB string theory to topological string theory, we construct S-duality operation on closed string states or supergravity theory. In particular, we obtain $\mathrm{SL}_{2}(\mathbb{Z})$ action on a version of BCOV theory.
- Our interest is duality between D-brane gauge theories, or more precisely, deformations of D-brane gauge theory.
- Through closed-open map as well as the map from modified BCOV theory to minimal BCOV theory, modified BCOV theory and deformations of D-brane gauge theory are related.
From now on, we let $\mathcal{C}=\operatorname{Fuk}\left(\mathbb{R}^{4}\right) \otimes \operatorname{Coh}\left(\mathbb{C}^{3}\right)$ and consider N D3 branes on $\mathbb{R}^{2} \times \mathbb{C}_{z} \subset \mathbb{R}^{4} \times \mathbb{C}_{z, w_{1}, w_{2}}^{3}$ to get $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}_{z}\right) \underset{\varsigma}{=} \Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}(\mathbb{C})\left[\varepsilon_{1}, \varepsilon_{2}\right] \otimes \mathfrak{g l}_{N}[1]$. Then for

$$
\widetilde{\mathcal{E}}_{\mathrm{m}} \xrightarrow{\Phi} \mathcal{E}_{\mathrm{m}} \xrightarrow{\mathrm{CO}} \mathrm{HH}\left(\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}_{z}\right)\right)
$$

we compare deformations of HT twist by S-dual elements.

S-duality gives Geometric Langlands: $F=w_{1}$

Based on [Elliott-Y.]

$$
\begin{array}{r}
\widetilde{\mathcal{E}}_{\mathrm{m}} \xrightarrow{\Phi} \mathcal{E}_{\mathrm{m}} \xrightarrow{\mathrm{CO} \mathrm{HH}\left(\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}_{z}\right)\right)} \begin{array}{c}
w_{1} \longmapsto w_{1} \longmapsto \partial_{\varepsilon_{1}} \\
\mathrm{~F} S^{\mathrm{F} S} \\
w_{1} \partial_{z} \partial_{w_{1}} \partial_{w_{2}} \mapsto \partial_{w_{2}} \wedge \partial_{z} \longmapsto
\end{array} \varepsilon_{2} \partial_{z}
\end{array}
$$

Recall $\mathcal{E}_{\mathrm{D} 3}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}_{z}\right)=\Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}(\mathbb{C})\left[\varepsilon_{1}, \varepsilon_{2}\right] \otimes \mathfrak{g l}_{N}[1]$.
Globalizing with replacing $\mathbb{R}^{2} \times \mathbb{C}$ by $\Sigma \times C$, one has $\operatorname{EOM}_{\mathrm{D} 3}^{\mathrm{HT}}(\Sigma \times C)=\underline{\operatorname{Map}}\left(\Sigma_{\mathrm{dR}}, T^{*}[1] \operatorname{Higgs}_{G}(C)\right)$, aka B-model with target Hitchin moduli. Here ε_{1} is responsible for $T^{*}[1]$ and ε_{2} makes C into $C_{\text {Dol }}$. Hence we have the following deformations
$\left(\mathrm{B}, \operatorname{Bun}_{G}(C)_{\mathrm{dR}}\right)$
(B, Flat $\left._{G}(C)\right)$
giving an equivalence between $\mathrm{D}\left(\operatorname{Bun}_{G}(C)\right):=\mathrm{QCoh}\left(\operatorname{Bun}_{G}(C)_{\mathrm{dR}}\right)$ and $\mathrm{QCoh}\left(\operatorname{Flat}_{G}(C)\right)$ for $G=G L_{N}$. This gives geometric Langlands without considering A-model at all.

S-duality between Superconformal Deformations: $F=z w_{2}$

	0	1	2	3	4	5	6	7	8	9
	u		v		z		w_{1}		w_{2}	
K D5		\times	\times		\times	\times	\times	\times		
N D3	\times	\times			\times	\times				

$$
z w_{2} \partial_{z} \partial_{w_{1}} \partial_{w_{2}} \mapsto w_{2} \partial_{w_{1}} \partial_{w_{2}}+z \partial_{z} \partial_{w_{1}} \longmapsto \varepsilon_{1} \varepsilon_{2} \partial_{\varepsilon_{2}}+\varepsilon_{1} z \partial_{z}
$$

The deformation $z \partial_{\varepsilon_{2}}$ turns HT twist of $6 \mathrm{~d} \mathcal{N}=(1,1)$ theory to 4d CS theory on $\mathbb{R}^{2} \times \mathbb{C}_{w_{1}}$ [Costello-Yagi]: it follows from

$$
\Omega^{0, \bullet}\left(\mathbb{C}_{w_{1}}\right) \otimes\left(\Omega^{0, \bullet}\left(\mathbb{C}_{z}\right) \varepsilon_{2} \xrightarrow{z \partial_{\varepsilon_{2}}} \Omega^{0, \bullet}\left(\mathbb{C}_{z}\right)\right) \cong \Omega^{0, \bullet}\left(\mathbb{C}_{w_{1}}\right)
$$

The appearance of (truncated) Yangian on the 1d defect can be understood as its S-dual 3d $\mathcal{N}=4$ theory configuration, where the Yangian is the quantized Coulomb branch algebra.

New Examples of S-dual Theories: $F=w_{1} w_{2}$

$\widetilde{\mathcal{E}}_{\mathrm{m}} \xrightarrow{\Phi} \mathcal{E}_{\mathrm{m}} \xrightarrow{\mathrm{CO}} \mathrm{HH}\left(\mathcal{E}_{\mathrm{DT}}^{\mathrm{HT}}\left(\mathbb{R}^{2} \times \mathbb{C}_{z}\right)\right)$

$$
\bar{W} s
$$

$w_{1} w_{2} \partial_{z} \partial_{w_{1}} \partial_{w_{2}} \mapsto w_{1} \partial_{z} \partial_{w_{1}}-w_{2} \partial_{z} \partial_{w_{2}} \mapsto \pi=\partial_{\varepsilon_{1}} \partial_{z} \varepsilon_{1}-\partial_{\epsilon_{2}} \partial_{z} \varepsilon_{2}$

- As $\left(\mathbb{C}\left[\varepsilon_{1}, \varepsilon_{2}\right], \partial_{\varepsilon_{1}} \partial_{\varepsilon_{2}}\right)$ is Clifford algebra $\mathrm{Cl}\left(\mathbb{C}^{2}\right) \cong \operatorname{End}\left(\mathbb{C}^{1 \mid 1}\right)$, the element $\partial_{\varepsilon_{1}} \partial_{\varepsilon_{2}}$ deforms $\Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}(\mathbb{C})\left[\varepsilon_{1}, \varepsilon_{2}\right] \otimes \mathfrak{g l}_{N}[1]$ into $\Omega^{\bullet}\left(\mathbb{R}^{2}\right) \otimes \Omega^{0, \bullet}(\mathbb{C}) \otimes \mathfrak{g}_{N \mid N}[1]$ which is 4d Chern-Simons theory with gauge group $\mathrm{GL}_{N \mid N}$.
- The category of line defects of 4d Chern-Simons theory is known, in terms of modules over Yangian, quantum affine algebras, and elliptic quantum groups for $C=\mathbb{C}, \mathbb{C}^{\times}$, and E.
- The element π gives a particular deformation $\mathrm{Coh}\left(\operatorname{Higgs}_{G}(C), \pi\right)$ of $\mathrm{Coh}\left(\operatorname{Higgs}_{G}(C)\right)$ in terms of difference modules as a category of boundary conditions.
- There should be an action of monoidal category of line defects on category of boundary conditions.

Thanks for your attention!

