Topological String Theory and S-duality

Philsang Yoo

Yau Mathematical Sciences Center Tsinghua University

Mathematics – String Theory Seminar Kavli Institute for the Physics and Mathematics of the Universe February 15, 2021

<□ > < @ > < ≧ > < ≧ > ≧ > り < ? 1/21

Motivation and Plan

Any original result I will discuss today is based on a joint work in progress with *Surya Raghavendran*. Here are my motivations:

- S-duality is an equivalence between two different-looking physical theories. I wanted to understand a general principle.
- Based on works with C. Elliott, I conjectured a physical setup for geometric Langlands correspondence in a way different from Kapustin–Witten; I wanted to find the evidence.
- A study of twisted supersymmetric theory led to rich mathematics. Ours is a first step for twisted supergravity.

Here is an outline:

1

2

- Type IIB Superstring theory and Topological String Theory
- Main Definitions and Justification
- Applications

Summary: What have we done?

- P mathematical understanding of S-duality of (a part of) massless sector of the physical type IIB supergravity;
 -) recovering old conjectures and formulating new conjectures in geometric representation theory;
 -) easy calculation of how S-duality acts on further deformations of twists of supersymmetric gauge theory;
- !) setting up a framework that can be useful for future works; e.g., introducing a modified version of Kodaira–Spencer theory of gravity of Bershadsky–Cecotti–Ooguri–Vafa, and constructing $SL_2(\mathbb{Z})$ action on it

Disclaimer: I am a string theory newbie!

P Type IIB Superstring Theory

- Type IIB superstring theory on a 10-manifold M^{10} ; need to consider the moduli spaces of Riemann surfaces;
- D-brane gauge theory for D_{2k-1} -branes wrapping on $N^{2k} \subset M^{10}$; a 2k-dimensional field theory; e.g.,
 - ▶ D3 branes on $\mathbb{R}^4 \subset \mathbb{R}^{10}$ yield 4d $\mathcal{N} = 4$ SYM theory;
 - ▶ D5 branes on $\mathbb{R}^6 \subset \mathbb{R}^{10}$ yield 6d $\mathcal{N} = (1,1)$ SYM theory;
- Closed string field theory on M¹⁰; field theory on M¹⁰ describing string theory;
- Type IIB supergravity theory on a 10-manifold M^{10} ; classical field theory on M^{10} realized as a low-energy limit of closed string field theory;
- Coupling between closed string field theory and D-brane gauge theory; closed string state yields a deformation of D-brane gauge theory; e.g., a twist of D-brane gauge theory;
- Existence of $SL_2(\mathbb{Z})$ symmetry or S-duality

Topological Quantum Field Theory

Definition

A *d*-dimensional TQFT is a symmetric monoidal functor

$Z \colon (\underline{\operatorname{Bord}}_d, \amalg) \to (\operatorname{Vect}_{\mathbb{C}}, \otimes)$

Here $(\text{Vect}_{\mathbb{C}}, \otimes)$ is a symmetric monoidal category of \mathbb{C} -vector spaces and $\underline{\operatorname{Bord}}_d$ is a category where

- an object is a closed (d-1)-manifold;
- a morphism is a cobordism up to diffeomorphism;
- the composition is a gluing of cobordisms;
- the monoidal structure is a disjoint union II.

2d TQFT

A closed 1-manifold is copies of S^1 . Let us write $Z(S^1) = A$.

Theorem

A 2d TQFT is the same as a commutative Frobenius algebra.

morphism in $\underline{\mathrm{Bord}}_2$	morphism in $Vect_\mathbb{C}$
$\emptyset o S^1$	$u\colon \mathbb{C}\to A$
$S^1 o \emptyset$	$Tr\colon A o\mathbb{C}$
$S^1\amalg S^1 o S^1$	$m: A \otimes A \to A$
$S^1 o S^1 \amalg S^1$	$\Delta \colon A \to A \otimes A$

One should think of this as (baby) (topological) string theory, where $Z(S^1)$ is the space of string states.

To be more precise, $Z(S^1)$ is the space of *closed* string states, where closed refers to the fact that our string S^1 has no boundary. We want to see an open string (interval) floating around as well.

Extended 2d TQFT

Roughly, an extended 2d TQFT is a symmetric monoidal functor

Bord_2	$DGCat_\mathbb{C}$			
closed 2-manifold	complex number			
closed 1-manifold	$\mathbb C$ -vector space			
cobordism of 1-manifolds	$\mathbb C$ -linear map			
closed 0-manifold	$\mathbb C$ -linear category			
cobordism of 0-manifolds	$\mathbb C$ -linear functor			

 $Z\colon (\mathrm{Bord}_2,\mathrm{II})\to (\mathsf{DGCat}_{\mathbb{C}},\otimes)$

Theorem (Costello, Hopkins-Lurie, Lurie)

An extended 2d TQFT Z is the same as a Calabi–Yau category Z(pt) = C.

Physically speaking, Z(pt) = C captures where an open string can end; hence the name of C is the category of boundary conditions; then $\text{Hom}_{\mathcal{C}}(\mathcal{B}_1, \mathcal{B}_2)$ is to be interpreted as the space of open string states which end at \mathcal{B}_1 and \mathcal{B}_2 .

Topological String Theory as 2d Extended TQFT

By topological string, we mean such a 2d extended TQFT determined by CY 5-category. In this case, a boundary condition is also called a D-brane. Let X be a CY 5-fold with a holomorphic volume form Ω_X . Here are the two main examples:

	A-model	B-model
$Z(pt) = \mathcal{C}$	$\operatorname{Fuk}(X)$	Coh(X)
$Z(S^1) = HH(\mathcal{C})$	$\operatorname{QH}(X)$	PV(X)

Here $PV(X) = \bigoplus PV^{i,j}(X)$ is the space of polyvector fields, where $\mathsf{PV}^{i,j}(X) = \Omega^{0,j}(X, \wedge^{i}T_{X})$, with a differential $\overline{\partial} \colon \mathsf{PV}^{i,j} \to \mathsf{PV}^{i,j+1}$. For future reference, note that using the isomorphism $(-) \lor \Omega_X \colon \mathsf{PV}^{i,j}(X) \cong \Omega^{d-i,j}(X)$, one has $\partial \colon \mathsf{PV}^{i,j} \to \mathsf{PV}^{i-1,j}$.

Type IIB string theory on $M^{10} \rightsquigarrow$ Calabi–Yau 5-category C

Example

- $C = \operatorname{Coh}(X^5)$ for CY 5-fold X
- $C = \operatorname{Fuk}(T^*N) \otimes \operatorname{Coh}(X^3)$ for a smooth 2-manifold N

(M) Classical Field Theory and BV Formalism

A *d*-dimensional classical field theory is described by

- a spacetime manifold $M = M^d$;
- ► a space of fields *F*;
- ▶ an action functional $S: \mathcal{F} \to \mathbb{C}$.

In what follows, we use the BV formalism, where space of fields \mathcal{E} is a (-1)-shifted "symplectic" space with a differential Q and a Lie bracket [-,-], giving $\mathcal{S}(\phi) = \int_{\mathcal{M}} \frac{1}{2} \langle \phi, Q\phi \rangle + \frac{1}{6} \langle \phi, [\phi,\phi] \rangle$.

Example

- Free scalar field theory has $\mathcal{E} = C^{\infty}(M) \oplus C^{\infty}(M)[-1]$ with $Q = \Delta$. This means $S(\phi) = \int_{M} \langle \phi, \Delta \phi \rangle$.
- Chern–Simons theory has $\mathcal{E} = \Omega^{\bullet}(M^3) \otimes \mathfrak{g}[1]$ with Q = d and natural [-, -], giving $S(A) = \int_M \frac{1}{2} \langle A, dA \rangle + \frac{1}{6} \langle A, [A, A] \rangle$.

For us, things will be mostly $\mathbb{Z}/2\text{-}\mathsf{graded},$ although we write in such a manner that a $\mathbb{Z}\text{-}\mathsf{grading}$ is respected when possible.

D-brane Gauge Theory

M

Open strings ending on branes $\ensuremath{\mathcal{B}}$ yield D-brane gauge theory.

Brav–Dyckerhoff] The moduli $\mathcal{M}_{\mathcal{C}}$ of objects is (2 - d)shifted symplectic and $\mathbb{T}_{\mathcal{B}}[-1]\mathcal{M}_{\mathcal{C}} \cong \mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})$ for $\mathcal{B} \in \mathcal{C}$.

D-brane gauge theory on $N^{2k} \subset M^{10} \rightsquigarrow \mathcal{E} = \mathbb{R} \operatorname{End}_{\mathcal{C}}(\mathcal{B})[1]$

C a DG category \rightsquigarrow associative and hence Lie on $\mathbb{R} \operatorname{End}_{C}(\mathcal{B})$ C a CY category \rightsquigarrow a shifted symplectic structure on $\mathbb{R} \operatorname{End}_{C}(\mathcal{B})[1]$ Example

- If $C = \operatorname{Coh}(X)$, then N D-branes on $Y \subset X$, or $\mathcal{B} = \mathcal{O}_Y^N \in \operatorname{Coh}(X)$, gives $\mathcal{E} = \Omega^{0,\bullet}(Y, \wedge^{\bullet} N_{X/Y}) \otimes \mathfrak{gl}_N[1]$. N D3 on $\mathbb{C}^2 \subset \mathbb{C}^5$ give $\mathcal{E}_{\mathrm{D3}}^{\mathrm{Hol}}(\mathbb{C}^2) := \Omega^{0,\bullet}(\mathbb{C}^2)[\varepsilon_1, \varepsilon_2, \varepsilon_3] \otimes \mathfrak{gl}_N[1]$, or the holomorphic twist of 4d $\mathcal{N} = 4 \mathfrak{gl}_N$ gauge theory.
- If C = Fuk(ℝ⁴) ⊗ Coh(X³), a D-brane should be of the form ℝ² × Y ⊂ ℝ⁴_A × X_B. Then N D3 branes on ℝ² × ℂ ⊂ ℝ⁴ × ℂ³ yield E^{HT}_{D3}(ℝ² × ℂ) := Ω[•](ℝ²) ⊗ Ω^{0,•}(ℂ)[ε₁, ε₂] ⊗ 𝔅l_N[1], or the holomorphic-topological twist.

Closed String Field Theory

Recall Z(S¹) is the space of closed string states, but note that
P The worldsheet theory, being coupled with gravity theory, should be invariant under Diff(S¹). This motivates Z(S¹)^{S¹}.
M Here Z(S¹) = HH(C) admits an S¹-action which corresponds to so-called Connes' B operator, so Z(S¹)^{S¹} = Cyc(C).
M [Brav-Rozenblyum] T_C[-1]M_{CY} ≅ Cyc[•](C)[1] where M_{CY} is the moduli space of Calabi-Yau categories.

Closed string field theory on $M^{10} \rightsquigarrow \mathcal{E} = \operatorname{Cyc}^{\bullet}(\mathcal{C})[2]$ where \mathcal{E} is understood in the framework of [Butson-Y.].

Example (Bershadsky–Cecotti–Ooguri–Vafa, Costello–Li) If $\mathcal{C} = \operatorname{Coh}(X^5)$, then $Z(S^1) \cong \operatorname{PV}(X)$ and $B = \partial$; hence the corresponding closed string field theory is given by (ker $\partial \subset \operatorname{PV}(X)[2], \overline{\partial}$) or $\mathcal{E} = (\operatorname{PV}(X)[t][2], \overline{\partial} + t\partial)$.

Supergravity

(P) Supergravity is a theory of low-energy limit of closed string field theory where we see neither non-perturbative effects nor non-propagating fields.

Supergravity on $M^{10} \rightsquigarrow$ non-propagating part of $\operatorname{Cyc}^{\bullet}(\mathcal{C})[2]$

The non-propagating part of BCOV theory can be identified:

Definition

Let (X, Ω_X) be a Calabi–Yau *d*-fold. A minimal BCOV theory is $\mathcal{E}_{\mathrm{m}}(X) = \mathcal{E}_{\mathrm{mBCOV}}(X) = \bigoplus_{i+k \leq d-1} t^k \mathsf{PV}^{i, \bullet}(X).$

Example

If
$$C = \operatorname{Coh}(X^3)$$
 (or $C = \operatorname{Fuk}(\mathbb{R}^4) \otimes \operatorname{Coh}(X^3)$), then it is $\mathcal{E}_{\mathrm{m}}(X^3)$
(or $\Omega^{\bullet}(\mathbb{R}^4) \otimes \mathcal{E}_{\mathrm{m}}(X^3)$), where $\mathcal{E}_{\mathrm{m}}(X^3)$ is
$$\underbrace{-2}_{\mathrm{PV}^{0,\bullet}} \underbrace{-1}_{\mathrm{PV}^{0,\bullet}} \underbrace{0}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{2}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{2}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{0,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}} \underbrace{1}_{\mathrm{PV}^{2,\bullet}}$$

Coupling of Open and Closed Sectors

Coupling of closed string field theory and D-brane gauge theory \rightsquigarrow closed-open map $\operatorname{Cyc}^{\bullet}(\mathcal{C})[1] \dashrightarrow \operatorname{Cyc}^{\bullet}(\mathbb{R}\operatorname{End}_{\mathcal{C}}(\mathcal{F}))[1]$

Theorem (Kontsevich, Willwacher-Calaque)

The formality $PV(X) \xrightarrow{\simeq} HH(Coh(X))$ gives $PV(X) \dashrightarrow HH(\mathbb{R} End_{\mathcal{C}}(\mathcal{F}))$ for $\mathcal{F} \in Coh(X)$, or its cyclic version.

Example

• If $C = \operatorname{Coh}(X^5)$, for N D3 branes on $\mathbb{C}^2_{z_1,z_2} \subset \mathbb{C}^5_{z_1,z_2,w_1,w_2,w_3}$, or $\mathcal{E}_{\mathrm{D3}}^{\mathrm{Hol}} = \Omega^{0,\bullet}(\mathbb{C}^2_{z_1,z_2})[\varepsilon_1,\varepsilon_2,\varepsilon_3] \otimes \mathfrak{gl}_N[1]$, the CO map is $\mathsf{PV}(\mathbb{C}^2_{z_1,z_2} \times \mathbb{C}^3_{w_1,w_2,w_3}) \to \mathsf{HH}(\Omega^{0,\bullet}(\mathbb{C}^2_{z_1,z_2})[\varepsilon_1,\varepsilon_2,\varepsilon_3]),$

where the RHS is HH($\mathcal{O}(\mathbb{C}^{2|3})$) $\cong \mathbb{C}[z_i, \partial_{z_i}, \varepsilon_j, \partial_{\varepsilon_j}]$, is given by $z_i, \partial_{z_i}, w_j, \partial_{w_j} \mapsto z_i, \partial_{z_i}, \partial_{\varepsilon_j}, \varepsilon_j$.

• If $C = \operatorname{Fuk}(\mathbb{R}^4) \otimes \operatorname{Coh}(X)$, for $\mathbb{R}^2 \times \mathbb{C}_z \subset \mathbb{R}^4 \times \mathbb{C}^3_{z,w_1,w_2}$, or $\mathcal{E}_{D3}^{\operatorname{HT}} = \Omega^{\bullet}(\mathbb{R}^2) \otimes \Omega^{0,\bullet}(\mathbb{C}_z)[\varepsilon_1,\varepsilon_2] \otimes \mathfrak{gl}_N[1]$, the CO map is $\operatorname{PV}(\mathbb{C}_z \times \mathbb{C}^2_{w_1,w_2}) \to \operatorname{HH}(\Omega^{0,\bullet}(\mathbb{C}_z)[\varepsilon_1,\varepsilon_2])$ given by $z, \partial_z, w_j, \partial_{w_j} \mapsto z, \partial_z, \partial_{\varepsilon_j}, \varepsilon_j.$

Modification of BCOV Theory

Definition

Minimal BCOV theory with potential $\widetilde{\mathcal{E}}_{\mathrm{m}}(X)$ is a cochain complex

$$\begin{array}{ccc} \underline{-2} & \underline{-1} & \underline{0} & \underline{1} & \underline{2} \\ \mathsf{PV}^{0,\bullet} & & \\ \mathsf{PV}^{1,\bullet} \to t \, \mathsf{PV}^{0,\bullet} & \\ & & \mathsf{PV}^{3,\bullet} & \\ & & \\ \mathsf{PV}^{2,\bullet} & \sim t \, \mathsf{PV}^{1,\bullet} & \sim t^2 \, \mathsf{PV}^{0,\bullet} \end{array}$$

with additional structures.

-) There is a "map" $\Phi \colon \widetilde{\mathcal{E}}_m \to \mathcal{E}_m$ that has $\partial \colon \mathsf{PV}^{3,\bullet} \to \mathsf{PV}^{2,\bullet}$, respecting structures of interest.
 - The modification amounts to introducing Ramond–Ramond forms as a potential for Ramond–Ramond field strengths.

S-duality

Definition/Theorem (Raghavendran-Y.) Let (X, Ω_X) be a Calabi-Yau 3-fold. Recall

$$\mathsf{SL}_2(\mathbb{Z}) = \left\langle S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mid S^4 = 1, \ (ST)^3 = S^2 \right\rangle.$$

Then there is an action of $SL_2(\mathbb{Z})$ on $\widetilde{\mathcal{E}}_{\mathrm{m}}(X) = \mathsf{PV}^{0,\bullet}(X)[2] \oplus (\mathsf{PV}^{1,\bullet}(X)[1] \to t \,\mathsf{PV}^{0,\bullet}(X)) \oplus \mathsf{PV}^{3,\bullet}(X):$ $S \mapsto \begin{pmatrix} -(-) \lor \Omega_X \\ \mathsf{Id} \\ (-) \land \Omega_X^{-1} \end{pmatrix}, \quad T \mapsto \begin{pmatrix} \mathsf{Id} & (-) \lor \Omega_X \\ \mathsf{Id} \\ \mathsf{Id} \end{pmatrix}$

For example, $\alpha \in \mathsf{PV}^{0,\bullet}(X) \rightsquigarrow S(\alpha) = \alpha \land \Omega_X^{-1} \in \mathsf{PV}^{3,\bullet}(X)$ and $\gamma \in \mathsf{PV}^{3,\bullet}(X) \rightsquigarrow T(\gamma) = \alpha + \gamma \in \mathsf{PV}^{0,\bullet}(X) \oplus \mathsf{PV}^{3,\bullet}(X)$ where α is such that $\gamma = \alpha \land \Omega_X^{-1}$.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 15/21

Consistency Checks

) S-duality is an action of $S \in SL_2(\mathbb{Z})$ on type IIB string theory induced from the diagram

$$\begin{array}{c} \overset{\operatorname{SL}_2(\mathbb{Z})}{\underset{\longrightarrow}{\cap}} \\ \mathsf{M}[S^1_{\mathrm{M}} \times S^1_r \times M^9] \xrightarrow{\operatorname{red}_M} \operatorname{IIA}[S^1_r \times M^9] \xrightarrow{\mathsf{T}} \operatorname{IIB}[S^1_{1/r} \times M^9] \end{array}$$

M stands for M-theory;

IIA stands for type IIA string theory;

- red_M is an equivalence from the "fact" that a circle reduction of M-theory is equivalent to type IIA theory;
- T-duality T is an equivalence between type II string theories;
- SL₂(\mathbb{Z})-action on M-theory is on $S^1_M \times S^1_r$;
- SL₂(Z)-action on IIB string theory is transferred from the SL₂(Z)-action on M-theory through equivalences.

We find its twisted versions (based on [Costello-Li]).

We have some further consistency checks with "twisted supergravity".

Summary

- S-duality is a duality of type IIB string theory.
- By simplifying type IIB string theory to topological string theory, we construct S-duality operation on closed string states or supergravity theory. In particular, we obtain $SL_2(\mathbb{Z})$ action on a version of BCOV theory.
- Our interest is duality between D-brane gauge theories, or more precisely, deformations of D-brane gauge theory.
- Through closed-open map as well as the map from modified BCOV theory to minimal BCOV theory, modified BCOV theory and deformations of D-brane gauge theory are related.

From now on, we let $C = \operatorname{Fuk}(\mathbb{R}^4) \otimes \operatorname{Coh}(\mathbb{C}^3)$ and consider N D3 branes on $\mathbb{R}^2 \times \mathbb{C}_z \subset \mathbb{R}^4 \times \mathbb{C}^3_{z,w_1,w_2}$ to get $\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^2 \times \mathbb{C}_z) = \Omega^{\bullet}(\mathbb{R}^2) \otimes \Omega^{0,\bullet}(\mathbb{C})[\varepsilon_1, \varepsilon_2] \otimes \mathfrak{gl}_N[1]$. Then for $\overbrace{\mathcal{E}_{\mathrm{m}}}^{\frown} \xrightarrow{\Phi} \mathcal{E}_{\mathrm{m}} \xrightarrow{\mathrm{CO}} \operatorname{HH}(\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^2 \times \mathbb{C}_z))$

we compare deformations of HT twist by S-dual elements. E Sec 17/21

S-duality gives Geometric Langlands: $F = w_1$ Based on [Elliott-Y.]

Recall $\mathcal{E}_{\mathrm{D3}}^{\mathrm{HT}}(\mathbb{R}^2 \times \mathbb{C}_z) = \Omega^{\bullet}(\mathbb{R}^2) \otimes \Omega^{0,\bullet}(\mathbb{C})[\varepsilon_1, \varepsilon_2] \otimes \mathfrak{gl}_N[1]$. Globalizing with replacing $\mathbb{R}^2 \times \mathbb{C}$ by $\Sigma \times C$, one has $\mathrm{EOM}_{\mathrm{D3}}^{\mathrm{HT}}(\Sigma \times C) = \underline{\mathrm{Map}}(\Sigma_{\mathrm{dR}}, \mathcal{T}^*[1] \operatorname{Higgs}_G(C))$, aka B-model with target Hitchin moduli. Here ε_1 is responsible for $\mathcal{T}^*[1]$ and ε_2 makes C into C_{Dol} . Hence we have the following deformations

$$(B, \mathsf{Bun}_{G}(\mathcal{C})_{\mathrm{dR}}) \xrightarrow{\partial_{\varepsilon_{1}}} (B, \mathsf{Higgs}_{G}(\mathcal{C}))_{\varepsilon_{2}\partial_{z}}} (B, \mathsf{Flat}_{G}(\mathcal{C}))$$

giving an equivalence between $D(Bun_G(C)) := QCoh(Bun_G(C)_{dR})$ and $QCoh(Flat_G(C))$ for $G = GL_N$. This gives geometric Langlands without considering A-model at all. $\mathcal{F} \to \mathcal{F} \to \mathcal{F}$ is $\mathcal{F} \to \mathcal{F}$. S-duality between Superconformal Deformations: $F = zw_2$

	0	1	2	3	4	5	6	7	8	9
	ι – I	u v		Z		w ₁		<i>w</i> ₂		
<i>K</i> D5		×	×		×	×	×	×		
N D3	×	×			×	×				

The deformation $z\partial_{\varepsilon_2}$ turns HT twist of 6d $\mathcal{N} = (1,1)$ theory to 4d CS theory on $\mathbb{R}^2 \times \mathbb{C}_{w_1}$ [Costello–Yagi]: it follows from

$$\Omega^{0,\bullet}(\mathbb{C}_{w_1})\otimes\left(\Omega^{0,\bullet}(\mathbb{C}_z)\varepsilon_2\xrightarrow{z\partial_{\varepsilon_2}}\Omega^{0,\bullet}(\mathbb{C}_z)\right)\cong\Omega^{0,\bullet}(\mathbb{C}_{w_1})$$

The appearance of (truncated) Yangian on the 1d defect can be understood as its S-dual 3d $\mathcal{N} = 4$ theory configuration, where the Yangian is the quantized Coulomb branch algebra $\mathbb{R} \to \mathbb{R} \to \mathbb{R}$ (19/21) New Examples of S-dual Theories: $F = w_1 w_2$

- As (C[ε₁, ε₂], ∂_{ε1}∂_{ε2}) is Clifford algebra Cl(C²) ≅ End(C^{1|1}), the element ∂_{ε1}∂_{ε2} deforms Ω[•](ℝ²) ⊗ Ω^{0,•}(C)[ε₁, ε₂] ⊗ gl_N[1] into Ω[•](ℝ²) ⊗ Ω^{0,•}(C) ⊗ gl_{N|N}[1] which is 4d Chern–Simons theory with gauge group GL_{N|N}.
- ► The category of line defects of 4d Chern–Simons theory is known, in terms of modules over Yangian, quantum affine algebras, and elliptic quantum groups for C = C, C[×], and E.
- The element π gives a particular deformation Coh(Higgs_G(C), π) of Coh(Higgs_G(C)) in terms of difference modules as a category of boundary conditions.
- There should be an action of monoidal category of line defects on category of boundary conditions.

Thanks for your attention!

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ● ■ • ○ Q ○ 21/21