Super-Resolution Simulations

Yin Li & Yueying Ni

with Rupert Croft, Tiziana Di Matteo, Simeon Bird, & Yu Feng

2010.06608 PNAS May 11, 2021 118 (19), 2105.01016

Why super resolution (SR)

Cosmological and hydrodynamical simulations are expensive

Simulation	Number of particles	Box size
Dark Sky	1 trillion	8 Gpc/h
Outer Rim	1 trillion	4.225 Gpc
QContinuum	0.5 trillion	1.3 Gpc
LastJourney	1 trillion	5.025 Gpc
Uchuu	2 trillion	2 Gpc/h

BlueTides Simulation

L = 400 Mpc/h $N = 2 \times 7040^3$ z = 6.5

Why super resolution (SR)

- Cosmological and hydrodynamical simulations are expensive
 - large dynamic range, nonlinear, multiscale
 - time complexity ~ \mathcal{O} (num_particles × time_steps)
 - num_particles ~ volume / resolution
- Need for both volume and resolution
 - Larger volume
 - better statistics
 - long-short mode coupling
 - (k_{long}->0 limit aka the *super-sample* effect, Takada & Hu 2013, Li, Hu, & Takada 2014)
 - Higher resolution
- Compromise on either, or both?

What is SR — Deep learning image super resolution

What is SR — Deep learning image super resolution

How to SR an N-body simulation

- Format (N-body) simulations as 3D images
 - Initial conditions typically on *regular grids*
 - In Lagrangian description, particle displacements are images of 3 channels
 - allows interpreting results as simulations (thus the title)
 - conserves mass by construction
 - has non-local information
 - Likewise for their *velocities*
 - 6-channel images determine the whole phase space

How to SR an N-body simulation

- Format (N-body) simulations as 3D images
 - Initial conditions typically on *regular grids*
 - In Lagrangian description, particle displacements are images of 3 channels
 - allows interpreting results as simulations (thus the title)
 - conserves mass by construction
 - has non-local information
 - Likewise for their *velocities*
 - 6-channel images determine the whole phase space

supervised learning?

• Simple loss functions aim to minimize the pixel-wise (rather than statistical)

difference between SR and HR

Symmetries

- Rotational symmetry (O_h point group)
 - that of a cube / octahedron
 - Discrete because of periodic geometry, 48 operations
 - Apply data augmentation, 48x as many data, and better symmetry in predictions
- Translational symmetry
 - A feature of Convolutional Neural Network (CNN) by construction
 - Padding in the convolution layers can break this
 - Periodic padding (on the LR input)

One-to-many mapping

 $LR \longrightarrow HR$

20Mpc MCP0

Stochasticity

 $LR \longrightarrow HR$

Stochasticity

- Stochasticity from short-wavelength modes
 - LR lacks short modes present in HR
 - Initially these modes are statistically independent
 - Later hierarchical structure formation: short SR modes conditioning on the long LR modes
- Stochasticity *consequence 1*: need for randomness
 - Add noises throughout our (generator) neural network
 - An SR realization can be different from the HR one on small scales
 - SR realizations are different among themselves

supervised learning?

- Stochasticity consequence 2: need for better loss function
 - Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between

Generative Adversarial Networks (GAN)

Inspiration)

GAN

- Stochasticity consequence 2: need for better loss function
 - Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between

- Use generative adversarial network (GAN) that adds another (discriminator) network
- Train generator (G) and discriminator (D) alternately in a game
 - Update G to fool D, and update D to distinguish SR from HR

cGAN & WGAN

- Stochasticity consequence 2: need for better loss function
 - Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between

- Use generative adversarial network (GAN) that adds another (discriminator) network
- Train generator (G) and discriminator (D) alternately in a game
 - Update G to fool D, and update D to distinguish SR from HR

Loss function — Wasserstein distance

- In the original GAN, D output a probability, and loss function is binary cross entropy (log likelihood)
- Wasserstein GAN (WGAN) minimize Wasserstein distance
 - aka earth mover's distance, measure the difference between two probability distribution by *optimal transport*
 - Minimum work required to move one distribution to another
 - two prob. being that of the real and fake images, in high dimensional space
 - Mathematical *duality* leads to computable expression, however under 1-Lipschitz constraint
 - Instead of probability, D gives scores to SR and HR
 - WGAN-gp adds *gradient penalty* to the loss for the Lipschitz constraint

Discriminator architecture — based on StyleGAN2

Discriminator architecture — based on StyleGAN2

Code

- <u>map2map</u> (https://github.com/eelregit/map2map)
 - supervised and GAN, and more generally field-level emulation
 - automatic data handling
 - Ioading/sampling/caching: help with I/O to not starve GPUs
 - cropping & padding: translational symmetry
 - augmentation: rotational & translational symmetry
 - PyTorch-based, training tracked with tensorboard
- density field super resolution: <u>Ramanah et al. 2020</u>
 Tensorboard-based: https://github.com/doogesh/super_resolution_emulator

Super-resolution simulations *Trainings and results*

Training process

Training Sets: 16 pairs of LR-HR simulations BoxSize = 100 Mpc/*h* LR : Np = 64^3 , $M_{DM} = 3 \times 10^{11} M_{\odot}$ HR : Np = 512^3 , $M_{DM} = 5.8 \times 10^8 M_{\odot}$

Test Sets:

10 pairs of LR-HR simulations BoxSize = 100 Mpc/hSame cosmology and resolution as the training sets

discriminator

Density field visualization at z=2

Super resolution

Density field visualization at z=0

< 1 core hour

~ 2000 core hour

Super resolution

60 Mpc/h

60 Mpc/h

~ 10 seconds!

Density field visualization at z=0

LR

60 Mpc/h

< 1 core hour

HR

60 Mpc/h

~ 2000 core hour

60 Mpc/h

~ 10 seconds!

SR

Predicts the full 6D phase space output

Validation Metrics

Full field statistics :

- Matter power spectrum (two point statistics)
- **Bispectrum** (three point statistics)
- Redshift space 2D power spectrum (velocity)

Halo catalog statistics:

- Abundance of halos and subhalos
- Mean occupation distribution of subhalos
- 2-point correlation function
- Redshift-space correlation
- Pairwise velocity distribution

Test Sets:

10 pairs of LR-HR simulations BoxSize = 100 Mpc/hSame cosmology and resolution as the training sets

Full field statistics: Matter power spectrum

 $\delta(\mathbf{r}) = \rho(\mathbf{r})/\bar{\rho} - 1$: spatial overdensity

 $\xi(|\mathbf{r}|) = \langle \delta(\mathbf{r}') \,\delta(\mathbf{r}' + \mathbf{r}) \rangle \xrightarrow{\mathbf{FT}} P(|\mathbf{k}|) = \int \xi(\mathbf{r}) \, e^{i\mathbf{k}\cdot\mathbf{r}} \, \mathrm{d}^3\mathbf{r}$

 $k = 2\pi/\lambda$ small k —> large scale

Fourier space

Full field statistics: Matter power spectrum

Full field statistics: Bispectra

Primary diagnostic for **non-Gaussianity** Defined for closed triangles (statistical homogeneity and isotropy) $\frac{k_1}{2}$

$$(2\pi)^{3}B\left(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}\right)\delta_{\mathrm{D}}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)=\left\langle\delta\left(\boldsymbol{k}_{1}\right)\delta\left(\boldsymbol{k}_{2}\right)\delta\left(\boldsymbol{k}_{3}\right)\right\rangle$$

Equilateral triangles

 $k_1 = k_2 = k_3$

z=2z=0LR 64³ 10^{6} HR 512³ 10^{7} B(k)[h⁻⁶Mpc⁶] SR 512³ 10^{4} 10^{5} 10^{2} 10^{3} 10^{0} LR/HR 1.25 SR/HR ratio 1.000.75 10^{0} 10^{1} 10^{0} 10^{1} $k_1(=k_2=k_3) [h/Mpc]$ $k_1(=k_2=k_3) [h/Mpc]$

Full field statistics: Bispectra

Primary diagnostic for **non-Gaussianity** Defined for closed triangles (statistical homogeneity and isotropy) $k_1/2$

$$(2\pi)^{3}B\left(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}\right)\delta_{\mathrm{D}}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)=\left\langle\delta\left(\boldsymbol{k}_{1}\right)\delta\left(\boldsymbol{k}_{2}\right)\delta\left(\boldsymbol{k}_{3}\right)\right\rangle$$

Isosceles triangles

 $k_2 = k_3$

Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic

Image from: Shun Saito RSD lecture note

a: scale factor H(a): Hubble expansion rate

Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum $P(k, \mu)$

a: scale factor H(a): Hubble expansion rate

Full field statistics: Redshift-space distortion

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum $P(k, \mu)$

Validation Metrics

Full field statistics :

- Matter power spectrum (two point statistics)
- **Bispectrum** (three point statistics)
- Redshift space 2D power spectrum (velocity)

Halo catalog statistics:

- Abundance of halos and subhalos
- Mean occupation distribution of subhalos
- 2-point correlation function
- Redshift-space correlation
- Pairwise velocity distribution

Test Sets:

10 pairs of LR-HR simulations BoxSize = 100 Mpc/hSame cosmology and resolution as the training sets

Halo catalogs : halos

Halo catalogs : subhalos

LR

HR

Halo catalog statistics : halo abundance

Halo catalog statistics : subhalo abundance

Halo catalog statistics : occupation distribution of subhalo

20

Halo catalog statistics : 2-point correlation of halos

 $\xi(r) \equiv \text{DD}(r)/\text{RR}(r) - 1$

 $\xi(r) = \xi^{1h}(r) + \xi^{2h}(r)$

DD(r)(RR(r)): the number of sample pairs (random pairs) of halos with separations equal to *r*

 $\xi^{1h}(r)$: one-halo term; $\xi^{2h}(r)$: two-halo term

Halo catalog statistics : 2-point correlation of halos

Halo catalog statistics : redshift-space correlation

The peculiar velocity makes the redshift-space clustering anisotropic

Image from: Shun Saito RSD lecture note

Image from: J. He et al. Nature Astronomy 2, 967-972(2018)

Halo catalog statistics : redshift-space correlation

Halo catalog statistics : redshift-space correlation

2D contour of $\xi(\pi, r_p)$

Halo catalog statistics : pairwise velocity of halos

Pairwise velocity dispersion $\sigma_{12}(r)$:

$$v_{12}(r) = \overrightarrow{v}_1 \cdot \overrightarrow{r}_{12} - \overrightarrow{v}_2 \cdot \overrightarrow{r}_{12}$$

 $\sigma_{12}(r) = \operatorname{std}(v_{12}(r))$

26

costs ~ 16 hours with a single GPU

Summary

- SR model: generate the full 6D phase space N-body simulation output with 512 higher mass resolution
- The generated SR fields give statistically good agreement with the authentic HR fields
- Show capability to apply the SR model to large cosmic volume and generate mock catalogs

Challenges and future directions

- Improve subhalo statistics
- Accommodate for different cosmology and include the redshift dependency
- From dark matter only to hydrodynamic simulation

LR —> HR: One to many task

$LR \longrightarrow HR$

Multiple Realizations

LR field

Random noise

Random noise

Multiple Realizations

LR field

— Guess which one is HR?

