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Why super resolution (SR)
● Cosmological and hydrodynamical simulations are expensive

Simulation Number of particles Box size

Dark Sky 1 trillion 8 Gpc/h

Outer Rim 1 trillion 4.225 Gpc

QContinuum 0.5 trillion 1.3 Gpc

LastJourney 1 trillion 5.025 Gpc

Uchuu 2 trillion 2 Gpc/h

...
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Why super resolution (SR)
● Cosmological and hydrodynamical simulations are expensive

○ large dynamic range, nonlinear, multiscale

○ time complexity ~ 𝒪 ( num_particles × time_steps )

■ num_particles ~ volume / resolution

● Need for both volume and resolution
○ Larger volume

■ better statistics

■ long-short mode coupling

(klong->0 limit aka the super-sample effect, Takada & Hu 2013, Li, Hu, & Takada 2014)

○ Higher resolution

● Compromise on either, or both?



What is SR — Deep learning image super resolution

Neural Network



What is SR — Deep learning image super resolution

[1808.03344] Deep Learning for Single Image Super-Resolution: A Brief Review
[1902.06068] Deep Learning for Image Super-resolution: A Survey

LR
SRs

HR

https://arxiv.org/abs/1808.03344
https://arxiv.org/abs/1902.06068


How to SR an N-body simulation
● Format (N-body) simulations as 3D images

○ Initial conditions typically on regular grids

○ In Lagrangian description, particle displacements are images 

of 3 channels

■ allows interpreting results as simulations (thus the title)

■ conserves mass by construction

■ has non-local information

○ Likewise for their velocities

○ 6-channel images determine the whole phase space

y

z
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supervised learning?
● Simple loss functions aim to minimize the pixel-wise (rather than statistical) 

difference between SR and HR

LR CNN SR loss

HR



Generator architecture — based on StyleGAN2
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Generator architecture — based on StyleGAN2

add noise
interp
conv 33
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Symmetries 
● Rotational symmetry (Oh point group)

○ that of a cube / octahedron

○ Discrete because of periodic geometry, 48 operations

○ Apply data augmentation, 48x as many data, and better symmetry in predictions

● Translational symmetry
○ A feature of Convolutional Neural Network (CNN) by construction

○ Padding in the convolution layers can break this

○ Periodic padding (on the LR input)



One-to-many mapping



Stochasticity

only in 
HR ICs

LR ICs



Stochasticity
● Stochasticity from short-wavelength modes

○ LR lacks short modes present in HR

○ Initially these modes are statistically independent

○ Later hierarchical structure formation: short SR modes conditioning on the long LR modes

● Stochasticity consequence 1: need for randomness
○ Add noises throughout our (generator) neural network

○ An SR realization can be different from the HR one on small scales

■ SR realizations are different among themselves



supervised learning?
● Stochasticity consequence 2: need for better loss function

○ Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between 

SR and HR

LR G SR loss

HR



Generative Adversarial Networks (GAN)



GAN
● Stochasticity consequence 2: need for better loss function

○ Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between 

SR and HR

○ Use generative adversarial network (GAN) that adds another (discriminator) network

○ Train generator (G) and discriminator (D) alternately in a game

■ Update G to fool D, and update D to distinguish SR from HR

LR G SR

LR G
SR

noise

HR
D prob. loss

loss

HR



cGAN & WGAN
● Stochasticity consequence 2: need for better loss function

○ Simple loss functions aim to minimize the pixel-wise (rather than statistical) difference between 

SR and HR

○ Use generative adversarial network (GAN) that adds another (discriminator) network

○ Train generator (G) and discriminator (D) alternately in a game

■ Update G to fool D, and update D to distinguish SR from HR

LR G SR

LR G
LR&SR

noise

LR&HR
D score WGAN-gp

loss

conditional on LR Wasserstein metric

HR



Loss function — Wasserstein distance
● In the original GAN, D output a probability, and loss 

function is binary cross entropy (log likelihood)

● Wasserstein GAN (WGAN) minimize Wasserstein 

distance
○ aka earth mover’s distance, measure the difference between two 

probability distribution by optimal transport

■ Minimum work required to move one distribution to another

■ two prob. being that of the real and fake images, in high 

dimensional space

○ Mathematical duality leads to computable expression, however under 

1-Lipschitz constraint

○ Instead of probability, D gives scores to SR and HR

○ WGAN-gp adds gradient penalty to the loss for the Lipschitz constraint



Generator architecture — based on StyleGAN2
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Discriminator architecture — based on StyleGAN2
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Discriminator architecture — based on StyleGAN2
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Code
● map2map (https://github.com/eelregit/map2map)

○ supervised and GAN, and more generally field-level emulation
○ automatic data handling

■ loading/sampling/caching: help with I/O to not starve GPUs
■ cropping & padding: translational symmetry
■ augmentation: rotational & translational symmetry

○ PyTorch-based, training tracked with tensorboard

● density field super resolution: Ramanah et al. 2020
Tensorboard-based: https://github.com/doogesh/super_resolution_emulator

https://github.com/eelregit/map2map
https://arxiv.org/abs/2001.05519


Super-resolution simulations
  Trainings and results

1
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Training process

LR

generator

SR

Density field

20 Mpc/  h

20 Mpc/  h

HR

Density field

Density field

20 Mpc/  h

discriminator

+LR

+LR

Training Sets:
16 pairs of LR-HR simulations
BoxSize = 100 Mpc/
LR : Np = , 
HR : Np = , 

h
643 MDM = 3 × 1011M⊙
5123 MDM = 5.8 × 108M⊙

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Displacement field

Velocity field
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Super resolutionLow Resolution

60 Mpc/h 60 Mpc/h 60 Mpc/h

Density field visualization at z=2

High Resolution
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60 Mpc/h 60 Mpc/h 60 Mpc/h

Density field visualization at z=0

Super resolutionLow Resolution High Resolution

 < 1 core hour ~ 2000 core hour ~ 10 seconds!
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60 Mpc/h 60 Mpc/h 60 Mpc/h

Density field visualization at z=0

SRLR HR

 < 1 core hour ~ 2000 core hour ~ 10 seconds!



6

LR HR SR

10 Mpc/h 10 Mpc/h 10 Mpc/h

 Predicts the full 
6D phase space 

output
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Validation Metrics

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Full field statistics :
• Matter power spectrum (two point statistics)
• Bispectrum (three point statistics)
• Redshift space 2D power spectrum (velocity)

Halo catalog statistics:
• Abundance of halos and subhalos
• Mean occupation distribution of subhalos
• 2-point correlation function
• Redshift-space correlation
• Pairwise velocity distribution
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Full field statistics: Matter power spectrum

ξ( |r | ) = ⟨δ (r′ ) δ (r′ + r)⟩ P( |k | ) = ∫ ξ(r) eik⋅r d3rFT

δxGaussian random field

:  spatial overdensity δ(r) = ρ(r)/ρ̄ − 1

Fourier space

 
small  —> large scale
k = 2π/λ

k

P(k2)P(k1)

k1 k2
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HR

100 Mpc/h

LR

100 Mpc/h

SR

100 Mpc/h

Full field statistics: Matter power spectrum

Dimensionless power Δ2(k) ≡ k3P(k)/2π2
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(2π)3B (k1, k2, k3) δD (k1 + k2 + k3) = ⟨δ (k1) δ (k2) δ (k3)⟩

Primary diagnostic for non-Gaussianity 
Defined for closed triangles (statistical homogeneity and isotropy)

Equilateral triangles

k3

k2k1

k1 = k2 = k3

Full field statistics: Bispectra

k2
k1

k3
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(2π)3B (k1, k2, k3) δD (k1 + k2 + k3) = ⟨δ (k1) δ (k2) δ (k3)⟩

Primary diagnostic for non-Gaussianity 
Defined for closed triangles (statistical homogeneity and isotropy)

Isosceles triangles

k3

k2k1

k2 = k3

Squeezed limit:

k2 = k3 ≫ k1

Full field statistics: Bispectra

k2
k1

k3
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Image from: Shun Saito 
RSD lecture note

The peculiar velocity makes the redshift-space clustering anisotropic

: scale factor
 : Hubble expansion rate

a
H(a)

s = x +
vz

aH(a)
̂z

  redshift-space 
     coordinate

The line of sight       
      direction

  real-space 
  coordinate

peculiar velocity along 
the line of sight

Full field statistics: Redshift-space distortion
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: scale factor
 : Hubble expansion rate

a
H(a)

s = x +
vz

aH(a)
̂z

  redshift-space 
     coordinate

The line of sight       
      direction

  real-space 
  coordinate

peculiar velocity along 
the line of sight

Full field statistics: Redshift-space distortion

̂z

μ

P(k, μ)

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum P(k, μ)
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Pℓ(k) = (2ℓ + 1)∫
1

0
dμP(k, μ)ℒℓ(μ)

̂z

μ

P(k, μ)

The peculiar velocity makes the redshift-space clustering anisotropic —> 2D power spectrum P(k, μ)

Full field statistics: Redshift-space distortion
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Validation Metrics

Test Sets:
10 pairs of LR-HR simulations
BoxSize = 100 Mpc/
Same cosmology and resolution as the
training sets

h

Full field statistics :
• Matter power spectrum (two point statistics)
• Bispectrum (three point statistics)
• Redshift space 2D power spectrum (velocity)

Halo catalog statistics:
• Abundance of halos and subhalos
• Mean occupation distribution of subhalos
• 2-point correlation function
• Redshift-space correlation
• Pairwise velocity distribution
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100 Mpc/h 100 Mpc/h 100 Mpc/h
LR HR SR

10 Mpc/h 10 Mpc/h 10 Mpc/h

10 Mpc/h 10 Mpc/h 10 Mpc/h

Halo catalogs : halos
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LR HR SR
100 Mpc/h 100 Mpc/h 100 Mpc/h

5 Mpc/h

5 Mpc/h 5 Mpc/h 5 Mpc/h

5 Mpc/h 5 Mpc/h

Subhalo

Host halo

Halo catalogs : subhalos
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HR

100 Mpc/h

LR

100 Mpc/h

SR

100 Mpc/h

Abundance of host halos

Halo catalog statistics : halo abundance

Resolution limit: 300 particles
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Abundance of subhalos

SR
5 Mpc/h

HR
5 Mpc/h

LR
5 Mpc/h

Halo catalog statistics : subhalo abundance

Resolution limit: 300 particles
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LR

 : Number of subhalos in the host mass bin⟨Nsubhalo |Mhost⟩

SR
5 Mpc/h

HR
5 Mpc/h

5 Mpc/h

Halo catalog statistics : occupation distribution of subhalo 
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5 Mpc/h

ξ(r) ≡ DD(r)/RR(r) − 1  ( ) : the number of sample pairs (random pairs)  of halos 
                            with separations equal to 
DD(r) RR(r)

r

ξ(r) = ξ1h(r) + ξ2h(r) : one-halo term;     : two-halo termξ1h(r) ξ2h(r)

Halo catalog statistics : 2-point correlation of halos

100 Mpc/hz = 0

ξ1h

ξ2h
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HR
5 Mpc/h

SR
5 Mpc/h

Halo catalog statistics : 2-point correlation of halos

ξ(r) ≡ DD(r)/RR(r) − 1
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The peculiar velocity makes the redshift-space clustering anisotropic

Image from: Shun Saito 
RSD lecture note

Image from: J. He et al. 
Nature Astronomy 2, 967-972(2018)

line of sight

Halo catalog statistics : redshift-space correlation

2D contour of ξ(π, rp)
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2D contour of ξ(π, rp)

HR

10 Mpc/h

SR

10 Mpc/h

Halo catalog statistics : redshift-space correlation

line of sight
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ωp(rp) = 2∫
∞

0
dπξ(rp, π)

2D contour of ξ(π, rp)

Halo catalog statistics : redshift-space correlation



LR

10 Mpc/h
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HR

10 Mpc/h

SR

10 Mpc/h

Pairwise velocity dispersion  :σ12(r)

v12(r) = ⃗v 1 ⋅ ⃗r12 − ⃗v 2 ⋅ ⃗r12

σ12(r) = std(v12(r))

Halo catalog statistics : pairwise velocity of halos
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Apply to 1 Gpc/h volume

costs ~ 16 hours 
with a single GPU
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Challenges and future directions

- Improve subhalo statistics

- Accommodate for different cosmology and include the redshift dependency

- From dark matter only to hydrodynamic simulation

Summary

- SR model: generate the full 6D phase space N-body simulation output with 512 higher mass resolution

- The generated SR fields give statistically good agreement with the authentic HR fields

- Show capability to apply the SR model to large cosmic volume and generate mock catalogs
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HR-1

HR-2

HR-3

LR —> HR: One to many task

LR —> HR

LR
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LR field

Multiple Realizations

noise=0

Random noise

Random noise
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— Guess which one is HR ?

LR field

20 Mpc/  h 20 Mpc/  h

20 Mpc/  h 20 Mpc/  h

20 Mpc/  h

Multiple Realizations
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