

# Measurement of timedependent CP violation in $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ decays at Belle

### Kookhyun Kang

Kavli IPMU 2021.11.05



#### AVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

### Outline

- Introduction
- Study with Monte Carlo (MC)
  - Signal selection
  - Background suppression
- Results
- Summary

### Introduction – motivation (1)

- Time-dependent CP violation (TDCPV) parameters are S and A
  - *S* = mixing induced CP violation
  - A = direct CP violation
- Standard Model expectation in  $B^0 \rightarrow K^0_S K^0_S K^0_S$ decays,

• 
$$S = \sin(2\phi_1) = 0.688$$
,  $A = 0$ ,  $\phi_1 \equiv \arg(\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*})$ 

- From the results
  - Deviations from the SM expectation provide sensitivity to new physics.
  - Difference of S at previous Belle and BaBar

 $\checkmark$  We measure S and A in the  $B^0 \rightarrow K_S^0 K_S^0 K_S^0$  decays with the final Belle data set of  $772 \times 10^6 B\overline{B}$ 

B  $f \neq B$ I<sub>CP</sub> ¥ - Direct CPV Mixing-induced CPV K<sub>s</sub> K<sub>s</sub> K<sub>s</sub> S<sub>CP</sub> BaBar  $0.94 + 0.21 \pm 0.06$ PRD 85 (2012) 054023 31802 difference  $3.30 \pm 0.32 \pm 0.08$ 1.60 difference 520468M  $B\overline{B}$ Belle

0.6

0.4

0.8

1

1.2

 $0.72 \pm 0.19$ 

1.8

1.4 1.6

3

PRL 98 (2007) 031802

HFLAV correlated average

0.2

Averade

-0.2

### Introduction – motivation (2)



• Pure  $b \rightarrow s$  penguin transition by loop diagram



Significant deviation of  $sin 2\phi_1^{eff}$ from  $sin 2\phi_1$  indicates evidence of NP.

### **Introduction - Belle experiment**

- KEKB is B-meson factory in Tsukuba at Japan.
  - Asymmetric  $e^+e^-$  collider
  - LER(e<sup>+</sup>) = 3.5 GeV
  - HER(*e*<sup>-</sup>) = 8 GeV
  - Center of Mass energy = 10.58 GeV





# ✓ Verification of the Kobayashi-Maskawa theory of CP-violation in B-meson decay



### **Introduction - Belle detector**

Particle Identification (PID)



### Introduction – time-dependent CP violation

- The time-dependent *CP* violation (*TDCPV*) can be caused by
  - interference between  $B^0$  decay to CP eigenstate  $(f_{cp})$  and  $B^0 \overline{B}^0$  mixing.



•  $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$  in to *CP* eigenstate, the decay rate is given by

 $P = \frac{e^{-\frac{|\Delta t|}{\tau_{B^0}}}}{4\tau_{B^0}} \times (1 + q[Ssin(\Delta m_d \Delta t) + A\cos(\Delta m_d \Delta t))) \qquad \qquad \Delta m_d = \text{mass of } q = \text{flavor info} \\ \Delta t = \text{distance}$ 

 $\Delta m_d$  = mass difference between q = flavor information of tag side  $\Delta t$  = distance between B-meson pairs

$$\mathcal{A}_{CP} = \frac{P(\bar{B}^{0}(\Delta t) \to f_{CP}) - P(B^{0}(\Delta t) \to f_{CP})}{P(\bar{B}^{0}(\Delta t) \to f_{CP}) + P(B^{0}(\Delta t) \to f_{CP})} = Ssin(\Delta m_{d}\Delta t) + Acos(\Delta m_{d}\Delta t)$$



• 
$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$$
  
•  $p_B$  = momentum of B in CM frame



### Continuum background



### Vertex reconstruction & flavor tagging

 $P = \frac{e^{-\frac{|\Delta t|}{\tau_{B^0}}}}{4\tau_{B^0}} \times (1 + q[Ssin(\Delta m_d \Delta t) + A\cos(\Delta m_d \Delta t)])$ 

- To identify B meson flavor,
  - flavor tagging for  $B_{tag}$  is performed by using inclusive properties of particles not associated with the signal  $B^0$
  - *B<sub>signal</sub>* is *CP* eigenstate
- Flavor-specific decay modes
  - r = tagging quality value (0-1)
  - r = 0 for no tagging
  - r = 1 for perfectly tagging



### Vertex reconstruction

- In  $B^0 \rightarrow K_S^0 K_S^0 K_S^0$ , there is no primary charged track
  - to find vertex position we make Ks trajectory using pion hit
- Resolution function of  $\Delta t$ 
  - Detector resolution
  - Non-primary track effect for  $B_{tag}$
  - Kinematical approximation due to the difference in the  $p_{lab}$  of  $B^0\bar{B}^0$



### **Results - signal extraction**

Transformed NN output: used for continuum suppression



- An unbinned maximum likelihood (ML) fit with 3D PDF ( $\Delta E$ ,  $M_{bc}$ , Transformed NN).
- Signal  $B^0 \& \overline{B}{}^0$  is obtained to be 258 ± 17 and the purity in the signal region is 74%.

| PDF        | ΔΕ                         | M <sub>bc</sub> | Transformed NN     |
|------------|----------------------------|-----------------|--------------------|
| Signal     | Double Gaussian            | Gaussian        | Asymmetry Gaussian |
| Background | 1 <sup>st</sup> Polynomial | ARGUS           | Asymmetry Gaussian |

### List of resonance modes

#### Several resonance mode can be included to signal event because we require three $K_S^0$ from $B^0$

|                   | Decay mode                               | $B(B^0 \rightarrow X K_S^0)$            | $B(X \to K^0_S K^0_S)$                 | Expected events        |
|-------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------|
| -                 | $\square B^0 \to D^0 K^0_S$              | $(2.6 \pm 0.35) \times 10^{-5}$         | $(1.7 \pm 0.12) \times 10^{-4}$        | 0.3±0.0                |
| Background        | $B^0 \rightarrow \eta_c K_S^{\tilde{0}}$ | $(3.45 \pm 0.6) \times 10^{-4}$         | $< 3.1 \times 10^{-4} 90\%$            | <7.6±1.2               |
|                   | $B^0 \rightarrow J/\psi K_S^0$           | $(4.35 \pm 0.16) \times 10^{-4}$        | $<1.4\times10^{-8}$                    | <0.0±0.0               |
| $h \rightarrow c$ | $\neg$ $B^0 \rightarrow \psi(2S) K_S^0$  | $(2.9 \pm 0.25) \times 10^{-4}$         | $<4.6\times10^{-6}$                    | <0.1±0.0               |
| CP odd            | $B^0 \rightarrow \chi_{c0} K_S^0$        | $(0.73 \pm 0.13) \times 10^{-4}$        | $(3.16 \pm 0.17) \times 10^{-3}$       | $16.3 \pm 3.1$         |
|                   | $B^0 \rightarrow \chi_{c1} K_S^0$        | $(1.96 \pm 0.13) \times 10^{-4}$        | $<6\times10^{-5}$ CL=90%               | <0.8±0.1               |
|                   | $ B^0 \to \chi_{c2} K_S^0 $              | $(0.75) \times 10^{-5} CL = 90\%$       | $(2.6 \pm 0.2) \times 10^{-4}$         | $0.3 \pm 0.0$          |
|                   | $B^0 \rightarrow f_2(1270) K_S^0$        | $(1.35^{+0.65}_{-0.6}) \times 10^{-6}$  | $(1.15^{+0.12}_{-0.1}) \times 10^{-2}$ | $1.1^{+0.5}_{-0.5}$    |
|                   | $B^0 \to f_0(1500) K_S^0$                | $(0.65^{+0.35}_{-0.25}) \times 10^{-5}$ | $(2.15 \pm 0.25) \times 10^{-2}$       | $9.9^{+5.5}_{-4.0}$    |
| Signal _          | $B^0 \to f_2'(1525)K_S^0$                | $(1.5^{+2.5}_{-2.0}) \times 10^{-7}$    | $(22.17 \pm 0.55) \times 10^{-2}$      | $2.4^{+3.9}_{-3.1}$    |
| $b \rightarrow s$ | $B^0 \to f_0(980)(K^0_S K^0_S) K^0_S$    | $(2.7 \pm 1.8)$                         | $(5) \times 10^{-6}$                   | $191.3 \pm 127.6$      |
|                   | $B^0 \to f_0(1710)(K^0_S K^0_S) K^0_S$   | $(5.0^{+5.0}_{-2.6})$                   | $10^{-7}$                              | $35.4^{+35.4}_{-18.4}$ |
|                   | $B^0 \to f_2(2010)(K^0_S K^0_S) K^0_S$   | $(5 \pm 6) \times 10^{-7}$              |                                        | $35.4 \pm 42.5$        |

### **Results - Dalitz plot**



✓ Compare the dalitz plot for MC and data, our evtgen model for MC generation by PHSP well describes data.

### CP fitting – linearity check using signal MC

- Input *S* : 0.1, 0.3, 0.5, 0.7, 0.9 with A = 0
- Input *A* : 0.1, 0.3, 0.5, 0.7, 0.9 with S = 0



### Measurement of TDCPV parameters

### • Fitting results

- $S = -0.71 \pm 0.23$  (stat)  $\pm 0.05$  (syst)
  - $-\sin 2\phi_1$  in  $b \to c\bar{c}s = -0.699$
- $A = 0.12 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$



### Systematic error

| Source                      | S     | A     |
|-----------------------------|-------|-------|
| Vertex reconstruction       | 0.031 | 0.038 |
| Flavor tagging              | 0.002 | 0.004 |
| <b>Resolution function</b>  | 0.016 | 0.014 |
| Physics parameters          | 0.004 | 0.001 |
| Fit bias                    | 0.012 | 0.009 |
| Signal fraction             | 0.024 | 0.021 |
| Background $\Delta t$ shape | 0.016 | 0.001 |
| SVD misalignment            | 0.004 | 0.005 |
| ∆z bias                     | 0.002 | 0.004 |
| Tag-side interference       | 0.001 | 0.008 |
| Total                       | 0.05  | 0.05  |

Main source of systematic error comes from non-primary charged track.

# Significance of CP violation

- The significance is calculated using the Feldman-Cousins approach.
  - Frequentist approach
    - ↔ Bayesian approach (PDF based on hypothesis)
- The significance of *CP* violation is determined to be  $2.5\sigma$  away from (0,0)





Consistent with previous measurements and  $b \rightarrow c \bar{c} s$ 

### Summary

- The measurements of time-dependent *CP* violation in  $B^0 \rightarrow K_S^0 K_S^0 K_S^0$  decays using the final data sample (772 × 10<sup>6</sup>  $B\overline{B}$ ):
  - $S = -0.72 \pm 0.23$  (stat)  $\pm 0.05$  (syst)
  - $A = 0.11 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$
- The results are
  - The results are consistent with SM expectation (-0.70)
  - Previous Belle & BaBar result
- PHYSICAL REVIEW D 103, 032003 (2021)
  - https://doi.org/10.1103/PhysRevD.103.032003

### Backup

### Signal reconstruction – selection criteria and best candidate selection

- We use  $K_S^0$  only from charged decay to avoid background.

|                                               | $B^0 \to K^0_S K^0_S K^0_S$                                                                           |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $K_S^0(\pi^+\pi^-)$ selection<br>in mdst_vee2 | $ \Delta M_{\pi\pi}  < 10 \sigma$ , nisKsfinder cut (nb_vlike>0.2)                                    |
| $\Delta E [GeV]$                              | $-0.2 < \Delta E < 0.2$                                                                               |
| $M_{bc}$ [GeV/ $c^2$ ]                        | 5.2 < $M_{bc}$                                                                                        |
| Best candidate selection                      | smallest of $\chi^2 = \sum_{i=1}^3 \left( \frac{M_{\pi\pi}^i - M_{K_S^0}}{\sigma_{\pi\pi}} \right)^2$ |
| Continuum BKG suppression                     | KSFW LR, cosθ <sub>B</sub> , cosθ <sub>T</sub><br>NeuroBayes output>0.08                              |

# **Classical and FC frequentist**



By ordering principle

### Dalitz plot



• Compare the dalitz plot for MC and data, our evtgen model for MC generation, PHSP\_CP, well describes data.

### CP fitting – lifetime measurement



- Using 1M signal MC with input  $\tau_B$  is 1.5367
  - Fitting result:  $1.5461 \pm 0.0072$  ps
  - Difference (fitting result input) : 0.0106 ps
- Data result
  - Fitting result:  $1.4271 \pm 0.1129$  ps
  - PDG value  $(1.520 \pm 0.004 \text{ ps})$

### ✓ The result of lifetime fitting is consistent with PDG value