CRASH COURSE ON THE BIG BANG

SAM PASSAGLIA – POSTDOC COLLOQIUM – NOV 2021

As time goes on we see more and more of the Universe $\begin{array}{ll} \mbox{Comoving} & \sim H^{-1}/a \\ \mbox{Horizon} & & \\ \mbox{Grows for} & w > -1/3 \end{array}$

THE COSMIC MICROWAVE BACKGROUND

INFLATION FROM A SINGLE FIELD
Potential energy of the field
$$\phi$$
 dominates
 $H^2 = \frac{\rho_{\phi}}{3} \sim \text{constant}$
Change of Hubble controlled by velocity of the field
 $\epsilon \equiv -H'/H = {\phi'}^2/2$

 ϕ is a clock which counts the time to the end of inflation

Clock noise changes local duration of inflation $\delta N=\delta \phi/\phi'$

PERTURBATION TYPE ON SMALL SCALES?

Adiabatic

Photons CDM

Fluctuations of the Inflaton $\delta\phi$

CDM Isocurvature
Photons
CDM

Fluctuations of any other fields

CMB Measures $\Delta_S^2 \lesssim 10^{-2} \times \Delta_\zeta^2$

What about on small scales?

WHAT ABOUT THE ISOCURVATURE COMPONENT?

*Large CDM perturbation δ_c but no radiation perturbation $~\delta_r$ *For PBHs to form metric perturbation is large $~\Psi \sim 1$

*Poisson Equation:
$$\Psi \sim \left(\frac{aH}{k}\right)^2 \delta \rightarrow \delta(aH = k) \sim 1$$

$$\delta = \frac{\rho_c}{\rho_{tot}} \delta_c \rightarrow \delta_c \sim \frac{k}{k_{eq}}$$

Huge Isocurvature Fluctuations can form PBHs

VERY PRELIMINARY RESULTS FOR GW CONSTRAINTS

Preliminary (with G. Domenech, S. Renaux-Petel)

REHEATING: WE KNOW NOTHING ABOUT IT

Somehow $\phi \rightarrow$ Thermal SM plasma How long does this take? At what energy scale?

$T_{\rm RH} > T_{\rm BBN} \sim {\rm MeV}$

Interesting statements can be made under some assumptions

AT WHAT ENERGIES? IF SM HOLDS NOT TOO HIGH

Isocurvature Fluctuations (1912.02682)

IF REHEATING IS SLOW AND SM HOLDS, HIGGS CONTROLS MAXIMUM TEMPERATURE

Inflation is a profound, well-supported, but very sketchy model for what started the Big Bang

Data will help us fill it out: Non-Gaussianities, Gravitational Waves, Primordial Black Holes, and Isocurvature Fluctuations