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Why do galaxies have different star formation rate?
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Figure: Stellar mass and SSFR of SDSS galaxies at
redshift z = 0.02 − 0.12.
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Gas is fundamental and processes that regulate gas affect
star formation

Figure: From Man & Belli NatA 2018
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Galaxy merger-driven evolution of galaxies
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What are starbursts (SB) ?

Figure: Left: HST B,I,H composite image Right: SDSS spectra
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What are (quenched) post-starbursts (QPSB) ?

Weak O II Hα emission: low ongoing star formation rates

Strong Balmer absorption (Hδ, Hγ,Hβ): high recent star formation
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Figure: A graphical representation of how the concentration (C), asymmetry (A),
clumpiness (S) are measured on an example nearby galaxy (Conselice 2003).
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Example Post-starburst Galaxies from Subaru HSC Survey
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About half of post-starburst galaxies are disturbed,
supporting the merger picture.
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Asymmetries of PSBs are intermediate between starbursts
and quiescent galaxies.
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Starburst and post-starburst galaxies have higher velocity
dispersion compared to normal star-forming galaxies
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Large-scale structure: galaxies are not distributed
randomly on the sky
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Mass density of galaxies smoothed by 1 h−1 Mpc
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Mass density of galaxies smoothed by 8 h−1 Mpc
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At 1 h−1 Mpc scale, the environmental density of
starbursts and post-starbursts are different
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At 8 h−1 Mpc scale, the environmental densities of
starbursts and post-starbursts are similar to that
star-forming galaxies
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The AGN Horizon cosmological simulation

Cosmic gas accretion and galaxy mergers determine galaxy
morphology; Without black hole feedback galaxies reform discs.

Figure: Column 1, 3 & 5 with BH feedback; Column 2, 4 & 6 with NO BH
feedback (Dubois et al. 2016)
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Dirt-cheap gas scaling relation using dust absorption &
metallicity (Yesuf & Ho 2019, ApJ, 884, 177).
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Use dust absorption
(Hα/Hβ) ∝ Σdust as proxy

Mdust/Mgas ≈ [0.001,1]%
depending on Z

Z depends on M⋆ and R
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Some die filthy rich: The diverse molecular gas contents of
post-starburst galaxies (Yesuf & Ho 2020, ApJ, 900, 107)
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Figure: Example stacked spectra (black) of
subsamples of PSBs with low-SNR (1 − 3σ)
Hα/Hβ ratios.

by subdividing into low and
high M⋆

by subdividing into: poorly
measured Hα/Hβ (< 1σ),
and marginally measured
(1 − 3σ) high, medium and
low Hα/Hβ

by using WISE mid-IR 12µm
flux to 4.6µm flux ratios
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Stacked and individual analysis combined
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Figure: QPSBs have a wide range of Hα/Hβ ratios and molecular gas fractions
that overlap with the typical gas fractions of star-forming or quiescent galaxies:
Hα/Hβ ≈ 3 − 8 and fH2 ≈ 1% − 20% with median fH2 ≈ 4% − 6%, which
correspond to MH2 ≈ (1 − 3) × 109M⊙. (?)
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Gas content regulates the life cycle of star formation and
black hole accretion (Yesuf & Ho 2020, ApJ, 901, 42)
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Strong AGNs are gas-rich. AGNs do not impact cold gas in
short periods of time.
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Gas accretion onto galaxies affect metallicity and star
formation rate.

Figure: Elemental abudance (metallicty) and the specific star formation rate
SSFR vs. stellar mass plane coloured by excess gas accretion efficiency (EAGLE;
Wright et al. 2021).
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Observationally, which structural parameters best predict
whether a galaxy is above or below the SFMS? (Yesuf, Ho,
& Faber 2021, ApJ, in press, arXiv:2109.08882)

We use the statistical framework of mutual information (MI) to
rigorously quantify the inter-dependence among several structural
variables and to rank their relevance to predicting SSFR, taking their
inter-dependence into account.

We use deep imaging data in SDSS Stripe 82 to study a large sample
of galaxies. The Stripe 82 data improve the reliability of
measurements of variables such as asymmetry (Bottrell et al. 2019).
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Asymmetries are due to mergers/interactions, lopsidedness,
and asymmetric spiral arms in isolated galaxies.

log RA3 = -0.8 log RA3 = -0.76 log RA3 = -0.78

log RA3 = -0.81 log RA3 = -0.82 log RA3 = -0.82

log RA3 = -0.9 log RA3 = -0.9 log RA3 = -0.83

log RA3 = -0.97 log RA3 = -0.93 log RA3 = -0.99

log RA3 = -1.0 log RA3 = -0.98 log RA3 = -1.01
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Comparing Subaru HSC with Sloan Digital Sky Survey
(SDSS)
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HSC data: the star formation is associated with
asymmetry.
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HSC data: Gas-phase metallicity depend on both stellar
mass and asymmetry.
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Summary

After M⋆, morphological asymmetry is the most important predictor
of variations in SSFR and metallicity.

The correlation between asymmetry and star formation rate or
metallicity is likely due to galaxy mergers and interactions as well as
diffuse gas accretion.

Mergers and interaction induces starbursts may explain half of
post-starburst galaxies. The the morphology and environments of
these two populations are broadly similar.

Strong active black holes are gas-rich and do not impact cold gas
(and star formation) in short periods of time
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Visualizing trends of deviations from the mean SSFR
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Figure: The distributions of ∆SSFR for four sets of SFGs binned by RA3 and C1

or σ. The violin plots show the kernel density estimates of the distributions and
the dashed lines denote the median and quantiles of the distributions for each bin.
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Visualizing average structural trends with SSFR
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