Relating Morphological Asymmetry and Large-scale Environment to Star formation and Gas Accretion in Galaxies

Hassen Yesuf (Kavli IPMU/KIAA)

November 19, 2021

Why do galaxies have different star formation rate?

Figure: Stellar mass and SSFR of SDSS galaxies at redshift z = 0.02 - 0.12.

Gas is fundamental and processes that regulate gas affect star formation

What causes quenching in massive galaxies?

Schematic diagram listing the plausible quenching mechanisms.

Figure: From Man & Belli NatA 2018

Galaxy merger-driven evolution of galaxies

1000

0.1

-

ogial

-2

-1

0

Time (Relative to Merger) [Gyr]

10 IV

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

Hopkins et al.

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,
- but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas excelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

2

(f) Quasar

 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
 characteristically blue/young spheroid

(g) Decay/K+A

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 'hot halo'' from feedback
 sets up quasi-static cooling

(h) "Dead" Elliptical

 star formation terminated
 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

 Ando scretes imiti-mass comparing(i)

halo & disk grow, most stars formed
 secular growth builds bars & pseudobulges
 "Seyfert" fueling (AGN with M≥>-23)
 cannot redden to the red sequence

What are starbursts (SB) ?

Figure: Left: HST B,I,H composite image Right: SDSS spectra

What are (quenched) post-starbursts (QPSB) ?

- \bullet Weak O II H α emission: low ongoing star formation rates
- Strong Balmer absorption (H δ , H γ ,H β): high recent star formation

Figure: A graphical representation of how the concentration (C), asymmetry (A), clumpiness (S) are measured on an example nearby galaxy (Conselice 2003).

Example Post-starburst Galaxies from Subaru HSC Survey

About half of post-starburst galaxies are disturbed, supporting the merger picture.

Asymmetries of PSBs are intermediate between starbursts and quiescent galaxies.

Starburst and post-starburst galaxies have higher velocity dispersion compared to normal star-forming galaxies

Large-scale structure: galaxies are not distributed randomly on the sky

Mass density of galaxies smoothed by 1 h^{-1} Mpc

Mass density of galaxies smoothed by 8 h^{-1} Mpc

At 1 h^{-1} Mpc scale, the environmental density of starbursts and post-starbursts are different

At 8 h^{-1} Mpc scale, the environmental densities of starbursts and post-starbursts are similar to that star-forming galaxies

The AGN Horizon cosmological simulation

 Cosmic gas accretion and galaxy mergers determine galaxy morphology; Without black hole feedback galaxies reform discs.

Figure: Column 1, 3 & 5 with BH feedback; Column 2, 4 & 6 with NO BH feedback (Dubois et al. 2016)

Dirt-cheap gas scaling relation using dust absorption & metallicity (Yesuf & Ho 2019, ApJ, 884, 177).

Figure: Scaling relations among molecular gas mass $(M_{\rm H_2})$, A_V , gas-phase metallicity (Z)

- Use dust absorption $(H\alpha/H\beta) \propto \Sigma_{dust}$ as proxy
- *M*_{dust}/*M*_{gas} ≈ [0.001, 1]% depending on Z
- Z depends on M_{\star} and R

Some die filthy rich: The diverse molecular gas contents of post-starburst galaxies (Yesuf & Ho 2020, ApJ, 900, 107)

Figure: Example stacked spectra (black) of subsamples of PSBs with low-SNR $(1 - 3\sigma)$ H α /H β ratios.

- by subdividing into low and high M_{\star}
- by subdividing into: poorly measured $H\alpha/H\beta$ (< 1σ), and marginally measured (1 - 3 σ) high, medium and low $H\alpha/H\beta$
- by using WISE mid-IR $12\mu m$ flux to $4.6\mu m$ flux ratios

Stacked and individual analysis combined

Figure: QPSBs have a wide range of $H\alpha/H\beta$ ratios and molecular gas fractions that overlap with the typical gas fractions of star-forming or quiescent galaxies: $H\alpha/H\beta \approx 3-8$ and $f_{\rm H_2} \approx 1\% - 20\%$ with median $f_{\rm H_2} \approx 4\% - 6\%$, which correspond to $M_{\rm H_2} \approx (1-3) \times 10^9 M_{\odot}$. (?)

Gas content regulates the life cycle of star formation and black hole accretion (Yesuf & Ho 2020, ApJ, 901, 42)

Age sequence at constant M_{\star} and morphology wherein gas content mediates SFR and AGN activity

Strong AGNs are gas-rich. AGNs do not impact cold gas in short periods of time.

Gas accretion onto galaxies affect metallicity and star formation rate.

Figure: Elemental abudance (metallicty) and the specific star formation rate SSFR vs. stellar mass plane coloured by excess gas accretion efficiency (EAGLE; Wright et al. 2021).

Observationally, which structural parameters best predict whether a galaxy is above or below the SFMS? (Yesuf, Ho, & Faber 2021, ApJ, in press, arXiv:2109.08882)

- We use the statistical framework of mutual information (MI) to rigorously quantify the inter-dependence among several structural variables and to rank their relevance to predicting SSFR, taking their inter-dependence into account.
- We use deep imaging data in SDSS Stripe 82 to study a large sample of galaxies. The Stripe 82 data improve the reliability of measurements of variables such as asymmetry (Bottrell et al. 2019).

Asymmetries are due to mergers/interactions, lopsidedness, and asymmetric spiral arms in isolated galaxies.

Comparing Subaru HSC with Sloan Digital Sky Survey (SDSS)

HSC data: the star formation is associated with asymmetry.

HSC data: Gas-phase metallicity depend on both stellar mass and asymmetry.

- After *M*_{*}, morphological asymmetry is the most important predictor of variations in SSFR and metallicity.
- The correlation between asymmetry and star formation rate or metallicity is likely due to galaxy mergers and interactions as well as diffuse gas accretion.
- Mergers and interaction induces starbursts may explain half of post-starburst galaxies. The the morphology and environments of these two populations are broadly similar.
- Strong active black holes are gas-rich and do not impact cold gas (and star formation) in short periods of time

Visualizing trends of deviations from the mean SSFR

Figure: The distributions of Δ SSFR for four sets of SFGs binned by R_{A3} and C_1 or σ . The violin plots show the kernel density estimates of the distributions and the dashed lines denote the median and quantiles of the distributions for each bin.

Visualizing average structural trends with SSFR

