# On compatibility between conformal symmetries and continuous higher form symmetries

Yunqin Zheng

Kavli IPMU, ISSP, U.Tokyo

arXiv:2108.00732, Yasunori Lee, Y.Z. Phys.Rev.D. 104 (2021) 8, 085005

Dec.3rd, 2021

Global symmetries and 't Hooft anomalies impose strong constraints on dynamics of quantum many body systems.

A well known example: A 1 + 1d spin chain with SO(3) and translation symmetry

and spin  $\frac{1}{2}$  per unit cell

 $\Rightarrow$  can not be symmetric trivially gapped.

[Lieb, Schultz, Mattis, 1961]

Global symmetries and 't Hooft anomalies impose strong constraints on dynamics of quantum many body systems.

A well known example: A 1+1d spin chain with SO(3) and translation symmetry and spin  $\frac{1}{2}$  per unit cell  $\Rightarrow$  can not be symmetric trivially gapped.

[Lieb, Schultz, Mattis, 1961]

In general, 't Hooft anomalies imply no symmetric trivially gapped ground state.

Global symmetries and 't Hooft anomalies impose strong constraints on dynamics of quantum many body systems.

A well known example: A 1+1d spin chain with SO(3) and translation symmetry and spin  $\frac{1}{2}$  per unit cell  $\Rightarrow$  can not be symmetric trivially gapped.

[Lieb, Schultz, Mattis, 1961]

In general, 't Hooft anomalies imply no symmetric trivially gapped ground state.

Question: Are there more implications on dynamics?

Dynamics are often characterized by RG fixed points.

## Gapped: (IR fixed points)

- Trivially gapped = invertible TQFT;
- TQFT with anyons (possible only when  $d \ge 2 + 1$ .)
- Multiple vacua (discrete SSB)

## Gapless: (UV and IR fixed points)

- Conformal field theory;
- Scale invariant but non-conformally invariant.

## Constraint on gapped phases:

Not all anomalies can be saturated by unitary TQFTs which preserves all the global symmetries:

Symmetry enforced gaplessness. [Wang,Senthil, 1401.1142]

[Cordova,Ohmori, 1910.04962, 1912.13069]

- Two free Dirac fermions in (2+1)d can not be symmetrically gapped preserving SU(2) × T.
- SU(N) QCD with 1 adjoint fermion in (3+1)d can not be symmetrically gapped preserving Z<sub>2N</sub> chiral symmetry.

This talk: constraint on gapless theories:

Question:

Unitary Conformal field theory 

Continuous higher form symmetry

?

Answer:

not always compatible.

## Unitary Conformal field theory:

- Conformal symmetry generator:  $P_{\mu}, M_{\mu\nu}, D, K_{\mu}$
- Local operator  $\mathcal{O}$  and states  $|\mathcal{O}\rangle$  labeled by scaling dimension  $\Delta_{\mathcal{O}}$ , Lorentz quantum number (spin)  $h_{\mathcal{O}}$
- States organized into conformal tower: primary state:  $|\mathcal{O}\rangle$ ,  $K_{\mu}|\mathcal{O}\rangle = 0$  descendant state:  $P_{\mu}|\mathcal{O}\rangle$ ,  $P_{\mu}P_{\nu}|\mathcal{O}\rangle$ ,...
- Unitarity: all states have non-negative norm  $||PP|\mathcal{O}\rangle||^2 \ge 0$ Unitary bound:  $\Delta_{\mathcal{O}} \ge f(h_{\mathcal{O}})$ Completely determined. [Minwalla, hep-th/9712074]

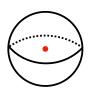
• Unitarity: all states have non-negative norm  $||PP|\mathcal{O}\rangle||^2 \ge 0$ Unitary bound:  $\Delta_{\mathcal{O}} \ge f(h_{\mathcal{O}})$ Completely determined. [Minwalla, hep-th/9712074]

| d | Lorentz Algebra    | Representation                | Unitarity Bound $\Delta_{\mathcal{O}} \geq$ |                                   |  |
|---|--------------------|-------------------------------|---------------------------------------------|-----------------------------------|--|
| 3 | so(3)              | $[h]_{\mathcal{O}}$           | 0                                           | (h=0)                             |  |
|   |                    |                               | 1                                           | $(h = \frac{1}{2})$               |  |
|   |                    |                               | h+1                                         | $(h \ge 1)$                       |  |
|   | $\mathfrak{so}(4)$ | $[h_1,h_2]_{\mathcal{O}}$     | 0                                           | $(h_1 = h_2 = 0)$                 |  |
| 4 |                    |                               | $h_1 + 1$                                   | $(h_1 > 0, h_2 = 0)$              |  |
| 1 |                    |                               | $h_2 + 1$                                   | $(h_1 = 0, h_2 > 0)$              |  |
|   |                    |                               | $h_1 + h_2 + 2$                             | $(h_1 > 0, h_2 > 0)$              |  |
|   | $\mathfrak{so}(5)$ | $[h_1,h_2]_{\mathcal{O}}$     | 0                                           | $(h_1 = h_2 = 0)$                 |  |
| 5 |                    |                               | 2                                           | $(h_1 = h_2 = \frac{1}{2})$       |  |
| 0 |                    |                               | $h_1 + 2$                                   | $(h_1 = h_2 \neq 0, \frac{1}{2})$ |  |
|   |                    |                               | $h_1 + 3$                                   | $(h_1 > h_2)$                     |  |
|   | <b>so</b> (6)      | $[h_1,h_2,h_3]_{\mathcal{O}}$ | 0                                           | $(h_1 = h_2 = h_3 = 0)$           |  |
| 6 |                    |                               | $h_1 + 2$                                   | $(h_1 = h_2 =  h_3  \neq 0)$      |  |
|   |                    |                               | $h_1 + 3$                                   | $(h_1 = h_2 >  h_3 )$             |  |
|   |                    |                               | $h_1 + 4$                                   | $(h_1 > h_2)$                     |  |

## Continuous higher form symmetry:

[Gaiotto, Kapustin, Seiberg, Willett, 1412.5148]

- Natural generalization of continuous 0-form symmetry, e.g. U(1) charge conservation symmetry.
- 0-form symmetry: Charged operator: point like, 0d. 1-form conserved current  $J^{\mu}$ ,  $\partial_{\mu}J^{\mu} = 0$
- p-form symmetry: Charged operator: p dimensional brane (p+1)-form conserved current  $J^{\mu_1...\mu_{p+1}}$ ,  $\partial_{\mu_1}J^{\mu_1...\mu_{p+1}}=0$





- Scaling dimension:  $\Delta_J = d p 1$
- Lorentz quantum number is also determined.

|                                 | d          | = 3     |            | d=4                                    | d = 5      |                | d=6        |                           |
|---------------------------------|------------|---------|------------|----------------------------------------|------------|----------------|------------|---------------------------|
|                                 | $\Delta_J$ | $[h]_J$ | $\Delta_J$ | $[h_1, h_2]_J$                         | $\Delta_J$ | $[h_1, h_2]_J$ | $\Delta_J$ | $[h_1, h_2, h_3]_J$       |
| $p=0,J^{\mu}$                   | 2          | [1]     | 3          | $\left[\frac{1}{2},\frac{1}{2}\right]$ | 4          | [1, 0]         | 5          | [1, 0, 0]                 |
| $p=1,J^{\mu\nu}$                | 1          | [1]     | 2          | $[1,0]\oplus [0,1]$                    | 3          | [1, 1]         | 4          | [1, 1, 0]                 |
| $p=2, J^{\mu\nu\rho}$           |            |         | 1          | $\left[\frac{1}{2},\frac{1}{2}\right]$ | 2          | [1, 1]         | 3          | $[1,1,1] \oplus [1,1,-1]$ |
| $p=3, J^{\mu\nu\rho\sigma}$     |            |         |            |                                        | 1          | [1, 0]         | 2          | [1, 1, 0]                 |
| $p=4, J^{\mu\nu\rho\sigma\eta}$ |            |         |            |                                        |            |                | 1          | [1, 0, 0]                 |

## Combining

From unitary CFT:

Unitary bound:  $\Delta_J \geq f(h_J)$ 

• From higher form symmetry:

Scaling dimension:  $\Delta_J = d - p - 1$ 

They are not always compatible!

|       | d=3 | d=4                         | d=5 | d = 6                       |
|-------|-----|-----------------------------|-----|-----------------------------|
| p = 0 | /   | ✓                           | 1   | ✓                           |
| p=1   | X   | ✓ : if chiral 🗡 : otherwise | 1   | ✓                           |
| p=2   |     | X                           | X   | ✓ : if chiral 🏅 : otherwise |
| p=3   |     |                             | X   | X                           |
| p=4   |     |                             |     | X                           |

#### Theorem:

A unitary CFT cannot have the "forbidden" p-form symmetry (X) whose conserved current is the conformal primary operator.

|       | d=3 | d=4                         | d=5 | d = 6                       |
|-------|-----|-----------------------------|-----|-----------------------------|
| p = 0 | ✓   | ✓                           | 1   | ✓                           |
| p=1   | X   | ✓ : if chiral 🏅 : otherwise | 1   | ✓                           |
| p=2   |     | X                           | X   | ✓ : if chiral 🏅 : otherwise |
| p=3   |     |                             | X   | X                           |
| p=4   |     |                             |     | X                           |

N.B. When considering supersymmetry, in 6d, 1-form symmetry is also forbidden.  $[{\sf Cordova}, {\sf Dumitrescu}, {\sf Intriligator}, \ 1612.00809]$ 

If a theory has a forbidden p-form symmetry (X), its RG fixed points should have either of the following scenarios:

- $oldsymbol{0}$  a unitary CFT, but the p-form symmetry G is decoupled.
- 2 scale invariant but not conformal, and the p-form symmetry G may or may not decouple.
- non-unitary.
- gapped TQFT (including a trivial theory).

#### Four examples:

- Free compact scalar in *d* dimensions.
- Free Maxwell theory in d dimensions.
- Free four derivative Maxwell theory in 6d.
- Interacting modified QED<sub>6</sub>.

Free compact scalar

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2, \qquad \phi \sim \phi + 2\pi R$$

#### Symmetry:

- $U(1)^{(0)}$  electric shift symmetry
- $U(1)^{(d-2)}$  topological symmetry. (Forbidden (X) when  $d \ge 3$ .)

## **Dynamics:**

- UV fixed point: R → 0.
   U(1)<sup>(0)</sup> is trivial, U(1)<sup>(d-2)</sup> survives.
   Can not be a unitary CFT! Scale invariant but non-CFT!
- IR fixed point: R → ∞.
   U(1)<sup>(0)</sup> survives, U(1)<sup>(d-2)</sup> is trivial.
   It is a CFT of non-compact scalar.

[EI-Showk,Nakayama,Rychkov, 1101.5385] [Nakayama, 1302.0884] Free Maxwell theory:

$$\mathcal{L} = -\frac{1}{8\pi^2} F \wedge *F, \qquad A \sim A + \frac{2\pi\eta}{R}$$

## Symmetry:

- $U(1)^{(1)}$  electric shift symmetry. (Forbidden (X) when d=3)
- $U(1)^{(d-3)}$  topological symmetry. (Forbidden (X) when  $d \ge 5$ .)

## **Dynamics:**

- d = 3: UV: Scale inv, non-CFT; IR: non-compact scalar CFT.
- *d* = 4: CFT.
- *d* ≥ 5:
  - UV fixed point:  $R \to \infty$ .  $U(1)^{(1)}$  is trivial,  $U(1)^{(d-3)}$  survives. Can not be a unitary CFT! Scale invariant but non-CFT!
  - IR fixed point: R → 0.
     Can not rule out unitary CFT.



Four derivative Maxwell theory in 6d

$$\mathcal{L} = \frac{1}{4e^2} G_{\mu\nu} \nabla^2 G^{\mu\nu}$$

#### Symmetry:

- $U(1)^{(1)}$  electric shift symmetry
- $U(1)^{(3)}$  topological symmetry. (Forbidden (X)!)

#### **Dynamics:**

• It was shown to be CFT.

[Tseytlin,1310.1795]

 $[{\sf Giombi, Klebanov, Tarnopolsky, 1508.06354}]$ 

• Forbidden symmetry  $U(1)^{(3)}$  enforces non-unitary. Supported by  $\langle T_{\mu\nu} T_{\mu\nu} \rangle < 0$ .

[Giombi, Tarnopolsky, Klebanov, 1602.01076]

4日 > 4回 > 4 直 > 4 直 > 1 直 9 Q (\*)

A variant of QED<sub>6</sub>

$$\mathcal{L} = \frac{1}{4e^2} G_{\mu\nu} \nabla^2 G^{\mu\nu} + \sum_{i=1}^{N_f} \bar{\psi}_i (\partial \!\!\!/ - i \!\!\!/ A) \psi_i.$$

[Giombi, Klebanov, Tarnopolsky, 1508.06354]

## Symmetry:

•  $U(1)^{(3)}$  topological symmetry. (Forbidden ( $\times$ )!)

#### **Dynamics:**

- Beta function:  $\beta_e = -\frac{\epsilon}{2}e \frac{N_f}{120\pi^3}e^3 + \mathcal{O}(e^5)$
- UV: fermion decouples from gauge field. non-unitary CFT ⊗ free fermion
- IR: RG can be unitary when  $N_f$  is sufficiently large.

#### Summary:

- A unitary CFT cannot have the "forbidden" *p*-form symmetry (X) whose conserved current is the conformal primary operator.
- Nontrivial dynamical consequences.
- Streamlines previous discussions on scale invariant but non-conformal invariant theories from the higher form symmetry point of view.

#### **Further problems:**

- **Q1:** Are there more incompatibilities between:
  - 1 the full set of conformal algebra (without unitarity)
  - 2 't Hooft anomaly of continuous higher form symmetry / 2-group symmetry?

**A1:** We haven't find inconsistency.

#### **Further problems:**

- **Q1:** Are there more incompatibilities between:
  - 1 the full set of conformal algebra (without unitarity)
  - 2 't Hooft anomaly of continuous higher form symmetry / 2-group symmetry?
- **A1:** We haven't find inconsistency.
- Q2: Can we find tension between
  - 1 conformal symmetries (with or without unitarity)
  - 2 discrete higher form symmetries / anomalies?
- A2: It is an open question.