p-complete arc-descent for finite projective modules over perfectoid rings

Kazuhiro Ito

Kavli IPMU, The University of Tokyo

December 17, 2021

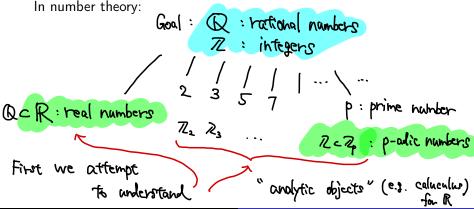
Outline

- Introduction
- Classification of p-divisible groups
- 3 p-complete arc-descent for finite projective modules over perfectoid rings

Introduction

Slogan for today's talk

There are a lot of "reduction (descent) arguments" in mathematics.



Introduction

Here $\mathbb{Z}_p \supset \mathbb{Z}$ is the commutative ring obtained by adjoining to \mathbb{Z} some formal power series, such as

$$1+p+p^2+\ldots+p^n+\ldots$$

Formally,

$$\mathbb{Z}_p := \{ \sum_{n>0}^{\infty} a_n p^n \mid a_n \in \{0, 1, 2, \dots, p-1\} \}.$$

Example: Hasse-Minkowski theorem

Let $f(X,Y) := aX^2 + bY^2 - 1$ with nonzero $a,b \in \mathbb{Q}$. The following are equivalent.

- f(X, Y) = 0 has solutions in \mathbb{Q} .
- /Qp
- ② f(X, Y) = 0 has solutions in \mathbb{R} and $\mathbb{Z}_p[1/p]$ for all prime numbers p.

Introduction

Remark

- f(X, Y) = 0 has solutions in $\mathbb{R} \Leftrightarrow a > 0$ or b > 0.
- \exists explicit criterion "in terms of $\mathbb{Z}/p\mathbb{Z}$ " for the existence of solutions to f(X,Y)=0 in $\mathbb{Z}_p[1/p]$. Here

$$\mathbb{Z}/p\mathbb{Z}:=\{0,1,2,\ldots,p-1\}$$

is the set of integers modulo p.

- As above, sometimes, we can reduce certain problems for \mathbb{Z}_p to questions about $\mathbb{Z}/p\mathbb{Z}$.
- This is one of the motivations for studying algebraic geometry in positive characteristic (in the world where p = 0).
- Advantage: commutative rings R over $\mathbb{Z}/p\mathbb{Z}$ have the following "symmetry".

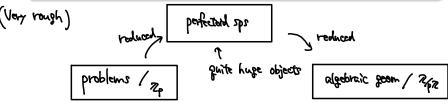
 $\varphi \colon R \to R$, $x \mapsto x^p$ defines a ring homomorphism, called Frobenius.

Introduction: Perfectoid rings

- Focus on \mathbb{Z}_p .
- Strong tool: analytic spaces (rigid spaces) over \mathbb{Z}_p .

Perfectoid

In 2011, Scholze introduced the notion of a perfectoid space, which presented a new framework to reduce certain problems for \mathbb{Z}_p to corresponding problems in positive characteristic.



Remark The notion of a perfectoid space plays an important role in mathematics, e.g. Langlands program. (However it is not so easy to handle. It is based on many p-adic techniques.)

Table of Contents

- Introduction
- Classification of p-divisible groups
- 3 p-complete arc-descent for finite projective modules over perfectoid rings

Classification of p-divisible groups: Motivation

- The theory of Shimura varieties lies at the heart of the Langlands program.
- Shimura varieties (over \mathbb{C}) are roughly the moduli spaces of abelian varieties (complex tori \mathbb{C}^n/Λ).

Example: moduli $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$ of elliptic curves \mathbb{C}/Λ , where $\mathbb{H}:=\{z\in\mathbb{C}\,|\,\mathrm{Im}(z)>0\}.$

- A: abelian variety
 - \rightarrow the *p*-power torsion part $A[p^{\infty}]$ is a *p*-divisible group.
- classification of p-divisible groups over \mathbb{Z}_p (more generally \mathcal{O}_K)
 - \Rightarrow good models of Shimura varieties over \mathbb{Z}_p , used to compute etale cohomology.

Remark

Shimura varieties over \mathbb{Z}_p have applications to the Tate conjecture for K3 surfaces.

Classification of p-divisible groups

Definition: *p*-divisible group

Let S be a scheme. A p-divisible group over S is an inductive system $\{(G_n, \iota_n \colon G_n \to G_{n+1})\}_{n \in \mathbb{N}}$ of finite locally free commutative group schemes G_n over S such that:

- ι_n induces $G_n \cong G_{n+1}[p^n]$.
- ② The rank of G_n is p^{nh} where h (function) is independent of n.

Example: $\{A[p^n]\}_n$ for an abelian scheme A.

Classification over \mathbb{Z}_p (more generally \mathcal{O}_K) (Kisin, Lau)

 \exists equivalence of categories

 $\{ extit{p-divisible groups over } \mathbb{Z}_p\}\cong\{ extit{Breuil-Kisin modules over } \mathbb{Z}_p[[T]]\}$

where a Breuil-Kisin module over $\mathbb{Z}_p[[T]]$ is a finite free module M over $\mathbb{Z}_p[[T]]$ with Frobenius $\varphi \colon M \to M$. (Linear algebraic object)

A new approach to the classification over \mathbb{Z}_p

- A geometric valuation ring V is a p-complete valuation ring of rank ≤ 1 with algebraically closed fraction field.
- Example: $\mathcal{O}_{\mathbb{C}_p}$ for $\mathbb{C}_p := \widehat{\overline{\mathbb{Q}_p}}$.
- $\bullet \ \{ \mathsf{perfectoid} \ \mathsf{rings} \} \supset \{ \mathsf{geometric} \ \mathsf{valuation} \ \mathsf{rings} \}$

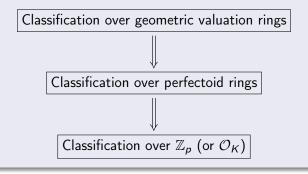


Table of Contents

- Introduction
- Classification of p-divisible groups
- 3 p-complete arc-descent for finite projective modules over perfectoid rings

p-complete arc-descent

 A ring homomorphism A → B is a p-complete arc-cover if for any A → V with geometric valuation ring V there exists

where $V \to W$ is an extension of geometric valuation rings.

- Example: Faithfully flat maps.
- {perfectoid rings} ⊃ {geometric valuation rings} "forms a basis" for the p-complete arc-topology.

Definition: perfect ring

A commutative ring R over $\mathbb{Z}/p\mathbb{Z}$ is perfect if $\varphi \colon R \to R$, $x \mapsto x^p$ is bijective. We have {perfectoid rings} \supset {perfect rings}.

p-complete arc-descent

Fact (Bhatt-Scholze, Bhatt-Mathew)

Let $Y = \operatorname{Spec}(B) \to X = \operatorname{Spec}(A)$ be a *p*-complete arc-cover of perfect rings over $\mathbb{Z}/p\mathbb{Z}$. Then \exists equivalence of categories

```
\{\text{vector bundles over }X\}
```

$$\cong \{(\mathcal{V}, \sigma) | \mathcal{V} : \text{vector bundle over } Y \text{ and } \sigma : \text{descent datum}\}.$$

A descent datum on $\mathcal V$ is an isomorphism $\sigma\colon p_1^*\mathcal V\cong p_2^*\mathcal V$ satisfying a certain cocycle condition, where $p_1,p_2\colon Y\times_XY\to Y$ are the projections.

Theorem (Ito)

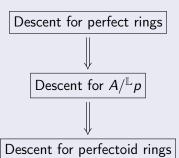
The same statement holds for perfectoid rings.

p-complete arc-descent

Key

For the proof of Theorem, we need ∞ -categories and higher algebras (\mathbb{E}_{∞} -rings).

 $\frac{\mathsf{Remark}}{\mathsf{Remark}}: \{\mathbb{E}_{\infty}\text{-rings}\} \supset \{\mathsf{commutative\ rings}\} \\ \{\infty\text{-categories}\} \supset \{\mathsf{categories}\}$



Introduction p-divisible groups p-complete arc-descent

Thank you very much for your attention!