Elliptic stable envelopes of type A quiver varieties

Hunter Dinkins

UNC Chapel Hill

Hunter Dinkins Elliptic stable envelopes of type A quiver varieties

Theorem (Dinkins 2021), arxiv:2107.09569

There exists an explicit formula for the elliptic stable envelopes of (finite or affine) type A quiver varieties.

A B M A B M

- Cohomological stable envelopes
- elliptic stable envelopes
- Main result
- Omputer examples

- (Maulik and Okounkov 2012) equivariant cohomology, constructed Yangian action, described quantum product.
- (Okounkov 2015) equivariant *K*-theory, quantum difference equations.
- (Aganagic and Okounkov 2016) equivariant elliptic cohomology.

• Let Q be a type A quiver with vertex set I.

• Let
$$v, w \in \mathbb{Z}'_{\geq 0}$$
.

- $Rep(v, w) := \bigoplus_{i \to j} Hom(V_i, V_j) \oplus \bigoplus_{i \in I} Hom(W_i, V_i)$, where $\dim(V_i) = v_i$ and $\dim(W) = w_i$.
- The group $G := \prod_i GL(V_i)$ acts on Rep(v, w).
- Moment map: $\mu : T^*Rep(v, w) \rightarrow Lie(G)^*$

The Nakajima quiver variety is defined as a GIT quotient:

$$X(\mathsf{v},\mathsf{w}) := \mu^{-1}(\mathsf{0}) /\!/_{\theta} G$$

We will always use the character $\theta : (g_i)_{i \in I} \mapsto \prod_{i \in I} \det(g_i)$.

The vector spaces V_i descend to bundles \mathscr{V}_i on X(v, w).

Theorem (McGerty and Nevins 2018)

The ring $K_T(X(v, w))$ is generated by the tautological bundles.

• • = • • = •

э

The variety X(v, w) has a natural action of a torus

$$\mathsf{T} \cong (\mathbb{C}^{\times})^{\sum_{i} \mathsf{w}_{i}} \times \mathbb{C}_{t_{1}}^{\times} \times \mathbb{C}_{t_{2}}^{\times}$$

where

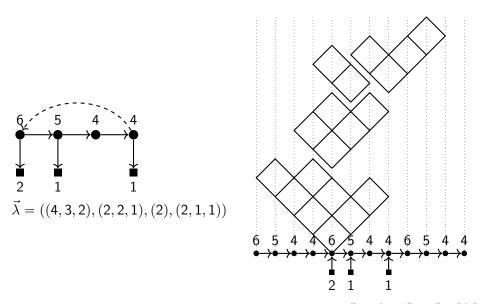
- $\mathbb{C}_{t_1}^{\times}$ scales the maps $V_{i+1} \to V_i$ and $W_i \to V_i$.
- $\mathbb{C}_{t_2}^{\times}$ scales the maps $V_i \to V_{i+1}$ and $W_i \to V_i$.

Let $\hbar = t_1 t_2$ and $a = \sqrt{\frac{t_1}{t_2}}$.

The symplectic form on X(v, w) is scaled with T-weight \hbar^{-1} . It is preserved by the other factors.

The A action has finitely many fixed points, indexed by $\sum_{i \in I} w_i$ -tuples of partitions that respect v.

Fixed point



Let X := X(v, w), $A := \ker(\hbar) \subset T$, $p \in X^A$. Each A-weight w of $T_p X$ gives a hyperplane

$$H_w = \{w^{\perp}\} \subset \operatorname{Lie}_{\mathbb{R}}(\mathsf{A}) = \operatorname{cochar}(\mathsf{A}) \otimes_{\mathbb{Z}} \mathbb{R}$$

Definition

A *chamber* is a connect component of $\text{Lie}_{\mathbb{R}}(A) \setminus \bigcup_{w} H_{w}$, where w runs over all A-weights of the tangent space at all fixed points.

Definition

A polarization is a class $T^{1/2} \in K_T(X)$ so that $TX = T^{1/2} + \hbar \otimes (T^{1/2})^{\vee}$.

Fix a chamber \mathfrak{C} with cocharacter $\sigma.$ The chamber provides the following data:

• Attr_c(p) = { $x \in X \mid \lim_{z \to 0} \sigma(z) \cdot x = p$ }.

•
$$q$$

•
$$\operatorname{Attr}_{\mathfrak{C}}^{f}(p) = \bigcup_{q < p} \operatorname{Attr}_{\mathfrak{C}}(q).$$

•
$$T_p X = N_p^+ \oplus N_p^-$$

ヨトイヨト

э

Theorem (Maulik and Okounkov 2012)

There exists a unique map of $H_T(pt)$ -modules

$$\operatorname{Stab}_{\mathfrak{C}, \mathcal{T}^{1/2}} : H_{\mathsf{T}}(X^{\mathsf{A}}) \to H_{\mathsf{T}}(X)$$

such that

- $\mathsf{supp}\left(\mathrm{Stab}_{\mathfrak{C},\mathcal{T}^{1/2}}(p)\right) \subset \mathsf{Attr}_{\mathfrak{C}}^{f}(p)$
- $\operatorname{Stab}_{\mathfrak{C},T^{1/2}}(p)|_p = \pm \operatorname{Euler}(N_p^-)$, where the sign depends on $T^{1/2}$.
- $\deg_{\mathsf{A}}\left(\operatorname{Stab}_{\mathfrak{C},\mathcal{T}^{1/2}}(p)|_{q}\right) < \frac{1}{2}\operatorname{codim}(q)$ for all q < p.

Example

$$X = T^* \mathbb{P}^n$$

$$T = (\mathbb{C}^{\times})^{n+1} \times \mathbb{C}_{\hbar}^{\times},$$

$$A = (\mathbb{C}^{\times})^{n+1}$$

$$X^A = \{p_1, p_2, \dots, p_{n+1}\}$$

$$H_T(X) =$$

$$\mathbb{C}[c, u_1, \dots, u_{n+1}, \hbar] / \left(\prod_{i=1}^{n+1} (c - u_i)\right)$$
sees \mathfrak{C} such that $p_1 \leq p_2 \leq \dots \leq p_{n+1}$.

Choose \mathfrak{C} such that $p_1 < p_2 < \ldots < p_{n+1}$. Let

$$F_k := \prod_{i < k} (u_i - c - \hbar) \prod_{i > k} (u_i - c)$$

Check:

•
$$F_k|_{p_i} = 0$$
 if $i > k$.
• $F_k|_{p_k} = \prod_{i < k} (u_i - u_k - \hbar) \prod_{i > k} (u_i - u_k) = \text{Euler}(N_p^-)$

• deg_A
$$F_k|_{p_i} < n$$
 if $i < k$.

By uniqueness of stable envelopes, $\operatorname{Stab}_{\mathfrak{C}, T^{1/2}}(p_k) = F_k$.

R-matrix

Let $\mathfrak{C}, \mathfrak{C}'$ be two chambers.

Definition

$$R_{\mathfrak{C}',\mathfrak{C}} := \operatorname{Stab}_{\mathfrak{C}',\mathsf{T}^{1/2}}^{-1} \circ \operatorname{Stab}_{\mathfrak{C},\mathsf{T}^{1/2}} \in \mathit{End}(H_{\mathsf{T}}(X^{\mathsf{A}}))_{\mathit{loc}}.$$

Using these *R*-matrices, (Maulik and Okounkov 2012) construct a Yangian $Y(\mathfrak{g}_Q)$, which acts on

$$X(\mathsf{w}) := \bigoplus_{\mathsf{v}} H_{\mathsf{T}}(X(\mathsf{v},\mathsf{w}))$$

In *K*-theory, stable envelopes depend additionally on a choice of fractional line bundle. They provide a geometric construction of $U_{\hbar}(\hat{\mathfrak{g}}_Q)$.

- For $\bigsqcup_{n} \operatorname{Hilb}^{n}(\mathbb{C}^{2})$, $\operatorname{Stab}(\lambda) = \operatorname{Schur}_{\lambda}$, (Bezrukavnikov and Okounkov).
- Used to compute the 2-leg DT vertex (Kononov, Okounkov, and Osinenko 2019).
- Puzzle rules for multiplication by Schubert classes (Knutson and Zinn-Justin 2021)
- Canonical bases of Lusztig (Hikita 2020).
- 3d mirror symmetry (Rimányi et al. 2019), (Dinkins 2020), (Kononov and Smirnov 2020).

Cohomology and K-theory provide affine schemes

 $H_{\mathsf{T}}(X) \rightsquigarrow \operatorname{Spec}(H_{\mathsf{T}}(X))$ $K_{\mathsf{T}}(X) \rightsquigarrow \operatorname{Spec}(K_{\mathsf{T}}(X))$

The elliptic analog provides a non-affine scheme $(\text{Ell}_{\mathsf{T}}(X), \mathscr{O}_{\mathsf{Ell}_{\mathsf{T}}(X)})$, (Grojnowski 1994), (Ginzburg, Kapranov, and Vasserot 1995). Global functions are replaced by sections of certain line bundles:

 $\operatorname{Stab}_{\mathfrak{C},T^{1/2}}$: Line bundle on $E_{\mathsf{T}}(X^{\mathsf{A}}) \to \operatorname{Line}$ bundle on $E_{\mathsf{T}}(X)$

Fix an elliptic curve $E = \mathbb{C}^{\times}/q^{\mathbb{Z}}$. Ell_T(X) is a scheme over Ell_T(pt) = cochar(T) $\otimes_{\mathbb{Z}} E \cong E^{\operatorname{rank}(T)}$.

4 3 6 4 3 6

э

Line bundles on E are determined by the transformation properties of their sections. For example, the function

$$\vartheta(x) := (x^{1/2} - x^{-1/2}) \prod_{i=1}^{\infty} (1 - q^i x) (1 - q^i / x)$$

defines a line bundle on E, whose sections satisfy the transformation property

$$f(qx) = -\frac{1}{\sqrt{qx}}f(x)$$

Line bundles

A rank *r* vector bundle \mathscr{V} on *X* provides an elliptic Chern class map:

$$c: \operatorname{Ell}_{\mathsf{T}}(X) \to S^{r}E$$

Let $D = \{0\} + S^{r-1}E \subset S^rE$. "Coordinates" $x_1, \ldots x_r$ on S^rE are called *elliptic Chern roots*. Sections of $\mathcal{O}(D)$ transform like the function

$$\prod_{i=1}^{r} \vartheta(x_i)$$

under shifts $x_i \rightarrow qx_i$.

Definition

The elliptic Thom class of $\mathscr V$ is the line bundle

(

$$\Theta(\mathscr{V}) = \mathsf{c}^* \mathscr{O}(D)$$

on $\text{Ell}_{\mathsf{T}}(X)$. It extends to a map $\Theta : \mathcal{K}_{\mathsf{T}}(X) \to \operatorname{Pic}(\text{Ell}_{\mathsf{T}}(X))$.

- We extend the elliptic cohomology scheme by taking the product of everything with $E^{|I|}$.
- We obtain a scheme $E_{T}(X) := \text{Ell}_{T}(X) \times E^{|I|}$ over the base $B_{X} = E^{\text{rank}(T)} \times E^{|I|}$.

Write z_i for the elliptic "coordinate" on the *i*th copy of E in $E^{|I|}$.

Universal line bundle

For X = X(v, w), tautological generation of $K_T(X)$ translates to the injectivity of the map

$$ch: \mathsf{E}_{\mathsf{T}}(X) \to E^{\mathsf{rank}(\mathsf{T})} \times E^{|I|} \times \prod_{i \in I} S^{\mathsf{v}_i} E$$

Let \mathcal{U} be the line bundle $E^{\operatorname{rank}(\mathsf{T})} \times E^{|I|} \times \prod_{i \in I} S^{\mathsf{v}_i} E$ associated to the function

$$\prod_{i \in I} \phi\left(z_i, \prod_{j=1}^{v_i} x_{i,j}\right), \quad \text{where} \quad \phi(a, b) := \frac{\vartheta(ab)}{\vartheta(a)\vartheta(b)}$$

Definition (Aganagic and Okounkov 2016)

The line bundle $\mathscr{U} := ch^*\mathcal{U}$ is called the universal line bundle on $E_T(X)$.

Elliptic stable envelopes

Definition

The elliptic stable envelope of X is the unique map of \mathscr{O}_{B_X} -modules

$$\operatorname{Stab}_{\mathfrak{C}, \mathcal{T}^{1/2}} : \Theta(\hbar)^{-\mathsf{rank}(\mathcal{T}^{1/2}_{>0})} \otimes \mathscr{U}' \to \Theta(\mathcal{T}^{1/2}) \otimes \mathscr{U}$$

satisfying a support and normalization condition. Here \mathscr{U}' is a certain shift of $\mathscr{U}|_{E_{\mathsf{T}}(X^{\mathsf{A}})}$.

- (Aganagic and Okounkov 2016) proved that elliptic stable envelopes exist for hypertoric varieties and quiver varieties.
- The construction of elliptic stable envelopes was generalized in (Okounkov 2020). It depends on the existence of an *attractive line bundle*, which is given by $\Theta(T^{1/2})$ above.

.

Elliptic stable envelopes

When X^{A} is finite, we have

$$E_{\mathsf{T}}(X^{\mathsf{A}}) \cong \bigsqcup_{p \in X^{\mathsf{A}}} B_p, \quad B_p = B_X$$

and

$$E_{\mathsf{T}}(X) \cong \Big(\bigsqcup_{p \in X^{\mathsf{A}}} B_p\Big)/\mathsf{Gluing} \mathsf{ data}$$

And it is equivalent to construct a section $\operatorname{Stab}_{\mathfrak{C},\mathcal{T}^{1/2}}(p)$ of the bundle

$$\Theta(\hbar)^{\mathsf{rank}(\mathcal{T}^{1/2}_{>0,p})}\otimes \mathscr{U}_{\mathcal{B}_p}^{\prime-1}\otimes \Theta(\mathcal{T}^{1/2})\otimes \mathscr{U}$$

over $E_T(X)$ for each $p \in X^A$. The two conditions mean that

•
$$\operatorname{Stab}_{\mathfrak{C}, T^{1/2}}(p)|_{B_{p'}} = 0 \text{ if } p < p'.$$

• $\operatorname{Stab}_{\mathfrak{C}, T^{1/2}}(p)|_{B_p} = \prod_{w \in \operatorname{char}_{\mathsf{T}}(N_p^-)} \vartheta(w)$

ヨトイヨト

Recall

$$ch: \mathsf{E}_{\mathsf{T}}(X) \to E^{\mathsf{rank}(\mathsf{T})} \times E^{|I|} \times \prod_{i \in I} S^{\mathsf{v}_i} E^{\mathsf{rank}(\mathsf{T})}$$

- $\operatorname{Stab}_{\mathfrak{C},\mathcal{T}^{1/2}}(p)$ is a section of a line bundle pulled-back from the right side.
- We will describe a section of the line bundle on the right side that pulls back to Stab_{C,T^{1/2}}(p) under ch.

This is called the "off-shell" description of the stable envelope.

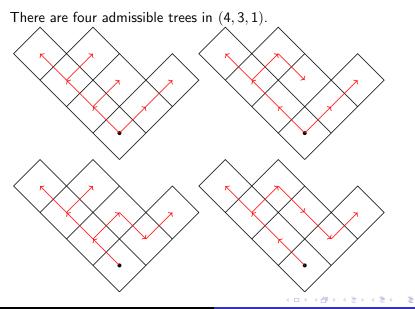
Recall: Fixed points on $X(v, w) \leftrightarrow \sum_{i \in I} w_i$ -tuples of partitions that respect v.

Consider oriented trees in a partition λ . We forbid trees with certain types of edges.

4 3 6 4 3 6

э

Example



Tree weights

Fix $X := X(\mathsf{v},\mathsf{w})$, \mathfrak{C} , $T^{1/2}$, and $\vec{\lambda} \in X^{\mathsf{A}}$. We define

- $S_{\vec{\lambda}}$, an elliptic function of the equivariant parameters, Kähler parameters, and elliptic Chern roots, depending on $\vec{\lambda}$.
- $W_{\vec{t}}$, an elliptic function of the same variables, for each tuple of trees in $\vec{\lambda}$.

Theorem (Dinkins 2021)

The elliptic stable envelope ${\rm Stab}_{\mathfrak{C},\,\mathcal{T}^{1/2}}(\vec{\lambda})$ is the pullback of the section

$$\mathsf{Sym}_1\mathsf{Sym}_2\ldots\mathsf{Sym}_{|I|}\left(S_{\vec{\lambda}}\sum_{\vec{\mathfrak{t}}}W_{\vec{\mathfrak{t}}}\right)$$

under the map *ch*, where the sum is taken over all tuples of admissible trees \vec{t} in $\vec{\lambda}$ and Sym_{*i*} is the symmetrization over the elliptic Chern roots of each \mathscr{V}_i .

周 ト イ ヨ ト イ ヨ ト

The proof uses abelianization techniques, which relates properties of $Y/\!/G$ to properties of $Y/\!/S$, where $S \subset G$ is a maximal torus. In our case, there is a diagram:

$$\begin{array}{c} \mu_{U,\mathbb{R}}^{-1}(\theta) \bigcap \mu_{U,\mathbb{C}}^{-1}(0)/(U \cap S) \xrightarrow{j_+} \mu_G^{-1}(\mathfrak{b}^{\perp})^{\theta_S - ss}/S \xrightarrow{j_-} AX \\ & \downarrow^{\pi} \\ & X \end{array}$$

where $U \subset G$ is a maximal compact subgroup and $B \subset G$ is a Borel subgroup.

There is a similar diagram for the fixed locus.

(Aganagic and Okounkov 2016) construct the elliptic stable envelope as the composition

$$\operatorname{Stab}_{\mathfrak{C},\mathcal{T}^{1/2}} := \pi_* \circ j_+^* \circ (j_{-*})^{-1} \circ \operatorname{Stab}'_{\mathfrak{C},\mathcal{T}_{AX}^{1/2}} \circ j'_{-*} \circ (j'_+{}^*)^{-1} \circ {\pi'_*}^{-1}$$

where

Roughly, the sum over trees provides the top map. The vertical and bottom maps are given explicitly in (Aganagic and Okounkov 2016).

The abelianization $A\vec{\lambda}$ of a fixed point $\vec{\lambda}$ is a nontrvial variety. Trees index torus fixed points on $A\vec{\lambda}$. The sum over admissible trees leads to a miraculous (and necessary) cancellation. I have written a package implementing the formulas described here. It is available at https://tarheels.live/dinkins/.

A choice of chamber is equivalent to an ordering of the equivariant parameters.

Quiver varieties have many natural polarizations, given by a choice of half the arrows in the framed-doubled quiver.

- 3d mirror symmetry
- Can this formula be generalized to Cherkis bow varieties?

Questions?

æ