Diagram automorphisms and canonical bases for quantum groups

Toshiaki Shoji

(joint work with Y. Ma and Z. Zhou)

Tongji University

September 21, 2021 **KPMU**

Canonical bases B and B

 \mathfrak{g} : Kac-Moody algebra assoc. to symmetric Cartan Datum X

 $\mathbf{U}_{q}(\mathfrak{g})$: quantum group assoc. to \mathfrak{g} over $\mathbf{Q}(q)$

 \mathbf{U}_q^- : negative part of $\mathbf{U}_q(\mathfrak{g})$

 \mathfrak{g}^{σ} : orbit algebra obtained from \mathfrak{g} by admissible autom. $\sigma:X\to X$ $\underline{\mathbf{U}}_{q}^{-}$: negative part of $\mathbf{U}_{q}(\mathfrak{g}^{\sigma})$

By using the geometry of quivers, Lusztig proved;

Theorem (Lusztig)

- **1** There exists the canonical basis **B** for U_a^- . σ acts on **B** as a permutation. Let $\mathbf{B}^{\sigma} = \{b \in \mathbf{B} \mid \sigma(b) = b\}.$
- 2 There exists the canonical signed basis $\underline{\mathbf{B}}$ of $\underline{\mathbf{U}}_{q}^{-}$, and the natural bijection $\widetilde{\mathbf{B}}^{\sigma} \simeq \widetilde{\mathbf{B}}$, where $\widetilde{\mathbf{B}}^{\sigma} = \mathbf{B}^{\sigma} \cup -\mathbf{B}^{\sigma}$.

Geometric construction of canonical bases

```
Assume, for simplicity, X: finite type, simply-laced
Q = (I, \Omega): a quiver assoc. to X, I: vertex set, \Omega: oriented edges
V = \bigoplus_{i \in I} V_i: representation space of V.
G_V = \prod_{i \in I} GL(V_i) acts naturally on V.
\sharp of G_V-orbits on V: finite (since X: finite type)
\mathscr{P}_V = \{ \mathsf{IC}(\overline{\mathscr{O}}, \overline{\mathbb{Q}}_I) [\mathsf{dim}\,\mathscr{O}] \mid \mathscr{O} : \mathsf{G}_V \text{-orbit in } V \},
the set of G_V-equivariant simple perverse sheaves on V
Put \mathscr{P}_{O} = | |_{V} \mathscr{P}_{V}
```

$$\mathscr{Q}_V$$
: fullsubacategory of $D^b_c(V)$, objects: complexes of the form
$$\bigoplus L[i], \qquad L \in \mathscr{P}_V, \quad i \in \mathbf{Z} \quad \text{(finite direct sum)}$$

$$\mathbf{K}(\mathcal{Q}_V)$$
; Grothendieck group of \mathcal{Q}_V , set $\mathbf{K}(\mathcal{Q}) = \bigoplus_V \mathbf{K}(\mathcal{Q}_V)$
 \mathscr{P}_Q gives a basis of $\mathbf{K}(\mathcal{Q})$

$$_{\bf A}{\bf U}_q^-$$
 : Lusztig's integral form of ${\bf U}_q^-$, ${\bf A}$ -subalg. of ${\bf U}_q^-$, where ${\bf A}={\bf Z}[q,q^{-1}]$

Lusztig proved;

• Grothendieck group $K(\mathcal{Q}_Q)$ has a structure of **A**-algebra, and there exists an isomorphism of **A**-algebras

(1)
$$\varphi: \mathbf{K}(\mathcal{Q}_Q) \simeq {}_{\mathbf{A}}\mathbf{U}_q^-.$$

Canonical basis **B** is defined by $\mathbf{B} = \varphi(\mathscr{P}_Q)$.

Remark. For X: symmetric Cartan datum, the Grothendieck group $\mathbf{K}(\mathcal{Q}) = \bigoplus_{V} \mathbf{K}(\mathcal{Q}_{V})$ can be defined, and (1) holds. But the construction of the category \mathcal{Q}_V is more complicated.

σ -setup for the category \mathcal{Q}_V

Fix an orientation of Q : compatible with $\sigma: X \to X$ σ induces a functor $\sigma^*: \mathcal{Q}_{\mathcal{O}} \to \mathcal{Q}_{\mathcal{O}}$

- $\mathcal{Q}_{\mathcal{O}}$: category with autom, objects: (\mathcal{C}, ϕ) , where $C \in \mathcal{Q}_Q$ such that $\phi : \sigma^* C \cong C$ with certain conditions
 - "Modified" Grothendieck group $K(\mathcal{Q}_Q)$ has a structure of **A**-algebra, and there exists an A-algebra isomorphism

(2)
$$K(\widetilde{\mathscr{Q}}_Q) \simeq {}_{\mathbf{A}}\underline{\mathsf{U}}_q^-$$

In (1), simple object : $A \in \mathscr{P}_Q \iff$ canonical base in **B**,

In (2), simple object : (A, ϕ) with $A \in \mathcal{P}_Q \iff$ canonical signed base in $\underline{\mathbf{B}} = \underline{\mathcal{B}} \sqcup -\underline{\mathcal{B}}$ (here \mathcal{B} : a basis of $\underline{\mathbf{U}}_{q}^{-}$, but not unique)

The forgetful functor $(A, \phi) \mapsto A$ gives a map $\widetilde{\mathbf{B}} \to \widetilde{\mathbf{B}} = \mathbf{B} \sqcup -\mathbf{B}$, induces a bijection $\widetilde{\mathbf{B}} \simeq \widetilde{\mathbf{B}}^{\sigma}$

Kashiwara's theory of crystal bases

• Lusztig obtained the canonical basis $\underline{\mathbf{B}}$ of $\underline{\mathbf{U}}_q^-$ from $\underline{\widetilde{\mathbf{B}}}$, by using Kashiwara's theory of crystals, and proved the bijection $\underline{\mathbf{B}} \cong \underline{\mathbf{B}}^{\sigma}$.

In this talk, we give an alternate approach for the construction of the canonical signed basis $\widetilde{\underline{\mathbf{B}}}$ of $\underline{\mathbf{U}}_q^-$, and the bijection $\widetilde{\underline{\mathbf{B}}} \simeq \widetilde{\mathbf{B}}^\sigma$, assuming the existence of canonical basis \mathbf{B} of \mathbf{U}_q^- . Once \mathbf{B} is given, the discussion in other parts are elementary, in the sense we don't use the geometry of quivers, nor the theory of crystal bases.

Remark. Similar results were obtained by S.-Zhou if X is finite or affine type, by using PBW-bases of \mathbf{U}_q^- . In the general case, we use \mathbf{B} instead of PBW-bases.

By Lusztig-Grojnowski, canonical bases = global crystal bases An approach from crystal bases theory for the proof $\underline{\mathbf{B}} \simeq \mathbf{B}^{\sigma}$

 Naito-Sagaki : Use Littelmann's path model realization of crystal bases.

Diagram automorphism on the Cartan datum

$$X = (I, (,))$$
: Cartan datum,

I: vertex set with $|I| < \infty$, (,): symmetric bilinear form on $\bigoplus_{i \in I} \mathbf{Q} \alpha_i$, with $(\alpha_i, \alpha_i) \in \mathbf{Z}$, satisfying the properties

- $(\alpha_i, \alpha_i) \in 2\mathbb{Z}_{>0}$ for any $i \in I$,
- $\frac{2(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)} \in \mathbf{Z}_{\leq 0}$ for any $i \neq j \in I$.

The matrix $(a_{ij})_{i,j\in I}$: Cartan matrix, $a_{ij} = \frac{2(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}$.

X : called symmetric if $(\alpha_i, \alpha_i) = 2$, and simply-laced if symmetric and $(\alpha_i, \alpha_i) \in \{0, -1\}$ for an $y \mid i \neq j \in I$

X: Cartan datum of arbitrary type

 $\sigma: I \to I$: diagram automorphism, i.e., permutation such that $(\alpha_{\sigma(i)}, \alpha_{\sigma(i)}) = (\alpha_i, \alpha_i)$ for any $i, j \in I$.

I: the set of orbits of σ in I.

Define a symmetric bilinear form $(\ ,\)_1$ on $\bigoplus_{n\in I} \mathbf{Q}\alpha_n$ by

$$(\alpha_{\eta}, \alpha_{\eta'})_{1} = \begin{cases} (\alpha_{i}, \alpha_{i})|\eta|, & (i \in \eta) & \text{if } \eta = \eta', \\ \sum_{i \in \eta, j \in \eta'} (\alpha_{i}, \alpha_{j}) & \text{if } \eta \neq \eta'. \end{cases}$$

Then $\underline{X} = (\underline{I}, (\ ,\)_1)$ defines a Cartan datum, called the Cartan datum induced from (X, σ) .

Assumption: σ is admissible. i.e, for each orbit $\eta \in \underline{I}$, $(\alpha_i, \alpha_i) = 0$ for any $i \neq j \in \eta$.

Quantum groups U_a^- and \underline{U}_a^-

Let q: indeterminate. Put, for $n, m \in \mathbf{Z}$ with m > 0,

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}}, \qquad [m]^! = \prod_{i=1}^m [i], \qquad [0]^! = 1.$$

 $\mathbf{U}_a = \mathbf{U}_a(X)$: quantum group assoc. to X.

 \mathbf{U}_{a}^{-} : negative part of \mathbf{U}_{a} .

 \mathbf{U}_{q}^{-} : assoc. algebra over $\mathbf{Q}(q)$, with generators $\{f_{i} \mid i \in I\}$ and relations

$$\sum_{k=0}^{1-a_{ij}} (-1)^k f_i^{(k)} f_j f_i^{(1-a_{ij}-k)} = 0, \qquad (i \neq j \in I),$$

where for $i \in I$, $n \in \mathbb{N}$, $f_i^{(n)} = \frac{f_i^n}{[n]!_d}$, $d_i = (\alpha_i, \alpha_i)/2$.

(Here for $d \in \mathbf{N}$, $[n]_d$ denotes the substitution $q \mapsto q^d$ for [n].)

 $\sigma:I\to I$ induces an isomorphism

$$\sigma: \mathbf{U}_q^- \stackrel{\sim}{\to} \mathbf{U}_q^-, \qquad f_i \mapsto f_{\sigma(i)}.$$

$$\mathbf{U}_q^{-,\sigma} = \{x \in \mathbf{U}_q^- \mid \sigma(x) = x\}$$
 : subalgebra of \mathbf{U}_q^-

 $_{\mathbf{A}}\mathbf{U}_{q}^{-}$: Lusztig's integral form of \mathbf{U}_{q}^{-} , where $\mathbf{A}=\mathbf{Z}[q,q^{-1}]$: \mathbf{A} -subalgebra of \mathbf{U}_{q}^{-} generated by $\{f_{i}^{(n)}\mid i\in I, n\in \mathbf{N}\}.$

 σ acts on ${}_{\mathbf{A}}\mathbf{U}_q^-$, ${}_{\mathbf{A}}\mathbf{U}_q^{-,\sigma}$: subalgebra of σ -fixed elements

 $\underline{\mathbf{U}}_q^-$: negative part of $\underline{\mathbf{U}}_q = \mathbf{U}_q(\underline{X})$ assoc. to \underline{X} : $\mathbf{Q}(q)$ -algebra generated by $\{\underline{f}_\eta \mid \eta \in \underline{I}\}$.

 ${\bf A} \underline{{\bf U}}_q^-$: **A**-subalgebra generated by $\{\underline{f}_\eta^{(a)} \mid \eta \in \underline{I}, a \in {\bf N}\}.$

Remark. We want to compare the algebra structure of $\mathbf{U}_q^{-,\sigma}$ and $\underline{\mathbf{U}}_q^-$. But no direct relations exist between them.

The algebra V_q

Assume the order of σ : a power of a prime number p.

 $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}$: finite field of p elements

Put $\mathbf{A}' = \mathbf{F}[q, q^{-1}]$, and consider the \mathbf{A}' -algebra

$${}_{\mathbf{A}'}\mathbf{U}_q^{-,\sigma}={}_{\mathbf{A}}\mathbf{U}_q^{-,\sigma}\otimes_{\mathbf{A}}\mathbf{A}'\simeq{}_{\mathbf{A}}\mathbf{U}_q^{-,\sigma}/p({}_{\mathbf{A}}\mathbf{U}_q^{-,\sigma})$$

For each $x \in \mathbf{U}_q^-$, let O(x) be the oribt sum $\sum_{0 \le i < k} \sigma^i(x)$, where k: smallest integer such that $\sigma^k(x) = x$.

Let J: the \mathbf{A}' -submodule of $\mathbf{A}'\mathbf{U}_{q}^{-,\sigma}$ generated by

$$\left\{ O(x) \mid \sigma(x) \neq x, x \in \mathbf{A}' \mathbf{U}_q^- \right\}$$

J: two-sided ideal of $\mathbf{A}'\mathbf{U}_q^{-,\sigma}$. Define a quotient algebra \mathbf{V}_q by

$$\mathbf{V}_q = \mathbf{A}' \mathbf{U}_q^{-,\sigma} / J$$

Let $\pi: \mathbf{A}' \mathbf{U}_q^{-,\sigma} \to \mathbf{V}_q$: the natural homomorphism.

Main theorems

For each $\eta \in \underline{I}$ and $a \in \mathbf{N}$, put $\widetilde{f}_{\eta}^{(a)} = \prod_{i \in \eta} f_i^{(a)}$. $f_i f_j = f_j f_i$ for $i, j \in \eta \Longrightarrow \widetilde{f}_{\eta}^{(a)} \in {}_{\mathbf{A}} \mathbf{U}_q^{-,\sigma}$.

Denote also by $\widetilde{f}_{\eta}^{(a)}$ its image in $\mathbf{A}' \mathbf{U}_{q}^{-,\sigma}$.

Define
$$g_{\eta}^{(a)} \in \mathbf{V}_q$$
 by $g_{\eta}^{(a)} = \pi(\widetilde{f_{\eta}^{(a)}}) \in \mathbf{V}_q$.

Note : $\mathbf{A}' \underline{\mathbf{U}}_q^-$: generated by $\{\underline{f}_{\eta}^{(\mathbf{a})} \mid \eta \in \underline{I}, \mathbf{a} \in \mathbf{N}\}.$

For any quantum group \mathbf{U}_q^- , we introduce a canonical basis \mathbf{B} in an axiomatic way. Note that \mathbf{B} is unique if it exists.

Theorem A

Assume that the canonical basis \mathbf{B} (or the canonical signed basis $\widetilde{\mathbf{B}}$) exists for \mathbf{U}_q^- . Then the assignment $\underline{f}_\eta^{(a)} \mapsto g_\eta^{(a)}$ gives an isomorphism of \mathbf{A}' -algebras

$$\Phi: \mathbf{A}' \mathbf{U}_q^- \stackrel{\sim}{\to} \mathbf{V}_q$$

Theorem B

- Assume that $p \neq 2$. Assume that the canonical basis **B** exists for \mathbf{U}_q^- . There exists the canonical basis $\underline{\mathbf{B}}$ of $\underline{\mathbf{U}}_q^-$, and the natural bijection $\underline{\mathbf{B}} \cong \mathbf{B}^\sigma$.
- 2 Assume that p=2. A weaker statement holds, by replacing **B** by $\widetilde{\mathbf{B}}$, and $\underline{\mathbf{B}}$ by $\widetilde{\underline{\mathbf{B}}}$ (the canonical signed basis of $\underline{\mathbf{U}}_q^-$).

Consider X: symmetric type.

Then by Lusztig, there exists the canonical basis ${\bf B}$ for ${\bf U}_q^-$.

Let $\sigma:X\to X$: admissible diagram automorhism, with n: the order of $\sigma.$

Corollary

- **1** Assume n: odd. There exists the canonical basis $\underline{\mathbf{B}}$ of $\underline{\mathbf{U}}_q^-$, and the natural bijection $\underline{\mathbf{B}} \simeq \mathbf{B}^{\sigma}$.
- ② Assume n: even. There exists the canonical signed basis $\underline{\widetilde{\mathbf{B}}}$ of $\underline{\mathbf{U}}_q^-$, and the natural bijection $\underline{\widetilde{\mathbf{B}}} \cong \widetilde{\mathbf{B}}^{\sigma}$.

Proof of Corollary (n : odd)

There exists a sequence $X=X_0,X_1,\ldots,X_k=\underline{X}$ of Cartan data, and a diagram autom. $\sigma_i:X_i\to X_i$ $(0\leq i\leq k-1)$ such that

$$X_{i+1} \simeq \text{Cartan datum induced from } (X_i, \sigma_i)$$

and that $\sigma = \sigma_{k-1} \cdots \sigma_1 \sigma_0$. Moreover, the order of σ_i : a prime power.

Let $_{(i)}\mathbf{U}_{q}^{-}$: (negative part of) the quantum group associated to X_{i} .

By induction on i, there exists the canonical basis $_{(i)}\mathbf{B}$ of $_{(i)}\mathbf{U}_{q}^{-}$. By Theorem B, there exists the canonical basis $_{(i+1)}\mathbf{B}$ of $_{(i+1)}\mathbf{U}_{q}^{-}$, and the natural bijection

$$\xi_i: ({}_{(i)}\mathbf{B})^{\sigma_i} \underset{\longrightarrow}{\sim} {}_{(i+1)}\mathbf{B}$$

Thus we obtain the canonical basis $\underline{\mathbf{B}} = {}_{(k)}\mathbf{B}$ of ${}_{(k)}\mathbf{U}_q^- = \underline{\mathbf{U}}_q^-$, and the natural bijection (commuting with Kashiwara operators)

$$\xi: \mathbf{B}^{\sigma} = (\cdots (\mathbf{B}^{\sigma_0})^{\sigma_1} \cdots)^{\sigma_{k-1}} \stackrel{\sim}{\hookrightarrow} \mathbf{\underline{B}}$$

Inner product on U_q^-

Let \mathbf{U}_q^- quantum group of arbitrary type

Let
$$Q = \bigoplus_{i \in I} \mathbf{Z} \alpha_i$$
: root lattice, $Q_- = \sum_{i \in I} \mathbf{Z}_{\leq i} \alpha_i$.

 \mathbf{U}_q^- has the weight space decomposition $\mathbf{U}_q^- = \bigoplus_{\nu \in Q_-} (\mathbf{U}_q^-)_{\nu}$, where $(\mathbf{U}_q^-)_{\nu}$: the subspace of \mathbf{U}_q^- spanned by $f_{i_1} \dots f_{i_N}$ such that $\alpha_{i_1} + \dots + \alpha_{i_N} = -\nu$.

Define a multiplication on $\mathbf{U}_q^- \otimes \mathbf{U}_q^-$ by, for homogeneous $x_1, x_2, x_1', x_2',$

$$(x_1 \otimes x_2) \cdot (x_1' \otimes x_2') = q^{-(\text{wt } x_2, \text{wt } x_1')} x_1 x_1' \otimes x_2 x_2',$$

where wt $x = \nu$ if $x \in (\mathbf{U}_q^-)_{\nu}$.

There exists a unique homomorphism $r: \mathbf{U}_q^- \to \mathbf{U}_q^- \otimes \mathbf{U}_q^-$ defined by $f_i \mapsto f_i \otimes 1 + 1 \otimes f_i \ (i \in I)$

There exists a unique bilinear form (,) on ${\bf U}_q^-$ satisfying the properties; (1,1)=1 and

$$(f_i, f_i) = \delta_{ij}(1 - q_i)^{-1}, \quad q_i = q^{d_i} = q^{(\alpha_i, \alpha_i)/2}$$

 $(x, y'y'') = (r(x), y' \otimes y''),$
 $(x'x'', y) = (x' \otimes x'', r(y)),$

where the bilinear form on $\mathbf{U}_q^-\otimes \mathbf{U}_q^-$ is defined by $(x_1\otimes x_2,x_1'\otimes x_2')=(x_1,x_1')(x_2,x_2')$. The bilinear form $(\ ,\)$ is symmetric, and non-degenerate.

For
$$i \in I$$
, define a $\mathbf{Q}(q)$ -linear map $_i r : \mathbf{U}_q^- \to \mathbf{U}_q^-$ by $r(x) = f_i \otimes_i r(x) + \sum_i y \otimes_i z$, where $y :$ homog. with wt $y \neq -\alpha_i$.

For $i \in I$, define a $\mathbf{Q}(q)$ -subspace $\mathbf{U}_{q}^{-}[i]$ of \mathbf{U}_{q}^{-} by

$$\mathbf{U}_{q}^{-}[i] = \operatorname{Ker}_{i} r.$$

The following result is known by Lusztig and Kashiwara.

• For each $i \in I$, there is a direct sum decomp. of $\mathbf{Q}(q)$ -vector spaces,

$$\mathbf{U}_{q}^{-} = \bigoplus_{n \geq 0} f_{i}^{(n)} \mathbf{U}_{q}^{-}[i],$$

where all the components $f_i^{(n)} \mathbf{U}_q^-[i]$ are mutually orthogonal.

- **2** The map $x \mapsto f_i^{(n)}x$ gives an isom. $\mathbf{U}_q^-[i] \simeq f_i^{(n)}\mathbf{U}_q^-[i]$.
- **3** Set $_{\mathbf{A}}(\mathbf{U}_{q}^{-}[i]) = \mathbf{U}_{q}^{-}[i] \cap _{\mathbf{A}}\mathbf{U}_{q}^{-}$. There is a decomp. as **A**-submodules,

$$_{\mathbf{A}}\mathbf{U}_{q}^{-}=\bigoplus_{n\geq0}f_{i}^{(n)}{}_{\mathbf{A}}(\mathbf{U}_{q}^{-}[i])$$

• The projection $\mathbf{U}_q^- \to f_i^{(n)} \mathbf{U}_q^-[i]$ preserves the weights.

The $\mathbf{Z}[q]$ -submodule $\mathscr{L}_{\mathbf{Z}}(\infty)$

A basis \mathcal{B} of \mathbf{U}_q^- is called **almost orthonormal** if, for any $b,b'\in\mathcal{B}$,

$$(b,b') \in egin{cases} 1+q\mathbf{Z}[[q]] \cap \mathbf{Q}(q) & ext{if } b=b', \ q\mathbf{Z}[[q]] \cap \mathbf{Q}(q) & ext{if } b
eq b'. \end{cases}$$

Recall : $\mathbf{A} = \mathbf{Z}[q, q^{-1}]$. Let $\mathbf{A}_0 = \mathbf{Q}[[q]] \cap \mathbf{Q}(q)$. Set

$$\mathscr{L}_{\mathbf{Z}}(\infty) = \{ x \in {}_{\mathbf{A}}\mathbf{U}_{q}^{-} \mid (x, x) \in \mathbf{A}_{0} \}$$

Known: $\mathscr{L}_{\mathbf{Z}}(\infty)$: $\mathbf{Z}[q]$ -submodule of ${}_{\mathbf{A}}\mathbf{U}_{q}^{-}$. If \mathcal{B} is almost orthonormal, and **integral**, i.e., **A**-submodule generated by \mathcal{B} : stable by $f_{i}^{(n)}$ and ${}_{i}r$, then \mathcal{B} gives a $\mathbf{Z}[q]$ -basis of $\mathscr{L}_{\mathbf{Z}}(\infty)$.

For each $i \in I$, consider the decomp. $\mathbf{U}_q^- = \bigoplus_{n \geq 0} f_i^{(n)} \mathbf{U}_q^-[i]$. For $x \in \mathbf{U}_q^-$, write

$$x = \sum_{n \ge 0} y_n = \sum_{n \ge 0} f_i^{(n)} x_n, \qquad (x_n \in \mathbf{U}_q^-[i])$$

Lemma (Kashiwara)

Let $x = \sum_{n>0} y_n$ be as above.

- If $x \in \mathcal{L}_{\mathbf{Z}}(\infty)$, then $x_n, y_n \in \mathcal{L}_{\mathbf{Z}}(\infty)$. If, in addition, $(x,x) \in 1 + q\mathbf{A}_0$, then there exists $n_0 \geq 0$ such that $(y_{n_0}, y_{n_0}), (x_{n_0}, x_{n_0}) \in 1 + q\mathbf{A}_0$, $(y_n, y_n), (x_n, x_n) \in q\mathbf{A}_0$ for $n \neq n_0$.
- **2** Let $\mathcal{B}: \mathbf{A}$ -basis of ${}_{\mathbf{A}}\mathbf{U}_q^-$, which is almost orthonormal, and integral. There exists $b \in \mathcal{B}$ such that, module $q\mathscr{L}_{\mathbf{Z}}(\infty)$,

$$y_n \equiv \begin{cases} \pm b & \text{if } n = n_0, \\ 0 & \text{if } n \neq n_0. \end{cases}$$

Canonical basis

Fix $i \in I$. Under the decom. $x = \sum_{n \ge 0} f_i^{(n)} x_n$ with $x_n \in \mathbf{U}_q^-[i]$, set

$$x_{[i;a]} = f_i^{(a)} x_a$$
, (projection to $f_i^{(a)} \mathbf{U}_q^-[i]$)

Let \mathcal{B} : a basis of \mathbf{U}_q^- .

Fix $i \in I$. For $b \in \mathcal{B}$, define $\varepsilon_i(b) \in \mathbf{N}$ by

$$b \in f_i^{(\varepsilon_i(b))} \mathbf{U}_q^- - f_i^{(\varepsilon_i(b)+1)} \mathbf{U}_q^-$$

Set $\mathcal{B}_{i;a} = \{b \in \mathcal{B} \mid \varepsilon_i(b) = a\}$. We have a partition

$$\mathcal{B} = \bigsqcup_{n \geq 0} \mathcal{B}_{i;n}$$

Let $\bar{}$: $\mathbf{U}_q^- \to \mathbf{U}_q^-$ the **bar-involution**; i.e., a **Q**-algebra isom. defined by $q \mapsto q^{-1}, f_i \mapsto f_i \ (i \in I)$.

We consider a basis ${\bf B}$ of ${\bf U}_q^-$ having the following properties;

- (C1) **B** gives a $\mathbf{Z}[q]$ -basis of $\mathscr{L}_{\mathbf{Z}}(\infty)$,
- (C2) **B** is bar-invariant, i.e., $\overline{b} = b$ for $b \in \mathbf{B}$,
- (C3) **B** is almost orthonormal,
- (C4) For $\nu \in Q_-$, set $\mathbf{B}_{\nu} = \mathbf{B} \cap (\mathbf{U}_q^-)_{\nu}$. Then we have a partition $\mathbf{B} = \bigsqcup_{\nu \in Q_-} \mathbf{B}_{\nu}$, with $\mathbf{B}_{\nu} = \{1\}$ for $\nu = 0$, ,
- (C5) If $b \in \mathbf{B}_{i;a}$ for $i \in I, a \in \mathbf{N}$, then

$$b \equiv b_{[i;a]} \mod q \mathscr{L}_{\mathbf{Z}}(\infty)$$

- (C6) $\bigcap_{i \in I} \mathbf{B}_{i;0} = \{1\},\$
- (C7) Let $b \in \mathbf{B}_{i;0}$, and a > 0. There exists a unique $b' \in \mathbf{B}_{i;a}$ such that

$$b' \equiv f_i^{(a)} b \mod f_i^{a+1} \mathbf{U}_q^-$$

The correspondence $b \mapsto b'$ gives a bijection $\pi_{i;a} : \mathbf{B}_{i;0} \cong \mathbf{B}_{i;a}$.

Remark. If **B** exists in U_a^- , then **B** is unique.

The basis **B** is called the **canonical basis** of \mathbf{U}_q^-

Theorem (Lusztig)

Assume that \mathbf{U}_q^- : assoc. to the symmetric Cartan datum X. Then the canonical basis \mathbf{B} exists.

We define a subset $\widetilde{\mathcal{B}}$ of \mathbf{U}_q^- by

$$\widetilde{\mathcal{B}} = \{x \in \mathbf{U}_q^- \mid \overline{x} = x, (x, x) \in 1 + q\mathbf{Z}[[q]]\}$$

If there exists a basis $\mathcal B$ of $\mathbf U_q^-$ such that $\widetilde{\mathcal B}=\mathcal B\sqcup -\mathcal B$,

 $\widetilde{\mathcal{B}}$: called **canonical signed basis**.

For the canonical signed basis $\widetilde{\mathcal{B}}$, the choice of \mathcal{B} is not unique.

If **B**: canonical basis, then $\mathbf{B} \sqcup -\mathbf{B}$: canonical signed basis.

Outline of the proof of Theorem A

We prove $\Phi: \mathbf{A}' \underline{\mathbf{U}}_q^- \overset{\sim}{\to} \mathbf{V}_q$.

Step 1: Φ is an algebra homomorphism (discussed later).

Step 2: Φ is injective.

Let $\mathbf{F}(q)$: rational function filed, quotient field of $\mathbf{A}' = \mathbf{F}[q,q^{-1}]$

$$\mathsf{Set} \ \ _{\mathsf{F}(q)} \mathsf{V}_q = \mathsf{V}_q \otimes_{\mathsf{A}'} \mathsf{F}(q), \quad \ _{\mathsf{F}(q)} \underline{\mathsf{U}}_q^- = {}_{\mathsf{A}'} \underline{\mathsf{U}}_q^- \otimes_{\mathsf{A}'} \mathsf{F}(q).$$

 Φ can be extended to $\Phi: {}_{\mathbf{F}(q)}\underline{\mathbf{U}}_q^- \to {}_{\mathbf{F}(q)}\mathbf{V}_q.$ Step 2 follows from

Proposition

- **1** The bilinear forms on $\mathbf{F}(q)\underline{\mathbf{U}}_q^-$ and on $\mathbf{F}(q)\mathbf{V}_q$ are non-degenerate.

Step 3: Φ is surjective.

Let **B** the canonical basis of \mathbf{U}_q^- .

For each $i \in I$, $a \in \mathbb{N}$, define a bijection $F_i : \mathbf{B}_{i;a} \to \mathbf{B}_{i;a+1}$ by

$$F_i = \pi_{i;a+1} \circ \pi_{i;a}^{-1} : \mathbf{B}_{i;a} \longrightarrow \mathbf{B}_{i;0} \longrightarrow \mathbf{B}_{i;a+1}$$

Define $E_i: \mathbf{B}_{i;a} \to \mathbf{B}_{i;a-1}$ as the inverse of F_i if a > 0, and $E_i(b) = 0$ for $b \in \mathbf{B}_{i;0}$. The maps $E_i, F_i: \mathbf{B} \to \mathbf{B} \cup \{0\}$ are called Kashiwara operators.

Let $\sigma: \mathbf{U}_q^- \to \mathbf{U}_q^-:$ alg. autom. and consider $\underline{\mathbf{U}}_q^-.$

Let \mathbf{B}^{σ} : the set of σ -fixed element in \mathbf{B} .

Let $\eta \in \underline{I}$, and $b \in \mathbf{B}^{\sigma}$.

 $\varepsilon_i(b)$ is constant for $i \in \eta$, which we denote by $\varepsilon_{\eta}(b)$. Set

$$\mathsf{B}_{\eta;\mathsf{a}}^\sigma = \{b \in \mathsf{B}^\sigma \mid arepsilon_\eta(b) = \mathsf{a}\}.$$

We have a partition $\mathbf{B}^{\sigma} = \bigsqcup_{a \geq 0} \mathbf{B}_{n;a}^{\sigma}$.

For each $\eta \in \underline{I}$, one can define a bijection $\pi_{\eta;a} : \mathbf{B}_{\eta;0}^{\sigma} \overset{\sim}{\hookrightarrow} \mathbf{B}_{\eta;a}^{\sigma}$, as the restriction of $\prod_{i \in \eta} \pi_{i;a}$ on $\mathbf{B}_{\eta;0}^{\sigma}$.

We define Kashiwara operators \widetilde{F}_{η} , \widetilde{E}_{η} : $\mathbf{B}^{\sigma} \to \mathbf{B}^{\sigma} \cup \{0\}$ by using $\pi_{\eta;a}$. \widetilde{F}_{η} is the restriction of $\prod_{i \in \eta} F_i$ on \mathbf{B}^{σ}

Lemma

For $\eta \in \underline{I}$, set $\mathbf{U}_q^-[\eta] = \bigcap_{i \in \eta} \mathbf{U}_q^-[i]$. Then we have

$$_{\mathbf{A}}\mathbf{U}_{q}^{-}=igoplus_{(a_{i})\in\mathbf{N}^{\eta}}igg(\prod_{i\in\eta}f_{i}^{(a_{i})}igg)_{\mathbf{A}}(\mathbf{U}_{q}^{-}[\eta])$$

In particular,

$${}_{\mathbf{A}}\mathbf{U}_{q}^{-,\sigma} \equiv \bigoplus_{\mathbf{a} \in \mathbf{N}} \widetilde{f}_{\eta}^{(\mathbf{a})}{}_{\mathbf{A}}(\mathbf{U}_{q}^{-}[\eta])^{\sigma} \mod J.$$

Recall $\pi: {}_{\mathbf{A}'}\mathbf{U}_q^{-,\sigma} \to \mathbf{V}_q$. $\pi(\mathbf{B}^\sigma)$ give an \mathbf{A}' -basis of \mathbf{V}_q . In order to prove the surjectivity of Φ , enough to show $\pi(b) \in \operatorname{Im} \Phi$ for $b \in \mathbf{B}^\sigma$. This is done by the Lemma, and the property of $\widetilde{F}_\eta, \widetilde{E}_\eta$.

Outline of the proof of Theorem B

Recall $\pi: {}_{\mathbf{A}'}\mathbf{U}_q^{-,\sigma} \to \mathbf{V}_q:$ projection. For each $\eta \in \underline{I}$, set $\mathbf{V}_q[\eta] = \pi({}_{\mathbf{A}'}(\mathbf{U}_q^-[\eta])^\sigma))$. By the previous lemma, we have

$$\mathbf{V}_q = \bigoplus_{a \in \mathbf{N}} g_{\eta}^{(a)} \mathbf{V}_q[\eta]$$

We also have a decomp.

$$\mathbf{A}'\underline{\mathbf{U}}_q^- = \bigoplus_{a \in \mathbf{N}} \underline{f}_{\eta}^{(a)} \mathbf{A}'\underline{\mathbf{U}}_q^-[\eta].$$

Thus $\Phi: \mathbf{A}' \underline{\mathbf{U}}_q^- \stackrel{\sim}{\to} \mathbf{V}_q$ gives an isomorphism of \mathbf{A}' -modules,

$$\underline{f}_{\eta}^{(a)} \mathbf{A}' \underline{\mathbf{U}}_{q}^{-}[\eta] \overset{\sim}{\to} \mathbf{g}_{\eta}^{(a)} \mathbf{V}_{q}[\eta].$$

 $\pi(\mathbf{B}^{\sigma})$ gives an \mathbf{A}' -basis of \mathbf{V}_q . Set $\underline{\mathbf{B}}^{\bullet} = \Phi^{-1}(\pi(\mathbf{B}^{\sigma}))$. Then $\underline{\mathbf{B}}^{\bullet}$ gives an \mathbf{A}' -basis of $\underline{\mathbf{A}}'\underline{\mathbf{U}}_q^-$.

Let $\underline{\mathscr{L}}_{\mathbf{F}}(\infty)$: $\mathbf{F}[q]$ -submodule of $\mathbf{A}'\underline{\mathbf{U}}_q^-$ spanned by $\underline{\mathbf{B}}^{ullet}$.

Lemma

 $\underline{\mathbf{B}}^{\bullet}$ is the canonical basis of $_{\mathbf{A}'}\underline{\mathbf{U}}_q^-$, namely it satisfies similar properties as $(C_1)\sim(C7)$, by replacing $\mathscr{L}_{\mathbf{Z}}(\infty)$ by $\mathscr{\underline{L}}_{\mathbf{F}}(\infty)$, etc. Moreover, we have a natural bijection $\mathbf{B}^{\sigma}\simeq \underline{\mathbf{B}}^{\bullet}$.

Let
$$\varphi: {}_{\mathbf{A}}\underline{\mathbf{U}}_q^- \to {}_{\mathbf{A}'}\underline{\mathbf{U}}_q^- = {}_{\mathbf{A}}\underline{\mathbf{U}}_q^-/p({}_{\mathbf{A}}\underline{\mathbf{U}}_q^-):$$
 the natural surjection.

Let $\underline{\mathscr{L}}_{\mathbf{Z}}(\infty)$: $\mathbf{Z}[q]$ -submodule of $_{\mathbf{A}}\underline{\mathbf{U}}_{q}$ defined similar to $\mathscr{L}_{\mathbf{Z}}(\infty)$ for \mathbf{U}_{q}^{-} .

Lemma

Let $x \in \mathcal{L}_{\mathbf{Z}}(\infty)$ be such that $\overline{x} = x$, and $(x, x) \in 1 + q\mathbf{A}_0$. Further assume that $\varphi(x) = b_{\bullet} \in \underline{\mathbf{B}}^{\bullet}$.

- **1** If $p \neq 2$, then x is determined uniquely by b_{\bullet} .
- ② If p=2, then x is unique up to sign, i.e., $\varphi^{-1}(b_{\bullet})=\{\pm x\}$.

Thus cannical basis $\underline{\mathbf{B}}$ of $\underline{\mathbf{U}}_q^-$ is obtained by $\varphi: \underline{\mathbf{B}} \cong \underline{\mathbf{B}}^{\bullet}$ if $p \neq 2$, and canonical signed basis $\underline{\widetilde{\mathbf{B}}} = \varphi^{-1}(\underline{\mathbf{B}}^{\bullet})$ if p = 2.

Homomorphism $\Phi: \mathbf{A}' \underline{\mathbf{U}}_q^- \to \mathbf{V}_q$

We prove Φ is a homomorphism. (Step 1).

Note : $\mathbf{A}' \underline{\mathbf{U}}_q^-$ is the \mathbf{A}' -algebra with generators $\underline{f}_{\eta}^{(a)}$, with Serre relations.

In order to prove Step 1, enough to show $\widetilde{f}_{\eta}^{(a)}$ satisfies similar relations, namely the relations in $\mathbf{A}'\mathbf{U}_q^{-,\sigma}$,

$$(A) \qquad \sum_{k=0}^{1-a_{\eta\eta'}} (-1)^k \begin{bmatrix} 1-a_{\eta\eta'} \\ k \end{bmatrix}_{d_{\eta}} \widetilde{f}_{\eta}^k \widetilde{f}_{\eta'} \widetilde{f}_{\eta}^{1-a_{\eta\eta'}-k} \equiv 0 \mod J \qquad (\eta \neq \eta'),$$

$$(B) \qquad [a]_{d_{\eta}}^{!}\widetilde{f_{\eta}^{(a)}} = \widetilde{f_{\eta}^{a}}, \qquad (a \in \mathbf{N}),$$

where $d_{\eta}=(lpha_{\eta},lpha_{\eta})_{1}/2=|\eta|d_{i}$.

(B) is shown as follows. Since $|\eta|$ is a power of p, we have

$$([a]_{d_i}^!)^{|\eta|} = [a]_{|\eta|d_i}^! = [a]_{d_\eta}^!$$
 in $\mathbf{A}' = \mathbf{F}[q, q^{-1}]$. Hence
$$\widetilde{f}_{\eta}^{(a)} = \prod_{i \in \eta} f_i^{(a)} = ([a]_{d_i}^!)^{-|\eta|} \prod_{i \in \eta} f_i^a = ([a]_{d_\eta}^!)^{-1} \widetilde{f}_{\eta}^a.$$

For the proof of (A), we consider the simplest situation; $\mathbf{U}_q^-: \text{ simply-laced, fix } \eta, \eta' \in \underline{I} \text{ such that } |\eta| = 1, |\eta'| = n-1, \\ \text{and any element in } \eta' \text{ is joined to the element in } \eta \\ \text{(Here give no assumption on } n\text{)}$

Since $a_{ij} = -1$ for $i \in \eta, j \in \eta'$, we have

$$\mathsf{a}_{\eta,\eta'} = -|\eta'|, \qquad \mathsf{a}_{\eta',\eta} = -1.$$

Write $\eta=\{1\}, \eta'=\{2_1,\ldots,2_{n-1}\}$. We have $\widetilde{f_\eta}=f_1,\widetilde{f_{\eta'}}=f_{2_1}\cdots f_{2_{n-1}}$.

In order to prove (A), we need to copmpute, for various $0 \le k \le n$, $\widetilde{f}_{\eta}^{k}\widetilde{f}_{\eta'}\widetilde{f}_{\eta}^{n-k} = f_{1}^{k}f_{2_{1}}\cdots f_{2_{n-1}}f_{1}^{n-k}$ (here $1-a_{\eta\eta'}=n$).

More genrally, for $(a_1, \ldots, a_n) \in \mathbf{N}^n$ such that $\sum_i a_i = n$, consider the corresp.

$$(a_1,\ldots,a_n)\longleftrightarrow f_1^{a_1}f_{2_1}f_1^{a_2}f_{2_2}\cdots f_{2_{n-2}}f_1^{a_{n-1}}f_{2_{n-1}}f_1^{a_n}\in \mathbf{U}_q^-$$

The commuting relations are given by $f_1^2 f_{2_k} = f_1 f_{2_k} f_1 - f_{2_k} f_1^2$.

Combinatorial setting

Let V_n be a $\mathbf{Q}(q)$ -vector space spanned by $\{\mathbf{a}=(a_1,\ldots,a_n)\in\mathbf{N}^n\}$ satisfying the relations;

For any $1 \le i \le n-1$, if $\mathbf{a} = (a_1, \dots, a_n) \in \mathbf{N}^n$ with $a_i \ge 2$, then \mathbf{a} is written as

$$\mathbf{a} = [2]\mathbf{b} - \mathbf{c},$$

where $\mathbf{b}, \mathbf{c} \in \mathbf{N}^n$ are given by

$$\mathbf{b} = (a_1, \dots, a_{i-1}, a_i - 1, a_{i+1} + 1, a_{i+2}, \dots, a_n),$$

$$\mathbf{c} = (a_1, \dots, a_{i-1}, a_i - 2, a_{i+1} + 2, a_{i+1}, \dots, a_n).$$

For each $m \ge 1$, denote by $E_n(m)$ the subspace of V_n spanned by

$$\mathscr{E}_n(m) = \{ \mathbf{a} = (a_1, \dots, a_n) \mid \sum_{1 \le i \le n} a_i = m, a_i \in \{0, 1\} \text{ for } 1 \le i \le n - 1 \}$$

If $\mathbf{a} \in V_n$ is such that $\sum_i a_i = m$, then $\mathbf{a} \in E_n(m)$.

In the case where m=n, set $E_n=E_n(m)$ and $\mathscr{E}_n(m)=\mathscr{E}_n$.

Example.

$$\begin{split} \mathscr{E}_2 &= \{(1,1),(0,2)\}, \\ \mathscr{E}_3 &= \{(1,1,1),(1,0,2),(0,1,2),(0,0,3)\}, \\ \mathscr{E}_4 &= \{(1,1,1,1),(1,1,0,2),(1,0,1,2),(1,0,0,3),\\ &\qquad \qquad (0,1,1,2),(0,1,0,3),(0,0,1,3),(0,0,0,4)\}. \end{split}$$

Lemma

Assume that $(k, 0, \dots, 0, \ell) \in V_n$. Then we have

$$(k,0,\ldots,0,\ell) = \sum_{\substack{a_1+\cdots+a_n=k+\ell\\a_1,\ldots,a_{n-1}\in\{0,1\}}} (-1)^{a_1+\cdots+a_{n-1}+(n-1)} \left(\prod_{1\leq i\leq n-1} [k-x_i]\right) \mathbf{a}$$

where $x_i = a_1 + \cdots + a_{i-1} + (1 - a_i)$ for each i, and $\mathbf{a} = (a_1, \dots, a_n) \in \mathscr{E}_n(k + \ell)$.

In the case where n=2, the following formula holds. For any $k>0, \ell>0$, we have

(1)
$$(k,\ell) = [k](1,k+\ell-1) - [k-1](0,k+\ell).$$

(1) is proved by induction on k. The lemma is proved by induction on n.

Proposition

The following equality holds in E_n .

(2)
$$\sum_{k=0}^{n} (-1)^{k} {n \brack k} (k, 0, \dots, 0, n-k) = 0.$$

Proof. By applying the lemma for m = n, we have

$$(k,0,\ldots,0,n-k) = \sum_{(a_1,\ldots,a_n)\in\mathscr{E}_n} (-1)^{a_n-1} \left(\prod_{1\leq i\leq n-1} [k-x_i]\right) (a_1,a_2,\ldots,a_n),$$

where $x_i = a_1 + \cdots + a_{i-1} + (1 - a_i)$ for $1 \le i < n$.

In order to prove (2), enough to see, for a fixed $\mathbf{a}=(a_1,\ldots,a_n)\in\mathscr{E}_n$,

(3)
$$\sum_{k=0}^{n} (-1)^k {n \brack k} (-1)^{a_n-1} \left(\prod_{1 \le i \le n-1} [k-x_i] \right) = 0.$$

Note: The product factor can be written as

$$\prod_{1 \le i \le n-1} [k-x_i] = \sum_{j=1}^n F_j(q) q^{(n-2j+1)k},$$

where $F_i(q) \in \mathbf{Q}(q)$ is independent from k.

Thus (3) follows from the following statement.

(4)
$$\sum_{k=0}^{n} (-1)^k q^{(n-2j+1)k} \begin{bmatrix} n \\ k \end{bmatrix} = 0 \quad \text{for } j = 1, \dots, n.$$

By the quantum binomial formula,

$$\prod_{\ell=0}^{n-1} (1+q^{2\ell}z) = \sum_{k=0}^{n} q^{k(n-1)} \begin{bmatrix} n \\ k \end{bmatrix} z^{k},$$

where z: another indeterminate. If we put $z=-q^{-2j+2}$ for $j=1,\ldots,n$, (4) holds. The proposition is proved.

The proposition can be translated to the following.

Corollary

Assume that $\eta=\{1\}$ and $\eta'=\{2_1,\ldots,2_{n-1}\}$. Assume that 1 is joined to $2_1,\ldots,2_{n-1}$ (by single edge). Then $1-a_{\eta\eta'}=n$, and

(1)
$$\sum_{k=0}^{n} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix} f_{1}^{k} (f_{2_{1}} \cdots f_{2_{n-1}}) f_{1}^{n-k} = 0.$$

Remark. (1) holds for any $n \in \mathbb{N}$, without using modulo J.

Assume that $|\eta| = n$ and $|\eta'| = 1$ with $\eta' = \{j\}$, and any $i \in \eta$ is joined to $j \in \eta'$ (with single edge).

Thus $a_{\eta\eta'}=-1, 1-a_{\eta\eta'}=2$ and $d_{\eta}=(\alpha_{\eta},\alpha_{\eta})_1/2=n$.

Recall : $\widetilde{f_{\eta}} = \prod_{i \in \eta} f_i$, $\widetilde{f_{\eta'}} = f_j$.

For any subset $X \subset \eta$, let $\widetilde{f}_X = \prod_{i \in X} f_i$. Set $X' = \eta - X$.

The following formula is proved by a similar argument as before.

$$[2]^{n}\widetilde{f}_{\eta}\widetilde{f}_{\eta'}\widetilde{f}_{\eta} = \sum_{X \subset \eta} \widetilde{f}_{X}^{2}\widetilde{f}_{\eta'}\widetilde{f}_{X'}^{2}.$$

Consider $\sigma: \mathbf{U}_q^- \to \mathbf{U}_q^-$. We have $\sigma(\widetilde{f}_X \widetilde{f}_{\eta'} \widetilde{f}_{X'}) = \widetilde{f}_{\sigma(X)} \widetilde{f}_{\eta'} \widetilde{f}_{\sigma(X')}$.

Note: $\sigma(X) = X$ if and only if $X = \emptyset$ or η . If n is a prime power, $[2]^n = [2]_n = [2]_{d_n}$.

Propopsition

Assume that *n* is a prime power. Then we have, in $\mathbf{A}' \mathbf{U}_{a}^{-,\sigma}$,

$$\widetilde{f}_{\eta}^{2}\widetilde{f}_{\eta'}-[2]_{d_{\eta}}\widetilde{f}_{\eta}\widetilde{f}_{\eta'}\widetilde{f}_{\eta}+\widetilde{f}_{\eta'}\widetilde{f}_{\eta}^{2}\equiv 0 \mod J.$$

The case σ : not admissible

• Lusztig showed that $\mathbf{B}^{\sigma} \simeq \mathbf{\underline{B}}$ for X: finite type, σ : non-admissible.

Theorem

Assume σ : non-admissible, and X: finite or affine type.

Except the cases $(X,\underline{X})=(A_2^{(1)},\ A_2^{(2)}),\ (A_3^{(1)},A_1^{(1)}),\ (A_{n-1}^{(1)},A_1),$ there exists an isom. $\Phi: \underline{\mathbf{A}}',\underline{\mathbf{U}}_q^- \overset{\sim}{\to} \mathbf{V}_q$, and a bijection $\underline{\mathbf{B}}^\sigma \overset{\sim}{\to} \underline{\mathbf{B}}$.

Remark. The definition of the map Φ must be modified.

 $\prod_{i\in\eta} f_i^{(a)}$: not necessarly σ -stable.

Example 1 : $X : A_2, \ \underline{X} : C_1$. Here $I = \{1, 2\} = \eta, \ \sigma : 1 \leftrightarrow 2$.

$$\mathbf{B} = \{f_1^{(\ell)} f_2^{(m)} f_1^{(n)} \mid m \ge \ell + n\} \cup \{f_2^{(\ell)} f_1^{(m)} f_2^{(n)} \mid m \ge \ell + n\},$$

$$\mathbf{B}^{\sigma} = \{f_1^{(a)}f_2^{(2a)}f_1^{(a)} = f_2^{(a)}f_1^{(2a)}f_2^{(a)} \mid a \in \mathbf{N}\} \simeq \underline{\mathbf{B}} = \{\underline{f}_{\eta}^{(a)} \mid a \in \mathbf{N}\}.$$

Set $g_{\eta}^{(a)} = \pi(f_1^{(a)}f_2^{(2a)}f_1^{(a)}).$

Then $\Phi: \underline{f}_{\eta} \mapsto g_{\eta}^{(a)}$ gives isom. $\mathbf{A}' \underline{\mathbf{U}}_{q}^{-} \stackrel{\sim}{\longrightarrow} \mathbf{V}_{q}$.

Note: σ -stable PBW-basis does not exist for \mathbf{U}_q^- .

Example 2. $X = A_{n-1}^{(1)}$, $\underline{X} = A_1$, order of $\sigma = n$. The canonical basis of \mathbf{U}_q^- was classified by Luszitg. Let

$$\mathscr{P}^{(n)} = \{ \boldsymbol{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(n)}) \mid \lambda^{(i)} : \text{ partition } \}$$

 $\lambda = (\lambda^{(1)}, \dots, \lambda^{(n)})$: called aperiodic if $\lambda^{(1)}, \dots, \lambda^{(n)}$ have no common parts $c = \lambda_i^{(i)}$.

$$\mathbf{B} \simeq \{ \boldsymbol{\lambda} \in \mathscr{P}^{(n)} \mid \boldsymbol{\lambda} : \text{ aperiodic } \}.$$

 σ acts on **B** as a cyclic permutation of $\lambda \in \mathscr{P}^{(n)}$. Hence $\mathbf{B}^{\sigma} = \emptyset$.

Note: σ -stable canonical basis does not exist for \mathbf{U}_q^- . Thus the theorem does not hold for \mathbf{U}_q^- .