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Canonical bases B and B

g : Kac-Moody algebra assoc. to symmetric Cartan Datum X

Uq(g) : quantum group assoc. to g over Q(q)
U−q : negative part of Uq(g)

gσ : orbit algebra obtained from g by admissible autom. σ : X → X
U−q : negative part of Uq(gσ)

By using the geometry of quivers, Lusztig proved;

Theorem (Lusztig)

1 There exists the canonical basis B for U−q . σ acts on B as a
permutation. Let Bσ = {b ∈ B | σ(b) = b}.

2 There exists the canonical signed basis B̃ of U−q , and the natural

bijection B̃σ ∼−→ B̃, where B̃σ = Bσ ∪ −Bσ.
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Geometric construction of canonical bases

Assume, for simplicity, X : finite type, simply-laced
Q = (I ,Ω) : a quiver assoc. to X , I : vertex set, Ω : oriented edges

V =
⊕

i∈I Vi : representation space of V .
GV =

∏
i∈I GL(Vi ) acts naturally on V .

] of GV -orbits on V : finite (since X : finite type)

PV = {IC(O, Q̄l)[dim O] | O : GV -orbit in V },
the set of GV -equivariant simple perverse sheaves on V
Put PQ =

⊔
V PV

QV : fullsubacategory of Db
c (V ), objects : complexes of the form⊕

L,i

L[i ], L ∈PV , i ∈ Z (finite direct sum)
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K(QV ) ; Grothendieck group of QV , set K(Q) =
⊕

V K(QV )
PQ gives a basis of K(Q)

AU
−
q : Lusztig’s integral form of U−q , A-subalg. of U−q ,

where A = Z[q, q−1]

Lusztig proved;

Grothendieck group K(QQ) has a structure of A-algebra,
and there exists an isomorphism of A-algebras

(1) ϕ : K(QQ) ' AU
−
q .

Canonical basis B is defined by B = ϕ(PQ).

Remark. For X : symmetric Cartan datum, the Grothendieck group
K(Q) =

⊕
V K(QV ) can be defined, and (1) holds.

But the construction of the category QV is more complicated.
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σ-setup for the category QV

Fix an orientation of Q : compatible with σ : X → X
σ induces a functor σ∗ : QQ → QQ

Q̃Q : category with autom, objects : (C , φ),
where C ∈ QQ such that φ : σ∗C ∼−→C with certain conditions

“Modified” Grothendieck group K(Q̃Q) has a structure of A-algebra,
and there exists an A-algebra isomorphism

(2) K(Q̃Q) ' AU
−
q

In (1), simple object : A ∈PQ ⇐⇒ canonical base in B,

In (2), simple object : (A, φ) with A ∈PQ ⇐⇒ canonical signed base

in B̃ = B t −B (here B : a basis of U−q , but not unique)

The forgetful functor (A, φ) 7→ A gives a map B̃→ B̃ = B t −B,

induces a bijection B̃ ∼−→ B̃σ
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Kashiwara’s theory of crystal bases

Lusztig obtained the canonical basis B of U−q from B̃, by using
Kashiwara’s theory of crystals, and proved the bijection B ∼−→Bσ.

In this talk, we give an alternate approach for the construction of the
canonical signed basis B̃ of U−q , and the bijection B̃ ∼−→ B̃σ, assuming the
existence of canonical basis B of U−q . Once B is given, the discussion in
other parts are elementary, in the sense we don’t use the geometry of
quivers, nor the theory of crystal bases.

Remark. Similar results were obtained by S.-Zhou if X is finite or affine
type, by using PBW-bases of U−q . In the general case, we use B instead
of PBW-bases.

By Lusztig-Grojnowski, canonical bases = global crystal bases
An approach from crystal bases theory for the proof B ' Bσ

Naito-Sagaki : Use Littelmann’s path model realization
of crystal bases.
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Diagram automorphism on the Cartan datum

X = (I , ( , )) : Cartan datum,

I : vertex set with |I | <∞, ( , ) : symmetric bilinear form on
⊕

i∈I Qαi ,
with (αi , αj) ∈ Z, satisfying the properties

(αi , αi ) ∈ 2Z>0 for any i ∈ I ,
2(αi ,αj )
(αi ,αi )

∈ Z≤0 for any i 6= j ∈ I .

The matrix (aij)i ,j∈I : Cartan matrix, aij =
2(αi ,αj )
(αi ,αi )

.

X : called symmetric if (αi , αi ) = 2, and simply-laced if symmetric
and (αi , αj) ∈ {0,−1} for an y i 6= j ∈ I
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X : Cartan datum of arbitrary type

σ : I → I : diagram automorphism, i.e.,
permutation such that (ασ(i), ασ(j)) = (αi , αj) for any i , j ∈ I .

I : the set of orbits of σ in I .

Define a symmetric bilinear form ( , )1 on
⊕

η∈I Qαη by

(αη, αη′)1 =

{
(αi , αi )|η|, (i ∈ η) if η = η′,∑

i∈η,j∈η′(αi , αj) if η 6= η′.

Then X = (I , ( , )1) defines a Cartan datum,
called the Cartan datum induced from (X , σ).

Assumption : σ is admissible,
i.e, for each orbit η ∈ I , (αi , αj) = 0 for any i 6= j ∈ η.
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Quantum groups U−q and U−q

Let q : indeterminate. Put, for n,m ∈ Z with m > 0,

[n] =
qn − q−n

q − q−1
, [m]! =

m∏
i=1

[i ], [0]! = 1.

Uq = Uq(X ) : quantum group assoc. to X .
U−q : negative part of Uq.

U−q : assoc. algebra over Q(q), with generators {fi | i ∈ I} and relations

1−aij∑
k=0

(−1)k f
(k)
i fj f

(1−aij−k)
i = 0, (i 6= j ∈ I ),

where for i ∈ I , n ∈ N, f
(n)
i =

f ni
[n]!di

, di = (αi , αi )/2.

(Here for d ∈ N, [n]d denotes the substitution q 7→ qd for [n].)
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σ : I → I induces an isomorphism

σ : U−q ∼−→U−q , fi 7→ fσ(i).

U−,σq = {x ∈ U−q | σ(x) = x} : subalgebra of U−q

AU
−
q : Lusztig’s integral form of U−q , where A = Z[q, q−1]

: A-subalgebra of U−q generated by {f (n)i | i ∈ I , n ∈ N}.

σ acts on AU
−
q , AU

−,σ
q : subalgebra of σ-fixed elements

U−q : negative part of Uq = Uq(X ) assoc. to X
: Q(q)-algebra generated by {f η | η ∈ I}.

AU
−
q : A-subalgebra generated by {f (a)η | η ∈ I , a ∈ N}.

Remark. We want to compare the algebra structure of U−,σq and U−q .
But no direct relations exist between them.
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The algebra Vq

Assume the order of σ : a power of a prime number p.
F = Z/pZ : finite field of p elements

Put A′ = F[q, q−1], and consider the A′-algebra

A′U
−,σ
q = AU

−,σ
q ⊗A A′ ' AU

−,σ
q /p(AU

−,σ
q )

For each x ∈ U−q , let O(x) be the oribt sum
∑

0≤i<k σ
i (x),

where k: smallest integer such that σk(x) = x .

Let J : the A′-submodule of A′U
−,σ
q generated by{

O(x) | σ(x) 6= x , x ∈ A′U
−
q

}
J: two-sided ideal of A′U

−,σ
q . Define a quotient algebra Vq by

Vq = A′U
−,σ
q /J

Let π : A′U
−,σ
q → Vq : the natural homomorphism.
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Main theorems

For each η ∈ I and a ∈ N, put f̃
(a)
η =

∏
i∈η f

(a)
i .

fi fj = fj fi for i , j ∈ η =⇒ f̃
(a)
η ∈ AU

−,σ
q .

Denote also by f̃
(a)
η its image in A′U

−,σ
q .

Define g
(a)
η ∈ Vq by g

(a)
η = π(f̃

(a)
η ) ∈ Vq.

Note : A′U
−
q : generated by {f (a)η | η ∈ I , a ∈ N}.

For any quantum group U−q , we introduce a canonical basis B
in an axiomatic way. Note that B is unique if it exists.

Theorem A

Assume that the canonical basis B (or the canonical signed basis B̃)

exists for U−q . Then the assignment f
(a)
η 7→ g

(a)
η gives an isomorphism of

A′-algebras
Φ : A′U

−
q
∼−→Vq
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Theorem B
1 Assume that p 6= 2. Assume that the canonical basis B exists for

U−q . There exists the canonical basis B of U−q , and the natural
bijection B ∼−→Bσ.

2 Assume that p = 2. A weaker statement holds, by replacing B by B̃,
and B by B̃ (the canonical signed basis of U−q ).

Consider X : symmetric type.
Then by Lusztig, there exists the canonical basis B for U−q .

Let σ : X → X : admissible diagram automophism,
with n : the order of σ.

Corollary

1 Assume n : odd. There exists the canonical basis B of U−q ,
and the natural bijection B ∼−→Bσ.

2 Assume n : even. There exists the canonical signed basis B̃ of U−q ,

and the natural bijection B̃ ∼−→ B̃σ.
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Proof of Corollary (n : odd)
There exists a sequence X = X0,X1, . . . ,Xk = X of Cartan data,
and a diagram autom. σi : Xi → Xi (0 ≤ i ≤ k − 1) such that

Xi+1 ' Cartan datum induced from (Xi , σi )

and that σ = σk−1 · · ·σ1σ0. Moreover, the order of σi : a prime power.

Let (i)U
−
q : (negative part of) the quantum group associated to Xi .

By induction on i , there exists the canonical basis (i)B of (i)U
−
q .

By Theorem B, there exists the canonical basis (i+1)B of (i+1)U
−
q ,

and the natural bijection

ξi : ((i)B)σi ∼−→ (i+1)B

Thus we obtain the canonical basis B = (k)B of (k)U
−
q = U−q ,

and the natural bijection (commuting with Kashiwara operators)

ξ : Bσ = (· · · (Bσ0)σ1 · · · )σk−1 ∼−→B
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Inner product on U−q

Let U−q quantum group of arbitrary type

Let Q =
⊕

i∈I Zαi : root lattice, Q− =
∑

i∈I Z≤iαi .

U−q has the weight space decomposition U−q =
⊕

ν∈Q−(U−q )ν ,

where (U−q )ν : the subspace of U−q spanned by fi1 . . . fiN
such that αi1 + · · ·+ αiN = −ν.

Define a multiplication on U−q ⊗U−q by, for homogeneous x1, x2, x
′
1, x
′
2,

(x1 ⊗ x2) · (x ′1 ⊗ x ′2) = q−(wt x2,wt x
′
1)x1x

′
1 ⊗ x2x

′
2,

where wt x = ν if x ∈ (U−q )ν .

There exists a unique homomorphism r : U−q → U−q ⊗U−q
defined by fi 7→ fi ⊗ 1 + 1⊗ fi (i ∈ I )
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There exists a unique bilinear form ( , ) on U−q satisfying the properties;
(1, 1) = 1 and

(fi , fi ) = δij(1− qi )
−1, qi = qdi = q(αi ,αi )/2

(x , y ′y ′′) = (r(x), y ′ ⊗ y ′′),

(x ′x ′′, y) = (x ′ ⊗ x ′′, r(y)),

where the bilinear form on U−q ⊗U−q is defined by
(x1 ⊗ x2, x

′
1 ⊗ x ′2) = (x1, x

′
1)(x2, x

′
2).

The bilinear form ( , ) is symmetric, and non-degenerate.

For i ∈ I , define a Q(q)-linear map i r : U−q → U−q by
r(x) = fi ⊗ i r(x) +

∑
y ⊗ z , where y : homog. with wt y 6= −αi .

For i ∈ I , define a Q(q)-subspace U−q [i ] of U−q by

U−q [i ] = Ker i r .

Toshiaki Shoji Diagram automorphisms and canonical bases for quantum groupsSeptember 21, 2021 KPMU 16 / 37



The following result is known by Lusztig and Kashiwara.

1 For each i ∈ I , there is a direct sum decomp. of Q(q)-vector spaces,

U−q =
⊕
n≥0

f
(n)
i U−q [i ],

where all the components f
(n)
i U−q [i ] are mutually orthogonal.

2 The map x 7→ f
(n)
i x gives an isom. U−q [i ] ∼−→ f

(n)
i U−q [i ].

3 Set A(U−q [i ]) = U−q [i ] ∩ AU
−
q . There is a decomp. as A-submodules,

AU
−
q =

⊕
n≥0

f
(n)
i A(U−q [i ])

4 The projection U−q → f
(n)
i U−q [i ] preserves the weights.
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The Z[q]-submodule LZ(∞)

A basis B of U−q is called almost orthonormal if, for any b, b′ ∈ B,

(b, b′) ∈

{
1 + qZ[[q]] ∩Q(q) if b = b′,

qZ[[q]] ∩Q(q) if b 6= b′.

Recall : A = Z[q, q−1]. Let A0 = Q[[q]] ∩Q(q). Set

LZ(∞) = {x ∈ AU
−
q | (x , x) ∈ A0}

Known : LZ(∞) : Z[q]-submodule of AU
−
q .

If B is almost orthonormal, and integral , i.e.,

A-submodule generated by B : stable by f
(n)
i and i r ,

then B gives a Z[q]-basis of LZ(∞).
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For each i ∈ I , consider the decomp. U−q =
⊕

n≥0 f
(n)
i U−q [i ].

For x ∈ U−q , write

x =
∑
n≥0

yn =
∑
n≥0

f
(n)
i xn, (xn ∈ U−q [i ])

Lemma (Kashiwara)

Let x =
∑

n≥0 yn be as above.

1 If x ∈ LZ(∞), then xn, yn ∈ LZ(∞). If, in addition,
(x , x) ∈ 1 + qA0, then there exists n0 ≥ 0 such that
(yn0 , yn0), (xn0 , xn0) ∈ 1 + qA0, (yn, yn), (xn, xn) ∈ qA0 for n 6= n0.

2 Let B : A-basis of AU
−
q , which is almost orthonormal,

and integral. There exists b ∈ B such that, module qLZ(∞),

yn ≡

{
±b if n = n0,

0 if n 6= n0.
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Canonical basis

Fix i ∈ I . Under the decom. x =
∑

n≥0 f
(n)
i xn with xn ∈ U−q [i ], set

x[i ;a] = f
(a)
i xa, (projection to f

(a)
i U−q [i ])

Let B : a basis of U−q .

Fix i ∈ I . For b ∈ B, define εi (b) ∈ N by

b ∈ f
(εi (b))
i U−q − f

(εi (b)+1)
i U−q

Set Bi ;a = {b ∈ B | εi (b) = a}. We have a partition

B =
⊔
n≥0
Bi ;n

Let − : U−q → U−q the bar-involution ; i.e., a Q-algebra isom.
defined by q 7→ q−1, fi 7→ fi (i ∈ I ).
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We consider a basis B of U−q having the following properties;

(C1) B gives a Z[q]-basis of LZ(∞),

(C2) B is bar-invariant, i.e., b = b for b ∈ B,

(C3) B is almost orthonormal,

(C4) For ν ∈ Q−, set Bν = B ∩ (U−q )ν . Then we have a partition
B =

⊔
ν∈Q− Bν , with Bν = {1} for ν = 0, ,

(C5) If b ∈ Bi ;a for i ∈ I , a ∈ N, then

b ≡ b[i ;a] mod qLZ(∞)

(C6)
⋂

i∈I Bi ;0 = {1},

(C7) Let b ∈ Bi ;0, and a > 0. There exists a unique b′ ∈ Bi ;a such that

b′ ≡ f
(a)
i b mod f a+1

i U−q

The correspondence b 7→ b′ gives a bijection πi ;a : Bi ;0 ∼−→Bi ;a.
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Remark. If B exists in U−q , then B is unique.
The basis B is called the canonical basis of U−q

Theorem (Lusztig)

Assume that U−q : assoc. to the symmetric Cartan datum X .
Then the canonical basis B exists.

We define a subset B̃ of U−q by

B̃ = {x ∈ U−q | x = x , (x , x) ∈ 1 + qZ[[q]]}

If there exists a basis B of U−q such that B̃ = B t −B,

B̃ : called canonical signed basis.
For the canonical signed basis B̃, the choice of B is not unique.

If B : canonical basis, then B t −B : canonical signed basis.
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Outline of the proof of Theorem A

We prove Φ : A′U
−
q
∼−→Vq.

Step 1 : Φ is an algebra homomorphism (discussed later).

Step 2 : Φ is injective.

Let F(q) : rational function filed, quotient field of A′ = F[q, q−1]

Set F(q)Vq = Vq ⊗A′ F(q), F(q)U
−
q = A′U

−
q ⊗A′ F(q).

Φ can be extended to Φ : F(q)U
−
q → F(q)Vq. Step 2 follows from

Proposition

1 The bilinear forms on F(q)U
−
q and on F(q)Vq are non-degenerate.

2 For any x , y ∈ F(q)U
−
q , (Φ(x),Φ(y)) = (x , y).
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Step 3 : Φ is surjective.

Let B the canonical basis of U−q .
For each i ∈ I , a ∈ N, defnie a bijection Fi : Bi ;a → Bi ;a+1 by

Fi = πi ;a+1 ◦ π−1i ;a : Bi ;a −−−−→ Bi ;0 −−−−→ Bi ;a+1

Define Ei : Bi ;a → Bi ;a−1 as the inverse of Fi if a > 0, and Ei (b) = 0 for
b ∈ Bi ;0. The maps Ei ,Fi : B→ B∪ {0} are called Kashiwara operators.

Let σ : U−q → U−q : alg. autom. and consider U−q .
Let Bσ : the set of σ-fixed element in B.

Let η ∈ I , and b ∈ Bσ.
εi (b) is constant for i ∈ η, which we denote by εη(b). Set

Bση;a = {b ∈ Bσ | εη(b) = a}.

We have a partition Bσ =
⊔

a≥0B
σ
η;a.
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For each η ∈ I , one can define a bijection πη;a : Bση:0 ∼−→Bση;a,
as the restriction of

∏
i∈η πi ;a on Bση;0.

We define Kashiwara operators F̃η, Ẽη : Bσ → Bσ ∪ {0} by using πη;a.

F̃η is the restriction of
∏

i∈η Fi on Bσ

Lemma

For η ∈ I , set U−q [η] =
⋂

i∈η U
−
q [i ]. Then we have

AU
−
q =

⊕
(ai )∈Nη

(∏
i∈η

f
(ai )
i

)
A(U−q [η])

In particular,

AU
−,σ
q ≡

⊕
a∈N

f̃ (a)η A(U−q [η])σ mod J.

Recall π : A′U
−,σ
q → Vq. π(Bσ) give an A′-basis of Vq. In order to prove

the surjectivity of Φ, enough to show π(b) ∈ Im Φ for b ∈ Bσ.
This is done by the Lemma, and the property of F̃η, Ẽη.
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Outline of the proof of Theorem B

Recall π : A′U
−,σ
q → Vq : projection. For each η ∈ I ,

set Vq[η] = π(A′(U
−
q [η])σ)). By the previous lemma, we have

Vq =
⊕
a∈N

g (a)
η Vq[η]

We also have a decomp.

A′U
−
q =

⊕
a∈N

f (a)η A′U
−
q [η].

Thus Φ : A′U
−
q
∼−→Vq gives an isomorphism of A′-modules,

f (a)η A′U
−
q [η] ∼−→ g (a)

η Vq[η].

π(Bσ) gives an A′-basis of Vq. Set B• = Φ−1(π(Bσ)).
Then B• gives an A′-basis of A′U

−
q .

Let L F(∞) : F[q]-submodule of A′U
−
q spanned by B•.

Toshiaki Shoji Diagram automorphisms and canonical bases for quantum groupsSeptember 21, 2021 KPMU 26 / 37



Lemma

B• is the canonical basis of A′U
−
q , namely it satisfies similar properties as

(C1) ∼ (C7), by replacing LZ(∞) by L F(∞), etc.
Moreover, we have a natural bijection Bσ ∼−→B•.

Let ϕ : AU
−
q → A′U

−
q = AU

−
q /p(AU

−
q ) : the natural surjection.

Let L Z(∞) : Z[q]-submodule of AUq defined similar to LZ(∞) for U−q .

Lemma

Let x ∈ L Z(∞) be such that x = x , and (x , x) ∈ 1 + qA0. Further
assume that ϕ(x) = b• ∈ B•.

1 If p 6= 2, then x is determined uniquely by b•.

2 If p = 2, then x is unique up to sign, i.e., ϕ−1(b•) = {±x}.

Thus cannical basis B of U−q is obtained by ϕ : B ∼−→B• if p 6= 2,

and canonical signed basis B̃ = ϕ−1(B•) if p = 2.
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Homomorphism Φ : A′U−q → Vq

We prove Φ is a homomorphism. (Step 1).

Note : A′U
−
q is the A′-algebra with generators f

(a)
η , with Serre relations.

In order to prove Step 1, enough to show f̃
(a)
η satisfies similar relations,

namely the relations in A′U
−,σ
q ,

(A)

1−aηη′∑
k=0

(−1)k
[

1− aηη′

k

]
dη

f̃ kη f̃η′ f̃
1−aηη′−k
η ≡ 0 mod J (η 6= η′),

(B) [a]!dη f̃
(a)
η = f̃ aη , (a ∈ N),

where dη = (αη, αη)1/2 = |η|di .

(B) is shown as follows. Since |η| is a power of p, we have

([a]!di )
|η| = [a]!|η|di = [a]!dη in A′ = F[q, q−1]. Hence

f̃ (a)η =
∏
i∈η

f
(a)
i = ([a]!di )

−|η|
∏
i∈η

f ai = ([a]!dη)−1f̃ aη .
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For the proof of (A), we consider the simplest situation;
U−q : simply-laced, fix η, η′ ∈ I such that |η| = 1, |η′| = n − 1,
and any element in η′ is joined to the element in η
(Here give no assumption on n)

Since aij = −1 for i ∈ η, j ∈ η′, we have

aη,η′ = −|η′|, aη′,η = −1.

Write η = {1}, η′ = {21, . . . , 2n−1}. We have f̃η = f1, f̃η′ = f21 · · · f2n−1 .

In order to prove (A), we need to copmpute, for various 0 ≤ k ≤ n,
f̃ kη f̃η′ f̃

n−k
η = f k1 f21 · · · f2n−1f

n−k
1 (here 1− aηη′ = n).

More genrally, for (a1, . . . , an) ∈ Nn such that
∑

i ai = n, consider the
corresp.

(a1, . . . , an)←→ f a11 f21f
a2
1 f22 · · · f2n−2f

an−1

1 f2n−1f
an
1 ∈ U−q

The commuting relations are given by f 21 f2k = f1f2k f1 − f2k f
2
1 .
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Combinatorial setting

Let Vn be a Q(q)-vector space spanned by {a = (a1, . . . , an) ∈ Nn}
satisfying the relations;
For any 1 ≤ i ≤ n − 1, if a = (a1, . . . , an) ∈ Nn with ai ≥ 2,
then a is written as

a = [2]b− c,

where b, c ∈ Nn are given by

b = (a1, . . . , ai−1, ai − 1, ai+1 + 1, ai+2, . . . , an),

c = (a1, . . . , ai−1, ai − 2, ai+1 + 2, ai+1, . . . , an).

For each m ≥ 1, denote by En(m) the subspace of Vn spanned by

En(m) = {a = (a1, . . . , an) |
∑

1≤i≤n
ai = m, ai ∈ {0, 1} for 1 ≤ i ≤ n − 1 }

If a ∈ Vn is such that
∑

i ai = m, then a ∈ En(m).
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In the case where m = n, set En = En(m) and En(m) = En.

Example.

E2 = {(1, 1), (0, 2)},
E3 = {(1, 1, 1), (1, 0, 2), (0, 1, 2), (0, 0, 3)},
E4 = {(1, 1, 1, 1), (1, 1, 0, 2), (1, 0, 1, 2), (1, 0, 0, 3),

(0, 1, 1, 2), (0, 1, 0, 3), (0, 0, 1, 3), (0, 0, 0, 4)}.

Lemma

Assume that (k, 0, . . . , 0, `) ∈ Vn. Then we have

(k , 0, . . . , 0, `) =
∑

a1+···+an=k+`
a1,...,an−1∈{0,1}

(−1)a1+···+an−1+(n−1)
( ∏

1≤i≤n−1
[k − xi ]

)
a

where xi = a1 + · · ·+ ai−1 + (1− ai ) for each i ,
and a = (a1, . . . , an) ∈ En(k + `).
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In the case where n = 2, the following formula holds.
For any k ≥ 0, ` ≥ 0, we have

(1) (k, `) = [k](1, k + `− 1)− [k − 1](0, k + `).

(1) is proved by induction on k . The lemma is proved by induction on n.

Proposition

The following equality holds in En.

(2)
n∑

k=0

(−1)k
[
n
k

]
(k, 0, . . . , 0, n − k) = 0.

Proof. By applying the lemma for m = n, we have

(k , 0, . . . , 0, n − k) =
∑

(a1,...,an)∈En

(−1)an−1
( ∏

1≤i≤n−1
[k − xi ]

)
(a1, a2, . . . , an),

where xi = a1 + · · ·+ ai−1 + (1− ai ) for 1 ≤ i < n.
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In order to prove (2), enough to see, for a fixed a = (a1, . . . , an) ∈ En,

(3)
n∑

k=0

(−1)k
[
n
k

]
(−1)an−1

( ∏
1≤i≤n−1

[k − xi ]

)
= 0.

Note : The product factor can be written as

∏
1≤i≤n−1

[k − xi ] =
n∑

j=1

Fj(q)q(n−2j+1)k ,

where Fj(q) ∈ Q(q) is independent from k .

Thus (3) follows from the following statement.

(4)
n∑

k=0

(−1)kq(n−2j+1)k

[
n
k

]
= 0 for j = 1, . . . , n.
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By the quantum binomial formula,
n−1∏
`=0

(1 + q2`z) =
n∑

k=0

qk(n−1)
[
n
k

]
zk ,

where z : another indeterminate. If we put z = −q−2j+2

for j = 1, . . . , n, (4) holds. The proposition is proved.

The proposition can be translated to the following.

Corollary

Assume that η = {1} and η′ = {21, . . . , 2n−1}. Assume that 1 is joined
to 21, . . . , 2n−1 (by single edge). Then 1− aηη′ = n, and

(1)
n∑

k=0

(−1)k
[
n
k

]
f k1 (f21 · · · f2n−1)f n−k1 = 0.

Remark. (1) holds for any n ∈ N, without using modulo J.
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Assume that |η| = n and |η′| = 1 with η′ = {j},
and any i ∈ η is joined to j ∈ η′ (with single edge).

Thus aηη′ = −1, 1− aηη′ = 2 and dη = (αη, αη)1/2 = n.

Recall : f̃η =
∏

i∈η fi , f̃η′ = fj .

For any subset X ⊂ η, let f̃X =
∏

i∈X fi . Set X ′ = η − X .

The following formula is proved by a similar argument as before.

[2]n f̃η f̃η′ f̃η =
∑
X⊂η

f̃ 2X f̃η′ f̃
2
X ′ .

Consider σ : U−q → U−q . We have σ(f̃X f̃η′ f̃X ′) = f̃σ(X )f̃η′ f̃σ(X ′).

Note : σ(X ) = X if and only if X = ∅ or η.
If n is a prime power, [2]n = [2]n = [2]dη .

Propopsition

Assume that n is a prime power. Then we have, in A′U
−,σ
q ,

f̃ 2η f̃η′ − [2]dη f̃η f̃η′ f̃η + f̃η′ f̃
2
η ≡ 0 mod J.
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The case σ : not admissible
• Lusztig showed that Bσ ' B for X : finite type, σ: non-admissible.

Theorem

Assume σ : non-admissible, and X : finite or affine type.

Except the cases (X ,X ) = (A
(1)
2 , A

(2)
2 ), (A

(1)
3 ,A

(1)
1 ), (A

(1)
n−1,A1),

there exists an isom. Φ : A′U
−
q
∼−→Vq, and a bijection Bσ ∼−→B.

Remark. The definition of the map Φ must be modified.∏
i∈η f

(a)
i : not necessarly σ-stable.

Example 1 : X : A2, X : C1. Here I = {1, 2} = η, σ : 1↔ 2.

B = {f (`)1 f
(m)
2 f

(n)
1 | m ≥ `+ n} ∪ {f (`)2 f

(m)
1 f

(n)
2 | m ≥ `+ n},

Bσ = {f (a)1 f
(2a)
2 f

(a)
1 = f

(a)
2 f

(2a)
1 f

(a)
2 | a ∈ N} ' B = {f (a)η | a ∈ N}.
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Set g
(a)
η = π(f

(a)
1 f

(2a)
2 f

(a)
1 ).

Then Φ : f η 7→ g
(a)
η gives isom. A′U

−
q
∼−→Vq.

Note : σ-stable PBW-basis does not exist for U−q .

Example 2. X = A
(1)
n−1, X = A1, order of σ = n.

The canonical basis of U−q was classified by Luszitg.
Let

P(n) = {λ = (λ(1), . . . , λ(n)) | λ(i) : partition }

λ = (λ(1), . . . , λ(n)) : called aperiodic if λ(1), . . . , λ(n) have

no common parts c = λ
(i)
j .

B ' {λ ∈P(n) | λ : aperiodic }.

σ acts on B as a cyclic permutation of λ ∈P(n). Hence Bσ = ∅.

Note : σ-stable canonical basis does not exist for U−q .
Thus the theorem does not hold for U−q .
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