- CANDLES -

An experimental approach to search for $0\nu\beta\beta$ of ⁴⁸Ca

Kavli IPMU Postdoc Colloquium Series Oct. 8th, 2021 Bui Tuan Khai

The massive neutrino

- Nobel prize in Physics 2015 awarded
- for Prof. Takaaki Kajita (Super-K, JP)
- and Prof. Arthur. B. McDonald (SNO, CA)
- ⇒discovery of **neutrino oscillations**
- ⇒show **neutrinos have mass**
- \Rightarrow Some unknown questions:
 - absolute neutrino mass?
 - Neutrino: $Majorana (v=\overline{v})$ or Dirac $(v\neq\overline{v})$?

matter – antimatter asymmetry?

⇒ Neutrino-less double beta decay is an excellent tool

Double Beta Decay (DBD)

[1] Ann.Rev.Nucl.Part.Sci.52:115

- Obtained in >10 isotopes
- $T_{1/2}^{2V}$ = 10¹⁸~10²⁰ yr
- Rare, under standard model (SM)
- $+ \frac{Physics of$ **0**νββ decay:
- > Neutrino mass from the $\mathbf{T_{1/2}^{0\nu}}$ $\left(\mathbf{T_{1/2}^{0\nu}}\right)^{-1} = G^{0\nu} \left| \left\langle \mathbf{m_{\beta\beta}} \right\rangle^2 / m_e^2 \right| |M^{0\nu}|^2$

- No observation
- $T_{1/2}^{0V} > 10^{26}$ yr (KamLAND-Zen)
- Extremely rare!
- Nature of neutrino: Majorana or Dirac?
- → Lepton number not conserved (Δ L=2) ⇒ New physics beyond SM 3

- To observe $0\nu\beta\beta$ of ^{48}Ca

CANDLES

CAlcium fluoride for studies of

Neutrino and Dark matters by

Low Energy Spectrometer

- Set up @ Kamioka (2700m.w.e depth)

$0\nu\beta\beta$ experiment with ⁴⁸Ca

✓ Highest $Q_{\beta\beta}$ 4.27 MeV

- Large phase space factor
- Far from BKG (γ: 2.6 MeV; β: 3.3 MeV)

- Natural abundance: <0.2 %
- Separate isotopes: expensive
- ⇒Cost-effective enrichment

□Energy Resolution $T_{1/2}^{0V} \propto (N_{BKG} \cdot \Delta E)^{-1/2}$ ⇒ Improve sensitivity

- *To improve sensitivity for $0\nu\beta\beta$ in CANDLES:
- Enrichment (~600kg ⁴⁸Ca)
- High resolution (bolometer)
- Low background

- To observe $0\nu\beta\beta$ of ^{48}Ca
- Set up @ Kamioka (2700m.w.e depth)
- CANDLES consists of:
 - 96 ^{nat.}CaF₂ cubes: detector+source \Rightarrow 350g ⁴⁸Ca

- To observe $0\nu\beta\beta$ of ^{48}Ca
- Set up @ Kamioka (2700m.w.e depth)
- CANDLES consists of:
 - 96 ^{nat.}CaF₂ cubes: detector+source \Rightarrow 350g ⁴⁸Ca
 - Liquid scintillator (LS): $2m^3$, 4π active veto

- To observe 0vββ of ⁴⁸Ca

- Set up @ Kamioka (2700m.w.e)
- CANDLES consists of:
 - 96 ^{nat.}CaF₂ cubes: detector+source \Rightarrow 350g ⁴⁸Ca
 - Liquid scintillator (LS): $2m^3$, 4π active veto
 - 62 PMTs surrounding:

o10-inch(x12), 13-inch(x36), 20-inch(x14)

oeach PMT waveform is recorded

- \blacksquare Water passive shield $4m^h$ x $3m^\phi$
- Passive shielding (Pb+Boron) outside/inside

- To observe $0\nu\beta\beta$ of ^{48}Ca
- Set up @ Kamioka (2700m.w.e depth)
- CANDLES consists of:
 - 96 ^{nat.}CaF₂ cubes: detector+source \Rightarrow 350g ⁴⁸Ca

- To observe $0\nu\beta\beta$ of ^{48}Ca
- Set up @ Kamioka (2700m.w.e depth)
- CANDLES consists of:
 - 96 ^{nat.}CaF₂ cubes: detector+source \Rightarrow 350g ⁴⁸Ca

• Background at $Q_{\beta\beta}$ of ⁴⁸Ca:

 \odot External (n, γ): passive shielding (Pb, B)

- Even after LS cut, there exist background in high energy region above 4MeV.
- BG spectrum has peak around 7.5MeV
- This BG seem to be produced from (n,γ) on surrounding material.
- \Rightarrow Confirm with MC and ²⁵²Cf measurement
- \Rightarrow Reduce by installing passive shield (Pb,B)
- \Rightarrow The (n, γ) background is reduced ~1/100 times after shielding

Solution $\mathbf{A}^{\mathbf{A}}$ Background at $\mathbf{Q}_{\beta\beta}$ of 48 Ca:

 \odot <u>External (n, γ)</u>: passive shielding (Pb, B)

B Shielding Construction

- Top and surrounding: silicon rubber sheet
- Inner bottom: liquid type
- Check if Pb or B contaminated in water
- \Rightarrow Take water sample for ICPMS examination \Rightarrow No contamination

• Background at $Q_{\beta\beta}$ of ⁴⁸Ca:

OExternal (n,γ): passive shielding (Pb,B)

Impurities background:

■ ²¹²Bi²¹²Po sequential decay: pile-up ⇒Waveform analysis

• Background at $Q_{\beta\beta}$ of ⁴⁸Ca:

OExternal (n,γ): passive shielding (Pb,B)

Impurities background:

- ²¹²Bi²¹²Po sequential decay: pile-up
- \Rightarrow Waveform analysis
- ²⁰⁸Tl β-decay: remove by tagging preceding α-decay
- \Rightarrow tagging efficiency (DAQ + Analysis)
- \Rightarrow negligible deadtime DAQ
 - in Physics Run
- \Rightarrow Rejection efficiency: 89%

• Background at $Q_{\beta\beta}$ of ⁴⁸Ca:

OExternal (n,γ): passive shielding (Pb,B)

Impurities background:

- ²¹²Bi²¹²Po sequential decay: pile-up
- \Rightarrow Waveform analysis
- ²⁰⁸Tl β-decay: remove by tagging preceding α-decay
- \Rightarrow tagging efficiency (DAQ + Analysis)
- $\circ 2\nu\beta\beta$: irreducible background \Rightarrow improve resolution, under study

Energy spectra & Event selection

Live time: 130.4 days

- Remove β +LS & BiPo BKG
- --- Remove ²⁰⁸TI & crystal select

With 21 high purity ^{nat.}CaF₂ crystals: $(T_{1/2}^{0V})$ >5.6×10²²years (90% C.L.) $\langle m_{\beta\beta} \rangle$ < 2.9 – 16 eV (90% C.L.)

Energy spectra & Event selection

Live time: 130.4 days

- Remove β +LS & BiPo BKG
- Remove ²⁰⁸TI & crystal select

With 21 high purity ^{nat.}CaF₂ crystals: $(T_{1/2}^{0V})$ >5.6×10²²years (90% C.L.) $\langle m_{\beta\beta} \rangle$ < 2.9 – 16 eV (90% C.L.)

CANDLES: current and future

	CANDLES III+	CANDLES IV	CANDLES V
Crystal CaF ₂ / ⁴⁸ Ca	0.187% (nat.) 305 kg / 0.35 kg	<mark>2%</mark> 2000 kg / 25 kg	50% 2000 kg / 610 kg
Energy Res.	6%	2.8% (required)	1.0% (required)
<m<sub>v> sensitivity</m<sub>	500 meV	80 meV	9 meV
Feature	Low BG No enrichment	Low BG 2% enrich ⁴⁸ Ca Cooling CaF ₂	Low BG 50% enrich ⁴⁸ Ca Bolometer (~10 mK)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rangle = 500 \text{meV}$ $E_{res} = 0.045$ 0.045 0.045 0.035 0.03 0.025 0.02 0.025 0.02 0.015 0.01 0.005 0.015 0.01 0.005 0.015 0.01 0.005 0.015 0.01 0.005 0.005 0.015 0.01 0.005 0.015 0.01 0.005 0.015 0.01 0.005 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005 0.005 0.01 0.005	$\langle m_{\nu} \rangle = 80 \text{meV}$ $E_{res} = 0.045$ 0.045 0.045 0.035 0.035 0.025 0.02 0.025 0.02 0.015 0.01 0.005 $4200 4300 4400 4500$ 4000	$\langle m_{\nu} \rangle = 9 m eV$ $E_{res} =$ 4,2.8,1% 4100 4200 4300 4400 4500 Energy(keV)

R&D for next step: Enrichment of ⁴⁸Ca

□ ⁴⁸Ca

- Natural abundance is low : 0.19%
- \Rightarrow We can improve the detector sensitivity by enrichment
- But enrichment of ⁴⁸Ca is difficult
- New enrichment techniques
 - Crown-ether, laser enrichment, Electrophoresis
 - \Rightarrow Aim for: massive & cost-effective production

Chemical enrichment by crown-ether

R&D for next step: Scintillating Bolometer

- **Expected BG:** $2\nu\beta\beta$ events, α -rays
- bolometer: good energy resolution (COURE, AMORE)
 - For reduction of BG affects from 2νββ events
 - Particle identification Scintillating bolometer at low temperature 10mK by scintillating bolometer Light sensor Scintillation 0vββ region Heat 4.27MeV sensor β - α pile-up events Thermal β signal $C_{a}F_{2}$ Light signal α peaks → Heat 4.27MeV

- Scintillating bolometer: good particle identification ability
 - For reduction of BG affects from α-ray

SUMMARY

- CANDLES:
 - $\circ~$ searching for $0\nu\beta\beta$ of ^{48}Ca (Q_{\beta\beta}=4.27MeV) at Kamioka
 - Low background technique is very important
 - \circ Obtained T^{0V}_{1/2} limit 5.6×10²²years, LT=130.4 days
 - This is comparable with most stringent limit of $T_{1/2}^{0V}$ by obtained by <u>ELEGANT VI</u> (5.8×10²²years, LT>2years)
- Future:
 - \circ High purity CaF₂ crystals
 - Enrichment of ⁴⁸Ca: ⁴⁸CaF₂ crystals
 - \circ CaF₂ scintillating bolometer

Umehara, Saori Takemoto, Yasuhiro Takihira, Yukichi Matsuoka, Kenji Tetsuno, Kounosuke Yoshida, Sei Shokati Mojdehi Li, Xiaolong Temuge Batpurev

Lee Ken Keong Yamamoto, Kohei Miyamoto, Koichiro Iga, Tomoki

Masoumeh

Tamagawa, Yoichi Ogawa, Izumi Nakajima, Kyohei Tozawa, Masashi Ikeyama, Yuta Ozawa, Kenta Matsuoka, Kohei Araki, Yusuke Hirota, Ayumu Kawashima, Yusuke

Institute for Laser Technology T. Shiqeki

Low Energy Spectrometer

CAlcium fluoride for studies of

Neutrino and Dark matters by

Hazama, Ryuta

Pannipa Noithong

Anawat Rittirong

Fushimi, Ken-ichi

THE WAKASA WAN ENERGY RESEARCH CENTER

K. Suzuki

[0νββ] PRD 103:092008 **[0νββ]** PRC 78:058501 **[0νββ]** Nucl. Phys. A 730:215 [DAQ] IEEE TNS 66:1174 **DAQ** IEEE TNS 62:1122 [DAQ] IEEE TNS 62:1128 [Detector] NIMA 986:164727 [Detector] Astropart. Phys.100:54 [Detector] NIMA 705:1 [Detector] NIMA 601:282 [Detector] IEEE TNS 68:368 [Enrich] J. Nucl. Sci. Tech. 55:1473 [Enrich] Austin Chromatogr. 3:1040 [Enrich] J. Chroma. 1415:67 [Enrich] PTEP 2015:053C03 [Enrich] PTEP 2015:033D03

CANDLES, a journey with great people and a lot of fun.

