3d Supersymmetric Theories on an Elliptic Curve

Mathew Bullimore

2109.10907 with Daniel Zhang

Introduction

Introduction

- \bullet Consider a supersymmetric quantum mechanics with target X.
- The supersymmetric ground states are de Rham cohomology.

- Generalisations to 2d / 3d related to K-theory / elliptic cohomology
- The generalisation is more interesting in the equivariant case when *X* has symmetries.

Introduction

- What physical setup realises equivariant elliptic cohomology?
- Study 3d supersymmetric theories on an elliptic curve.

- Study supersymmetric ground states of this system.
- Physical construction of elliptic stable envelopes and R-matrices.

Part 1:Background

Supersymmetry

- A three-dimensional QFT with at least N=2 supersymmetry.
- ullet Example: choose a smooth Kahler manifold X.
 - \star A supersymmetric sigma model to X.
 - \star A supersymmetric gauge theory with Higgs branch X.
- I will assume X is compact to simplify the presentation.

Flavour Symmetry

- ullet I will assume there is an abelian symmetry T.
- This acts by Hamiltonian isometries of X.
- I will assume isolated fixed points $X^T = \{p_{\alpha}\}$ $\alpha = 1, \dots, N$.
- Example: $X = \mathbb{CP}^1$

Massive Vacua

- Introduce real mass parameters $m \in \mathfrak{t} := \mathrm{Lie}(T)$.
- This generates a real super-potential $h: X \to \mathbb{R}$.
- It is the moment map for IPS $T_m \subset T$ generated by m.
- For generic mass parameters $\operatorname{Crit}(h) = \{p_{\alpha}\}$.
- The critical points are isolated massive vacua.

Domain Walls

• There are BPS domain walls interpolating between vacua $~p_{lpha}
ightarrow p_{eta}$.

- They correspond to gradient flow for h with tension $|h_{\alpha} h_{\beta}|$.
- Define linear hyperplanes in \mathfrak{t} where $|h_{\alpha} h_{\beta}| = 0$.
- Hyperplanes are loci where $\operatorname{Crit}(h) \neq X^T$ and a moduli space containing p_{α}, p_{β} opens up.

Hyperplane Arrangement

• This forms a hyperplane arrangement in $\mathfrak{t} \cong \mathbb{R}^{\mathrm{rk}(T)}$.

• Each hyperplane is labelled by a $\,T$ -weight $\,\lambda\,$ such that

$$h_{\alpha} - h_{\beta} \propto \langle \lambda, m \rangle$$

• It is a common tangent weight $\lambda \in T_{\alpha}X$ and $\lambda \in -T_{\beta}X$.

Example

- Consider again $X = \mathbb{CP}^1$.
- There are two massive vacua p_1, p_2 .

- Here ζ is the Kahler parameter of \mathbb{CP}^1 .
- The hyperplane arrangement is:

$$\operatorname{Crit}(h) = \mathbb{CP}^1$$
 $m \in \mathbb{R}$

$$Crit(h) = \{p_1, p_2\}$$

Part II: Ground States on an Elliptic Curve

The Setup

• Place the theory on the real line times an elliptic curve $\,E_{ au}\,$.

- Ramond-Ramond boundary conditions for fermions.
- This preserves a quantum mechanics with 4 supercharges.

Flat Connections

- We have already introduced mass parameters $m \in \mathfrak{t} \cong \mathbb{R}^{\mathrm{rk}\,T}$.
- We can introduce a background flat connection on $\,E_{ au}\,$,

$$a \sim a + \mu + \tau \nu$$

- They parametrise are $\mathrm{rk}(T)$ -dimensional torus $E_T \cong (E_\tau)^{\mathrm{rk}(T)}$.
- The total moduli space of parameters m, a is

$$M_T \cong (\mathbb{R} \times E_\tau)^{\operatorname{rk}(T)}$$

Supersymmetric Ground States

• We are interested in supersymmetric ground states.

• For generic m, a, they are in 1-1 correspondence with fixed points.

$$\Psi_{\alpha}$$
 $\alpha = 1, \dots, N$

• What is the general dependence on the parameters m,a?

The Berry Connection

- The dependence is controlled by a supersymmetric Berry Connection:
 - \star A connection on a principle $\mathrm{SU}(N)$ bundle P.
 - * A \mathfrak{t}^* -valued section ϕ of $\mathrm{Ad}(P)$.
 - * They solve a set of generalised Bogomolny equations on

$$(\mathbb{R} \times E_{\tau})^{\operatorname{rk} T}$$

Example

- Consider again $X = \mathbb{CP}^1$.
- There are two supersymmetric ground states Ψ_1,Ψ_2 .
- The Berry connection is a smooth $\mathrm{SU}(2)$ monopole on $\mathbb{R} \times E_{ au}$.

General Structure

• Smooth monopoles centred on codimension-3 loci in $(\mathbb{R} \times E_{\tau})^{\mathrm{rk} T}$.

$$\lambda \cdot m = 0$$

$$\lambda \cdot a \in \mathbb{Z} + \tau \mathbb{Z}$$

• They project onto the hyperplane arrangement in $\mathfrak{t} \cong \mathbb{R}^{\mathrm{rk}\,T}$.

Algebraic Picture

- The Bogomolny equations include $[D_m + \phi, D_{\bar{a}}] = 0$.
- A rank N holomorphic vector bundle \mathcal{E} on each fiber

$$\{m\} \times E_T \cong (E_\tau)^{\operatorname{rk}(T)}$$

- The holomorphic bundle ${\mathcal E}$ is piecewise constant in m .
- This suggests a more algebraic approach.

Part III: Algebraic Description

Supersymmetric QM

• Reduce three-dimensional theory on $E_{ au}$ to obtain a supersymmetric quantum mechanics on $\mathbb R$.

- Quantum mechanics has infinite-dimensional target $\mathcal{X} = \operatorname{Map}(E_{\tau}, X)$
- Coupled to background vectormultiplets for the $S^1 \times S^1$ and T actions on $\mathcal X$.

Supersymmetric Ground States

- Alternative presentation of supersymmetric ground states.
- They are representatives of cohomology classes of the supercharge

$$Q = e^{-h}(d + \iota_V)e^h$$

Witten '82

• Acts on forms on \mathcal{X} where

- * h is the moment map for the 1PS T_m -action on $\mathcal X$.
- * V is a complex vector field generating $S^1 \times S^1$ action and the T action with parameter a .

Localisation

- Supersymmetric localisation leads to a simpler description.
- Supersymmetric ground state are representatives of cohomology classes of the equivariant differential $d + \iota_V$ on $\mathrm{Crit}(h) \subset \mathcal{X}$.
- The outcome depends on a face of the hyperplane arrangement.
- I will focus on the origin m = 0.

Zero Mass

- In this case, $\operatorname{Crit}(h) = \mathcal{X}$.
- For generic flat connection a , the fixed points of the vector field V are constant maps $E_{ au} \to p_{\alpha}$.
- A basis of supersymmetric ground states from equivariant Euler class of tangent space to constant maps in \mathcal{X} :

$$\Psi_{\alpha} \sim \prod_{\lambda \in T_{\alpha}X} \prod_{n,m \in \mathbb{Z}} (n + m\tau + \lambda \cdot a) \sim \prod_{\lambda \in T_{\alpha}X} \frac{\vartheta_{1}(\lambda \cdot a, \tau)}{\eta(\tau)}$$

Spectral Data

- They are sections of holomorphic line bundles L_1, \ldots, L_N on E_T .
- Combine into section of holomorphic line bundle on

$$E_T(X) := \bigsqcup_{\alpha=1}^{N} E_T^{(\alpha)} / \Delta$$

- * Identical copies of E_T associated to each vacuum α .
- + Pairs $E_T^{(\alpha)}$ and $E_T^{(\beta)}$ are identified at loci $\lambda \cdot a \in \mathbb{Z} + \tau \mathbb{Z}$.
- * Here λ labels the hyperplane where domain walls $p_{\alpha} \to p_{\beta}$ are tensionless.

Example

- Consider again $X = \mathbb{CP}^1$.
- Supersymmetric ground states at m = 0:

$$\Psi_1 \sim \frac{\vartheta_1(2a,\tau)}{\eta(\tau)} \qquad \Psi_2 \sim \frac{\vartheta_1(-2a,\tau)}{\eta(\tau)}$$

• They glue to section of holomorphic line bundle on

$$E_T(X) = E_T^{(1)} \sqcup E_T^{(2)} / \Delta$$

where Δ identifies the two copies at $a \in \mathbb{Z} + \tau \mathbb{Z}$.

General Picture

- \bullet On a general face of the hyperplane arrangement containing m .
- Supersymmetric ground states transform as section of a line bundle on the equivariant elliptic cohomology variety:

$$\mathrm{Ell}_T(X^{T_m})$$

• Is this a type of spectral data for the supersymmetric Berry connection?

Part IV: Boundary Conditions

Boundary Conditions

• Boundary condition preserving at least $\mathcal{N} = (0, 2)$ supersymmetry.

- \bullet Assume it preserves the flavour symmetry T.
- It may have 't Hooft anomalies for T.
- It may or may not be compatible with mass parameters m.

Boundary Amplitudes

• Now consider boundary amplitudes:

- They behave like $\mathcal{N}=(0,2)$ elliptic genera.
- They may be computed exactly by supersymmetric localisation.

Sugiyama-Yoshida '20

· Quasi-periodicities fixed by boundary 't Hooft anomalies.

Elliptic Cohomology Classes

- \bullet Suppose the boundary condition is compatible with mass m.
- The boundary amplitudes glue to a section of a line bundle on.

$$\mathrm{Ell}_T(X^{T_m})$$

• Boundary conditions produce classes in equivariant elliptic cohomology.

N = 4 Supersymmetry

- Special interest in N = 4 supersymmetry, broken to N = 2.
- Interesting classes of boundary conditions B_{lpha} labelled by vacua lpha .

 MB-Dimofte-Gaiotto-Hilburn '16
- We constructed boundary conditions corresponding to
 - * Attracting sets.
 - * Stable envelopes.

 Aganagic-Okounkov '16
- They are exchanged under 3d mirror symmetry.

Janus Interfaces

- We also studied correlation functions of Janus interfaces.
- This is a position dependent mass m(x) along $\mathbb R$ that interpolates between two faces of the hyperplane arrangement at $x \to \pm \infty$.

• This reproduces the construction of elliptic R-matrices.

Thank you!