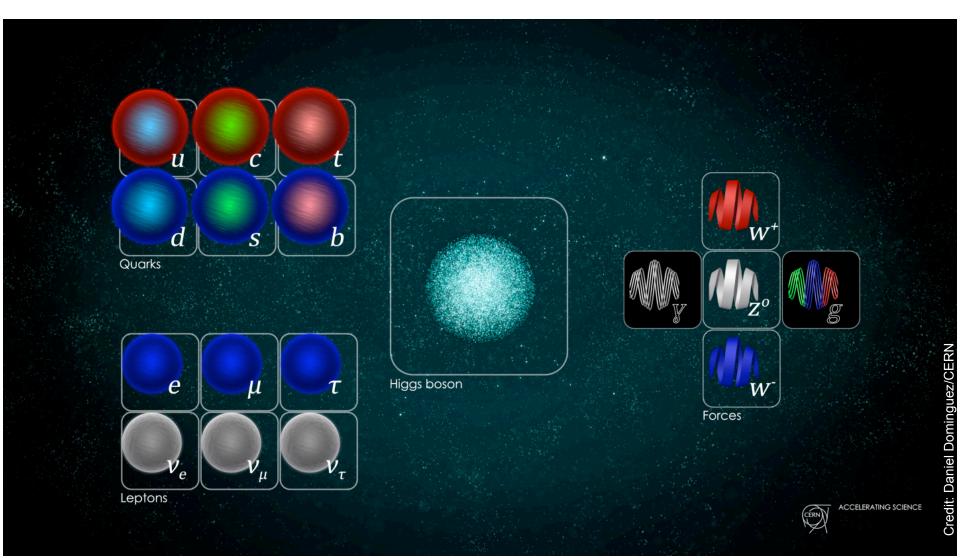


Axion-like particle dark matter and gravitational waves from topological defects

APEC Seminar, Kavli IPMU (online), October 6, 2021

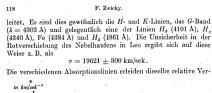
Edoardo Vitagliano

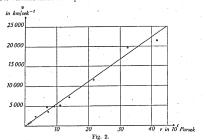
edoardo@physics.ucla.edu
University of California, Los Angeles

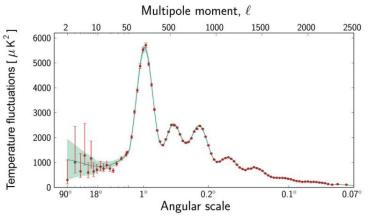

Based on arXiv:2103.07625

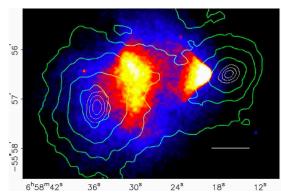
Prologue

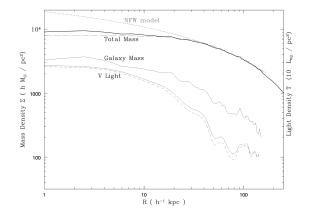
Known unknowns

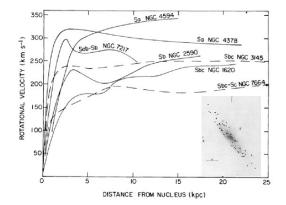



Particle physics in the 20th century has been incredibly successful


What is dark matter?




Coma cluster


Cosmic Microwave Background

Bullet Cluster

Lensing

Galactic rotation curves

Plus a bunch of other gravitational interaction proofs (A nice historical and philosophical account: de Swart et al. 1703.00013)

ALPs and GWs from string-walls

I. How to produce and detect topological defects

- Gravitational waves
- Symmetry breaking and topological defects

II. Particle physics model(s)

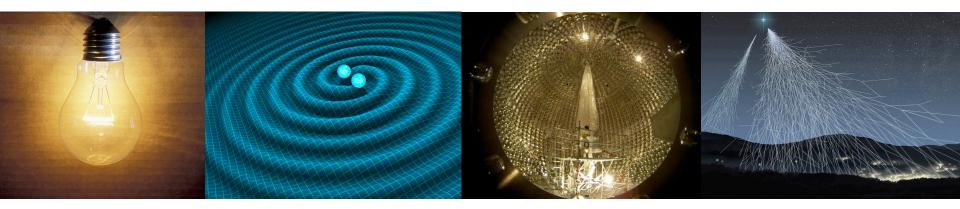
- From the QCD axion to axion-like particles
- ALP cosmology

III. From theory to observations

- Present GWs
- Present ALPs
- Detection perspectives

Conclusions

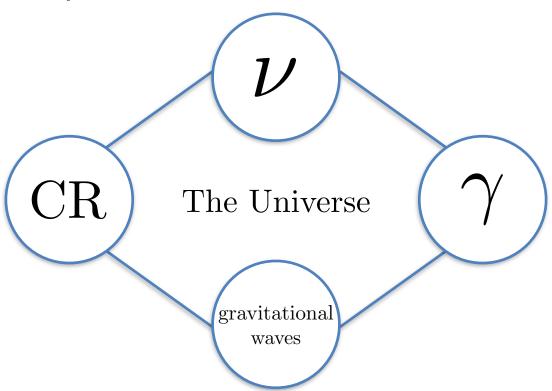
How to produce and detect topological defects


Dawn of multi-messenger astronomy

From Wikipedia...

Multi-messenger astronomy is astronomy based on the coordinated observation and interpretation of disparate "messenger" signals. The four extrasolar messengers are **electromagnetic radiation**, **gravitational waves**, **neutrinos**, and **cosmic rays**. They are created by different astrophysical processes, and thus reveal different information about their sources.

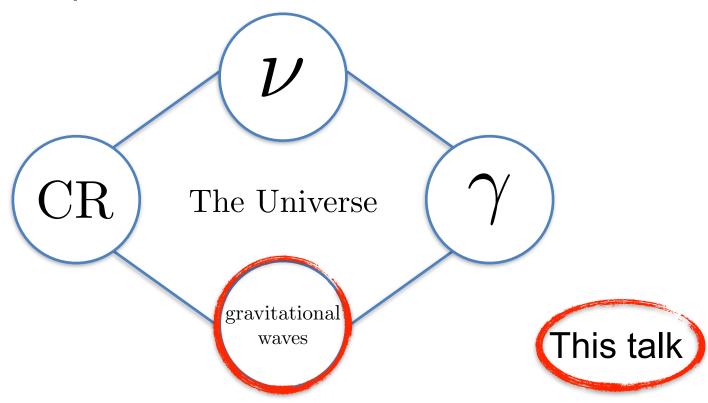
https://en.wikipedia.org/wiki/Multi-messenger_astronomy


Images credits: Rex, R. Hurt/Caltech-JPL/EPA, Virginia Tech Physics, ASPERA/Novapix/L. Bret

A new way to explore the universe

The universe is no longer explored with electromagnetic radiation alone.

In particular, **gravitational waves** are becoming crucial astrophysical probes

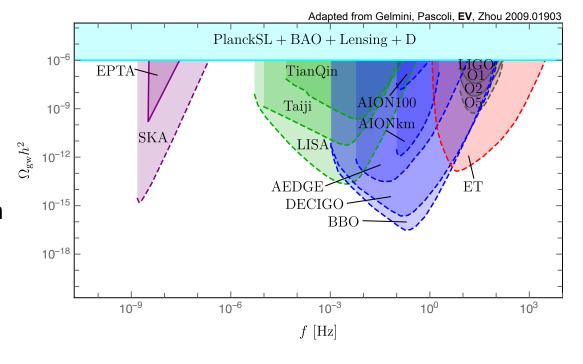


A new way to explore the universe

The universe is no longer explored with electromagnetic radiation alone.

In particular, **gravitational waves** are becoming crucial astrophysical probes

Gravitational wave detection



Direct detection

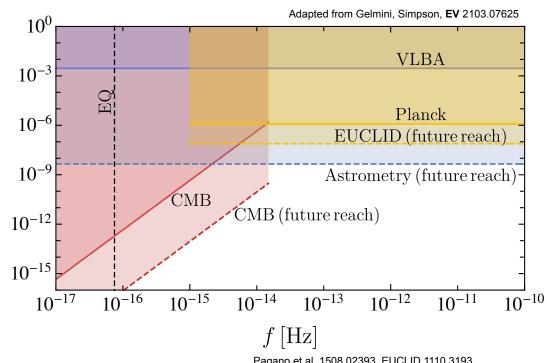
- Ground and space-based interferometers
- Particularly suitable for astrophysical events
- Useful for stochastic gravitational wave background (SGWB) depending on the spectrum

Pulsar timing

 GWs affect the time of flight of light from pulsars, so radio telescopes can probe supermassive black holes (well before they merge) and early universe signals

Gravitational wave detection

Astrometry (e.g. Very Long Baseline Array)


 GWs cause an apparent distortion of the position of background sources on the celestial sphere

Cosmology (N_{eff})

GWs contribute to the effective number of neutrinos

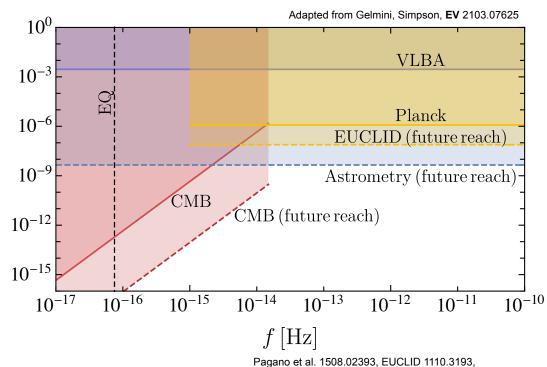
Cosmology

 GWs affect both temperature and polarization anisotropies in the CMB

Pagano et al. 1508.02393, EUCLID 1110.3193, Darling et al. 1804.06986, Arvanitaki et al. 1909.11665, Namikawa et al. 1904.02115

Gravitational wave detection

Astrometry (e.g. Very Long Baseline Array)


 GWs cause an apparent distortion of the position of background sources on the celestial sphere

Cosmology (N_{eff})

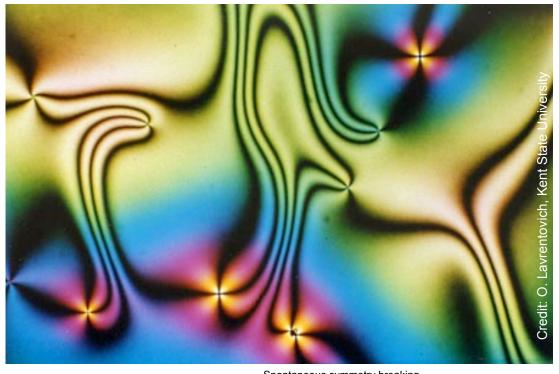
 GWs contribute to the effective number of neutrinos

Cosmology

 GWs affect both temperature and polarization anisotropies in the CMB

Pagano et al. 1508.02393, EUCLID 1110.3193, Darling et al. 1804.06986, Arvanitaki et al. 1909.11665, Namikawa et al. 1904.02115

Large objects moving in the early universe produce GWs


Topological defects

Kibble mechanism (Kibble 1976, Zel'dovich 1974, Everett 1974): different patches of the universe develop different VEVs of the same scalar field

Several types of topological defects are possible depending on the pattern of the symmetry breaking:

- monopoles
- strings
- domain walls
- textures

Spontaneous symmetry breaking

- Occurrence of primordial phase transitions followed by the formation of topological defects (Kibble 1976)
- Dark matter production (Sikivie 1982)
- Gravitational wave emission (Vilenkin and Shellard 2000 for a review)

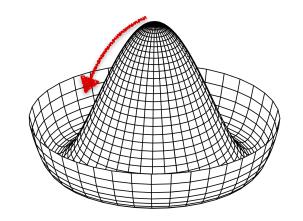
Topological defects

Kibble mechanism (Kibble 1976, Zel'dovich 1974, Everett 1974): different patches of the universe develop different VEVs of the same scalar field

Several types of topological defects are possible depending on the pattern of the symmetry breaking:

- monopoles
- strings
- domain walls
- textures

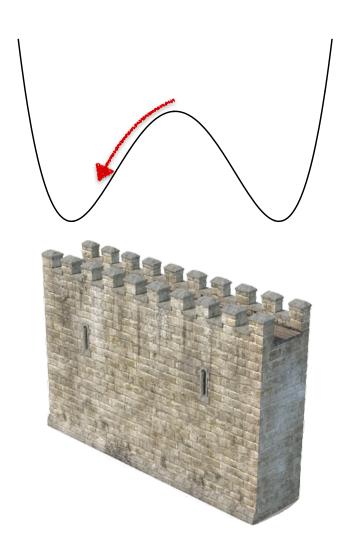
Spontaneous symmetry breaking


- Occurrence of primordial phase transitions followed by the formation of topological defects (Kibble 1976)
- Dark matter production (Sikivie 1982)
- Gravitational wave emission (Vilenkin and Shellard 2000 for a review)

Cosmic strings

Many models include an axial symmetry which is spontaneously broken (e.g. U(1), O(N))

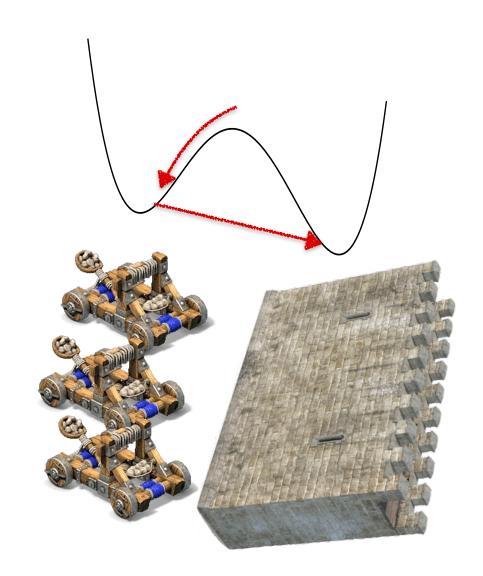
- Cosmic strings: winding number different from zero
- String recombination together with Hubble expansion lead the string network to a scaling regime $(\mathcal{O}(1))$ string per Hubble volume)


Domain walls

Domain walls form due to a spontaneously broken discrete symmetry (e.g. Z_N)

Different regions of space at different vacua are bounded by walls

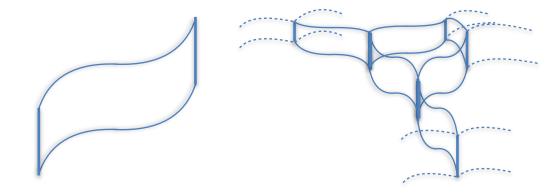
• Like strings, domain walls reach a scaling solution in which the energy density evolves with cosmic time σ/t

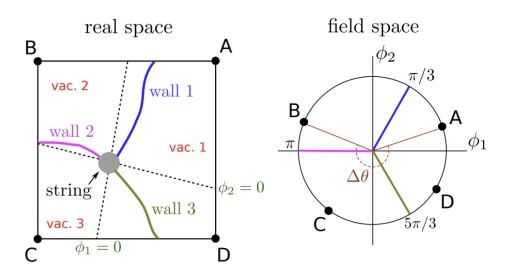

Domain walls

Domain walls form due to a spontaneously broken discrete symmetry (e.g. Z_N)

Different regions of space at different vacua are bounded by walls

- Like strings, domain walls reach a scaling solution in which the energy density evolves with cosmic time σ/t
- A wall dominated universe undergoes a power law inflation, which must be prevented by introducing a tilt in the potential, a bias

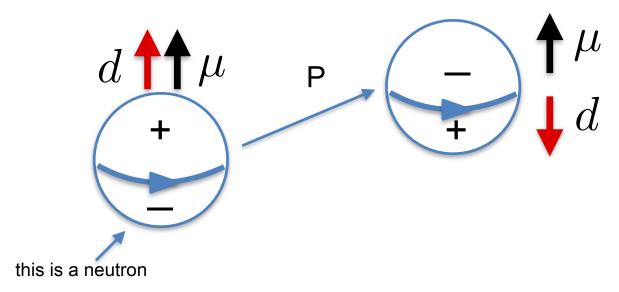



Walls bounded by strings

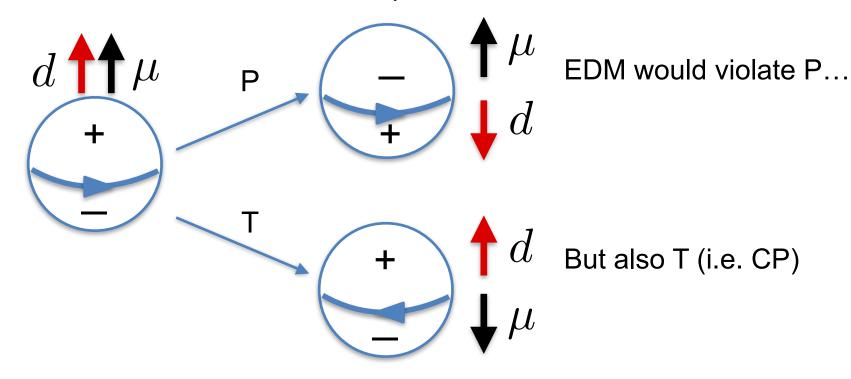
Formation of walls after strings leads to string wall networks

- N: number of vacua along orbit of minima
- N=1: unstable ribbons collapsing shortly after formation
- N > 1: stable network held up by wall tension
- String-wall networks eventually dominated by wall energy density, leading to power law inflation

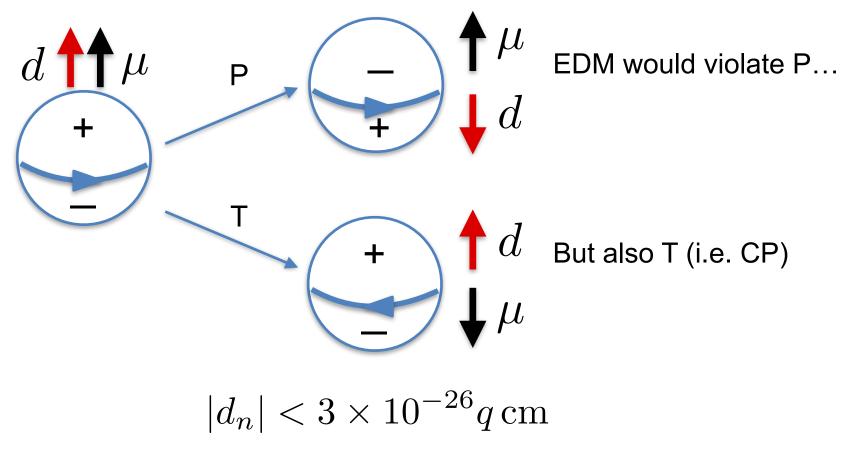
Adapted from Hiramatsu et al. 1207.3166


Particle physics model(s)

CP violation in neutrons: electric dipole moment


CP violation in neutrons: electric dipole moment

EDM would violate P...



CP violation in neutrons: electric dipole moment

CP violation in neutrons: electric dipole moment

It is small. Perhaps because it is not allowed...

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G_{\rho\sigma}$$

$$\mathcal{L}_{QCD}=\sum_{q}\overline{\psi}_{q}(i\rlap{/}D-m_{q}e^{i\theta_{q}})\psi_{q}-\frac{1}{4}G^{2}-\theta\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

Real mass

Yukawa phase

CP odd

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G_{\rho\sigma}$$

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q}(i\rlap{/}D - m_{q}e^{i\theta_{q}})\psi_{q} - \frac{1}{4}G^{2} - \theta\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

Real mass

Yukawa phase

CP odd

Remove phase by rotation finding

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \! D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - (\theta - \operatorname{arg} \det M_{q}) \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$|\overline{\theta}| < 10^{-11}$$

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G_{\rho\sigma}$$

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q}(i\rlap{/}D - m_{q}e^{i\theta_{q}})\psi_{q} - \frac{1}{4}G^{2} - \theta\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

Real mass

Yukawa phase

CP odd

Remove phase by rotation finding

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \! D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - (\theta - \operatorname{arg} \det M_{q}) \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$|\overline{\theta}| < 10^{-11}$$

Why?

Introduce a global symmetry spontaneously broken at some high scale V, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \!\!D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \overline{\theta} \frac{\alpha_{s}}{8\pi} G \widetilde{G}$$

Introduce a global symmetry spontaneously broken at some high scale V, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \!\!D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \overline{\theta} \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

CP violation

Introduce a global symmetry spontaneously broken at some high scale V, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \bar{\theta} \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$q_{L} \to e^{-i\alpha/2} q_{L} \atop q_{R} \to e^{+i\alpha/2} q_{R}$$

$$U(1)_{\text{chiral}} \atop m_{q} \to m_{q} e^{-i\alpha}$$

$$U(1)_{PQ}$$

Introduce a global symmetry spontaneously broken at some high scale V, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \bar{\theta} \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$\begin{cases} q_{L} \to e^{-i\alpha/2} q_{L} \\ q_{R} \to e^{+i\alpha/2} q_{R} \end{cases} U(1)_{\text{chiral}}$$

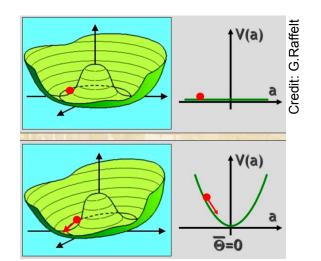
$$\begin{cases} U(1)_{PQ} \qquad \alpha = \bar{\theta} \equiv \frac{a}{V} \end{cases}$$

$$m_{q} \to m_{q} e^{-i\alpha}$$

Lesson 1

After the SSB, we have a pseudo Goldstone boson rotating the angle away

STRONG CP PROBLEM SOLVED



Lesson 1, cont'd

The same rotation gives a mass to the axion (w/ two quarks)

$$m_a^2 = \frac{m_u m_d}{m_u + m_d} \frac{\langle \bar{u}u \rangle}{V^2}$$

In other words, give enough time to the universe and it relaxes to a CP conserving QCD Lagrangian*

*your mileage may vary

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial U}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $U = m_a^2 a$

$$H = \frac{\dot{R}}{R}$$

$$U = m_a^2 a$$

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial U}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $U = m_a^2 a$

$$H = \frac{R}{R}$$

$$U = m_a^2 a$$

After being a damped harmonic oscillator, it becomes

$$\ddot{a} \simeq -m_a^2 a \qquad \underline{\hspace{1cm}}$$

$$\ddot{a} \simeq -m_a^2 a \qquad \longrightarrow \qquad a \simeq \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial U}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $U = m_a^2 a$

$$H = \frac{\dot{R}}{R}$$

$$U = m_a^2 a$$

After being a damped harmonic oscillator, it becomes

$$\ddot{a} \simeq -m_a^2 a$$

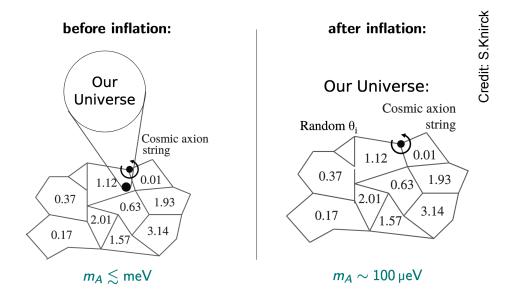
$$\ddot{a} \simeq -m_a^2 a \qquad \longrightarrow \qquad a \simeq \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$

Including an additional temperature dependence

$$a \simeq \theta_0 f_a \sqrt{\frac{m_a(T_C)}{m_a(T)}} \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$

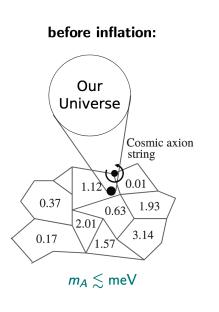
$$\rho_a = \frac{1}{2} m_a^2 a^2$$

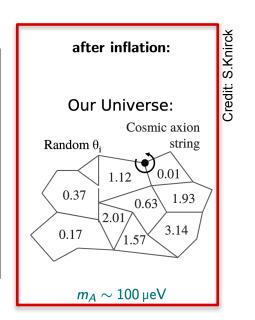
$$\rho_a = \frac{1}{2} m_a^2 a^2$$


Lesson 2

Axion can be a dark matter candidate

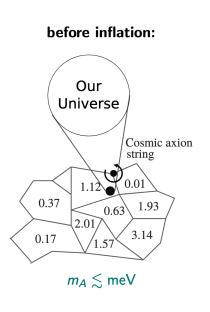
DM MISTERY SOLVED **V**

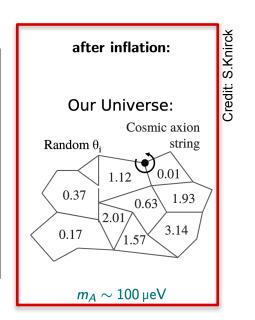



(If broken after inflation, more axions produced from cosmic strings and domain walls)

(If broken after inflation, more axions produced from cosmic strings and domain walls)

New QCD axion detection ideas!


Examples:


- MADMAX (Phys.Rev.Lett. 118 (2017) 9, 091801)
- Plasma haloscope (Lawson, Millar, Pancaldi, EV, Wilczek), Phys. Rev. Lett. 118 (2017) 9, 091801

QCD Axion cosmology in a nutshell

(If broken after inflation, more axions produced from cosmic strings and domain walls)

Main differences: m_a independent from T and $m_a \not\propto \frac{1}{V}$

ALPs: a definition

Axion-like particles are pseudo-Nambu-Goldstone bosons corresponding to the spontaneous breaking of a symmetry at high scale V and whose mass is generated by an additional breaking at a smaller scale v. They include

- majorons
- possibly string theory-inspired ALPs

ALPs: a definition

Axion-like particles are pseudo-Nambu-Goldstone bosons corresponding to the spontaneous breaking of a symmetry at high scale V and whose mass is generated by an additional breaking at a smaller scale v. They include

- majorons
- possibly string theory-inspired ALPs

Nambu-Goldstone bosons

A simple toy model:

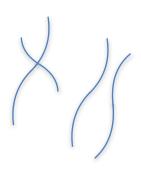
$$V(\phi) \supset \underbrace{\frac{\lambda}{4}(|\phi|^2 - V^2)^2 + \frac{v^4}{2}\left(1 - \frac{|\phi|}{V}\cos(N\theta)\right) - \epsilon_b v^4 \frac{|\phi|}{V}\cos(\theta - \delta)}_{\text{---}}$$

Mass generation

As the temperature lowers, each term becomes important

Bias

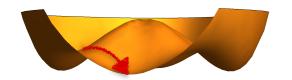
ALPs cosmology in a nutshell

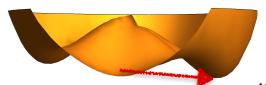

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias


As the temperature lowers, each term becomes important



Walls formation+misalignment

Walls annihilate

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

• When $T\simeq V$ (assuming that the field has initially the same temperature as the visible sector), spontaneous symmetry breaking occurs

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

- When $T \simeq V$ (assuming that the field has initially the same temperature as the visible sector), spontaneous symmetry breaking occurs
- A string network forms after the breaking of the U(1) symmetry

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

- When $T\simeq V$ (assuming that the field has initially the same temperature as the visible sector), spontaneous symmetry breaking occurs
- A string network forms after the breaking of the U(1) symmetry
- The string network reaches a scaling regime (universe expansion vs string reconnection). The energy density is $\rho_{\rm st}=\xi\mu/t^2$

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

- When $T \simeq V$ (assuming that the field has initially the same temperature as the visible sector), spontaneous symmetry breaking occurs
- ullet A string network forms after the breaking of the U(1) symmetry
- The string network reaches a scaling regime (universe expansion vs string reconnection). The energy density is $\rho_{\rm st}=\xi\mu/t^2$
- The string mass per unit length is

$$\mu \simeq 2\pi V^2 \ln \left(\frac{t}{\sqrt{\xi} d_{\rm st}} \right)$$

strings/volume

Explicit breaking

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

When
$$3H(t) \simeq m_a = \frac{v^2N}{\sqrt{2}V}$$
, the field starts sliding towards $\theta = 0$ and

the misalignment mechanism takes place. This happens at

$$T_w \simeq \frac{5.1 \times 10^4 \text{GeV}}{\left[g_{\star}(T_w)\right]^{1/4}} \left(\frac{m_a}{\text{eV}}\right)^{1/2}$$

Explicit breaking

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

Mass generation

Bias

• When
$$3H(t) \simeq m_a = \frac{v^2N}{\sqrt{2}V}$$
, the field starts sliding towards $\theta = 0$ and

the misalignment mechanism takes place. This happens at

$$T_w \simeq \frac{5.1 \times 10^4 \text{GeV}}{\left[q_{\star}(T_w)\right]^{1/4}} \left(\frac{m_a}{\text{eV}}\right)^{1/2}$$

Walls attached to the strings form with tension

$$\sigma = f_{\sigma} v^2 \frac{V}{N}$$

Model-dependent dimensionless parameter

Bias

$$V(\phi) \supset \underbrace{\frac{\lambda}{4}(|\phi|^2 - V^2)^2 + \frac{v^4}{2}\left(1 - \frac{|\phi|}{V}\cos(N\theta)\right) - \epsilon_b v^4 \frac{|\phi|}{V}\cos(\theta - \delta)}_{\text{V}}$$

Nambu-Goldstone bosons

Mass generation

Bias

• The surface tension produces a pressure p_T . It coincides with the energy density stored in the walls, and tends to straighten the walls

Bias

$$V(\phi) \supset \underbrace{\frac{\lambda}{4}(|\phi|^2 - V^2)^2 + \frac{v^4}{2}\left(1 - \frac{|\phi|}{V}\cos(N\theta)\right) - \epsilon_b v^4 \frac{|\phi|}{V}\cos(\theta - \delta)}_{\text{---}}$$

Nambu-Goldstone bosons

Mass generation

Bias

- The surface tension produces a pressure p_T . It coincides with the energy density stored in the walls, and tends to straighten the walls
- The volume pressure $p_V={
 m Bias}\,$ tends to accelerate the walls towards their lower energy adjacent vacuum (detonation)

Bias

$$V(\phi) \supset \frac{\lambda}{4} (|\phi|^2 - V^2)^2 + \frac{v^4}{2} \left(1 - \frac{|\phi|}{V} \cos(N\theta) \right) - \epsilon_b v^4 \frac{|\phi|}{V} \cos(\theta - \delta)$$

Nambu-Goldstone bosons

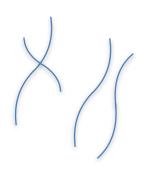
Mass generation

Bias

- The surface tension produces a pressure p_T . It coincides with the energy density stored in the walls, and tends to straighten the walls
- The volume pressure $p_V={
 m Bias}\,$ tends to accelerate the walls towards their lower energy adjacent vacuum (detonation)
- Walls annihilate when $p_T \simeq p_V$,

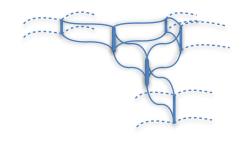
$$H(T_{\rm ann}) \simeq \epsilon_b v^4 / 2\sigma = \frac{\epsilon_b m_a}{\sqrt{2} f_\sigma}$$

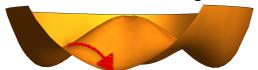
$$T_{\rm ann} \simeq \frac{0.73 \times 10^5 \text{ GeV}}{[g_\star(T_{\rm ann})]^{1/4}} \sqrt{\frac{\epsilon_b m_a}{f_\sigma \text{ eV}}}$$

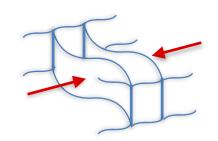

From theory to observations

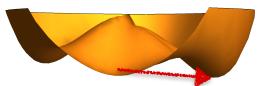
Present ALP energy density

There are **three** mechanisms to produce ALPs in our scenario:


- Misalignment mechanism
- String decay
- Walls annihilation




 $T \simeq V$


Walls formation+misalignment

$$3H(t_w) \simeq m_a = \frac{v^2 N}{\sqrt{2}V}$$

Walls annihilate

$$p_T(T_{\rm ann}) \simeq p_V(T_{\rm ann})$$

ALPs at present: misalignment

• The dark matter abundance due to the misalignment mechanism is immediately obtained. At wall formation (when $3H \simeq m_a$)

$$\rho_{a,0}(t_w) = \frac{1}{2}m_a^2 a^2 = \frac{1}{2}m_a^2 \theta_w^2 V^2$$

ALPs at present: misalignment

• The dark matter abundance due to the misalignment mechanism is immediately obtained. At wall formation (when $3H \simeq m_a$)

$$\rho_{a,0}(t_w) = \frac{1}{2}m_a^2 a^2 = \frac{1}{2}m_a^2 \theta_w^2 V^2$$

Including the redshift

$$\rho_{a,0}(t_0) = \rho_{a,0}(t_w) \left(\frac{R(t_w)}{R(t_0)}\right)^3 \qquad \left(\frac{R(t_w)}{R(t_0)}\right)^3 = \frac{\frac{2\pi^2}{45}g_0^*T_0^3}{\frac{2\pi^2}{45}g_w^*T_w^3}$$

Which gives

$$\Omega_a^{\text{mis}} h^2 = \frac{\rho_{a,0}(t_0)}{\rho_c} h^2 \simeq 0.77 \times 10^{-19} \langle \theta_w^2 \rangle \frac{V^2 m_a^{1/2}}{\text{GeV}^{5/2}} \frac{[g_{\star}(T_w)]^{3/4}}{g_{s\star}(T_w)}$$
$$\simeq \pi^2/3$$

ALPs at present: misalignment

• The dark matter abundance due to the misalignment mechanism is immediately obtained. At wall formation (when $3H \simeq m_a$)

$$\rho_{a,0}(t_w) = \frac{1}{2}m_a^2 a^2 = \frac{1}{2}m_a^2 \theta_w^2 V^2$$

Including the redshift

$$\rho_{a,0}(t_0) = \rho_{a,0}(t_w) \left(\frac{R(t_w)}{R(t_0)}\right)^3 \qquad \left(\frac{R(t_w)}{R(t_0)}\right)^3 = \frac{\frac{2\pi^2}{45}g_0^*T_0^3}{\frac{2\pi^2}{45}g_w^*T_w^3}$$

Which gives

$$\Omega_a^{\text{mis}} h^2 = \frac{\rho_{a,0}(t_0)}{\rho_c} h^2 \simeq \boxed{0.77 \times 10^{-19}} \langle \theta_w^2 \rangle \frac{V^2 m_a^{1/2}}{\text{GeV}^{5/2}} \frac{[g_\star(T_w)]^{3/4}}{g_{s\star}(T_w)}$$
$$\simeq \pi^2/3$$

ALPs at present: strings

 The dark matter abundance due to string decay can be obtained using that

$$\rho_{\text{strings}} = \frac{\mu}{t^2} \xi$$

ALPs at present: strings

 The dark matter abundance due to string decay can be obtained using that

$$\rho_{\text{strings}} = \frac{\mu}{t^2} \xi$$

The number density is found as (see e.g. 1012.5502)

$$n_a \simeq \int_{t_*}^{t_w} dt \left[R(t)^3 \left(\frac{d\rho_{\text{strings}}}{dt} \frac{1}{H(t)} \right) \right]$$

$$E_a \simeq H(t)$$

 After the formation of walls, the number density simply redshifts and one finds

$$\Omega_a^{\text{st}} h^2 \simeq 0.95 \times 10^{-23} \, \xi \, \ln \left(\frac{3V}{\sqrt{2\xi} \, m_a} \right) \left(\frac{V}{\text{GeV}} \right)^2 \left(\frac{m_a}{\text{eV}} \right)^{1/2} \frac{[g_{\star}(T_w)]^{3/4}}{g_{s\star}(T_w)}$$

ALPs at present: strings

 The dark matter abundance due to string decay can be obtained using that

$$\rho_{\text{strings}} = \frac{\mu}{t^2} \xi$$

The number density is found as (see e.g. 1012.5502)

$$n_a \simeq \int_{t_*}^{t_w} dt \left[R(t)^3 \left(\frac{d\rho_{\text{strings}}}{dt} \frac{1}{H(t)} \right) \right]$$

$$E_a \simeq H(t)$$

 After the formation of walls, the number density simply redshifts and one finds

$$\Omega_a^{\text{st}} h^2 \simeq 0.95 \times 10^{-23} \, \xi \, \ln \left(\frac{3V}{\sqrt{2\xi} \, m_a} \right) \left(\frac{V}{\text{GeV}} \right)^2 \left(\frac{m_a}{\text{eV}} \right)^{1/2} \frac{[g_{\star}(T_w)]^{3/4}}{g_{s\star}(T_w)}$$

ALPs at present: walls

 Most of energy stored in walls is lost in the emission of ALPs at annihilation, therefore

$$\rho_a(t_0) = m_a n_a \simeq m_a \left(\frac{R(T_{\rm ann})}{R_0}\right)^3 \frac{\rho_w(T_{\rm ann})}{\langle E_a \rangle}$$

ALPs at present: walls

 Most of energy stored in walls is lost in the emission of ALPs at annihilation, therefore

$$\rho_a(t_0) = m_a n_a \simeq m_a \left(\frac{R(T_{\rm ann})}{R_0}\right)^3 \frac{\rho_w(T_{\rm ann})}{\langle E_a \rangle}$$

 From simulations, ALPs should be mildly relativistic, so we included a small correction

$$m_a/\langle E_a \rangle \simeq 1/\sqrt{2}$$

The density parameter from walls is

$$\Omega_a^{\text{walls}} h^2 \simeq \frac{2.4 \times 10^{-24}}{\epsilon_b^{1/2}} \left(\frac{f_\sigma^{3/4} V}{N \text{GeV}} \right)^2 \left(\frac{m_a}{\text{eV}} \right)^{1/2} \frac{[g_\star(T_{\text{ann}})]^{3/4}}{g_{s\star}(T_{\text{ann}})}$$

ALPs at present: walls

 Most of energy stored in walls is lost in the emission of ALPs at annihilation, therefore

$$\rho_a(t_0) = m_a n_a \simeq m_a \left(\frac{R(T_{\rm ann})}{R_0}\right)^3 \frac{\rho_w(T_{\rm ann})}{\langle E_a \rangle}$$

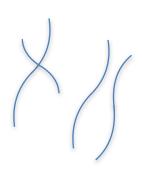
 From simulations, ALPs should be mildly relativistic, so we included a small correction

$$m_a/\langle E_a \rangle \simeq 1/\sqrt{2}$$

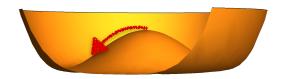
The density parameter from walls is

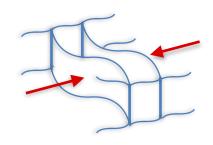
$$\Omega_a^{\text{walls}} h^2 \simeq \boxed{\frac{2.4 \times 10^{-24}}{\epsilon_b^{1/2}}} \left(\frac{f_\sigma^{3/4} V}{N \text{GeV}}\right)^2 \left(\frac{m_a}{\text{eV}}\right)^{1/2} \frac{[g_\star(T_{\text{ann}})]^{3/4}}{g_{s\star}(T_{\text{ann}})}$$

ALPs at present: take home

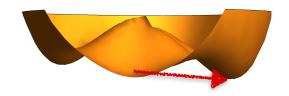

- String decay can be more important than misalignment mechanism (subject to simulation uncertainties)
- Wall annihilation gives most of the contribution to ALPs for a small enough bias ϵ_h (walls decay later and they are less redshifted)

Present GW energy density




There are **two** mechanisms to produce GWs in our scenario:

- String decay
- Walls annihilation



Strings form

Walls annihilate

Present GW energy density: walls

Wall annihilation gives a spectrum which scales like f^3 at low frequencies (because of causality) and f^{-1} at high frequencies (a bit more uncertain)

We expect therefore a peaked spectrum. The peak amplitude is evaluated through the quadrupole formula,

$$P \simeq G \ddot{Q}_{ij} \ddot{Q}_{ij}$$

where

$$\dddot{Q}_{ij} \simeq \sigma t$$

(Because)

$$Q_{ij} \simeq E_w t^2$$
 $E_w \simeq \sigma t^2$

Present GW energy density: walls

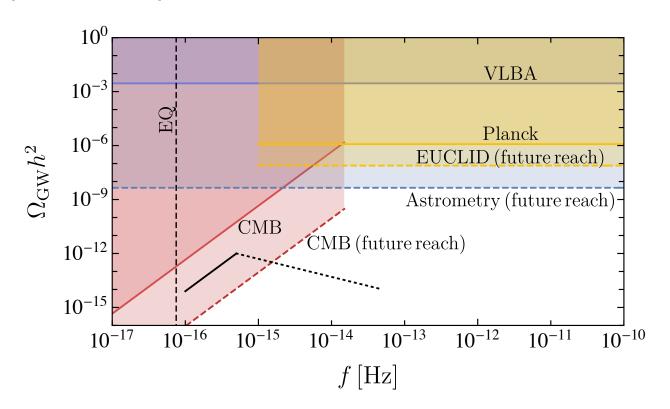
So the GW energy density is

$$\Delta \rho_{\rm GW}(t) \simeq G\sigma^2 \frac{\Delta t}{t}$$

Which including the redshift is

$$\rho_{\rm GW}|_{\rm peak} \simeq G\sigma^2 \left(\frac{R(t_{\rm ann})}{R_0}\right)^4$$

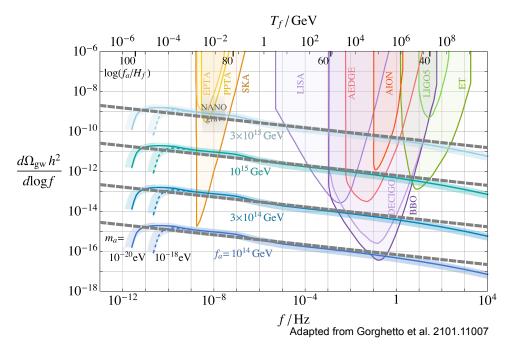
$$\Omega_{\rm GW}h^2|_{\rm peak} \simeq \frac{1.2 \times 10^{-79} \epsilon_{gw} g_{\star}(T_{\rm ann})}{\epsilon_b^2 \left[g_{s\star}(T_{\rm ann})\right]^{4/3}} \left(\frac{f_{\sigma}V}{N{\rm GeV}}\right)^4$$


The peak frequency is

$$f_{\text{peak}} = R(t_{\text{ann}})H(t_{\text{ann}}) \simeq 0.76 \times 10^{-7} \text{Hz} \frac{T_{\text{ann}}}{\text{GeV}} \frac{[g_{\star}(T_{\text{ann}})]^{1/2}}{[g_{s\star}(T_{\text{ann}})]^{1/3}}$$

Present GW energy density: walls

An example of GW spectrum from walls is this



(assuming
$$f_{\sigma}/N=1$$
, $T_{\rm ann}=5\,{\rm eV}$ and $\Omega_{\rm GW}h^2|_{\rm peak}=10^{-12}$)

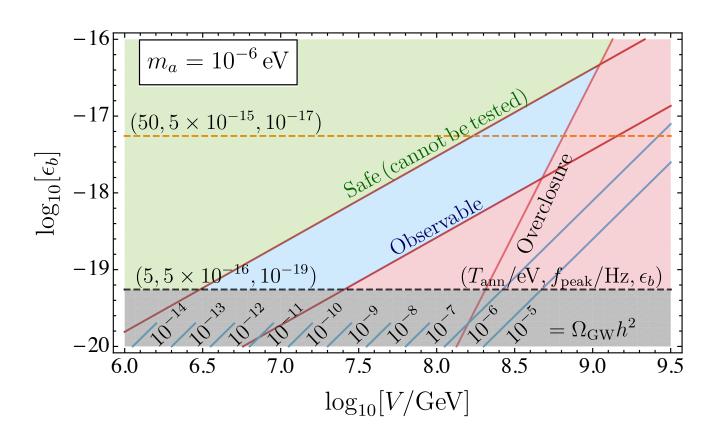
Present GW energy density: strings

• The GW emission from string is $\mathcal{O}(1)$ the same as in the N=1 case computed in the literature (see e.g. 2101.11007)

We find that a good semi-analytical fit is

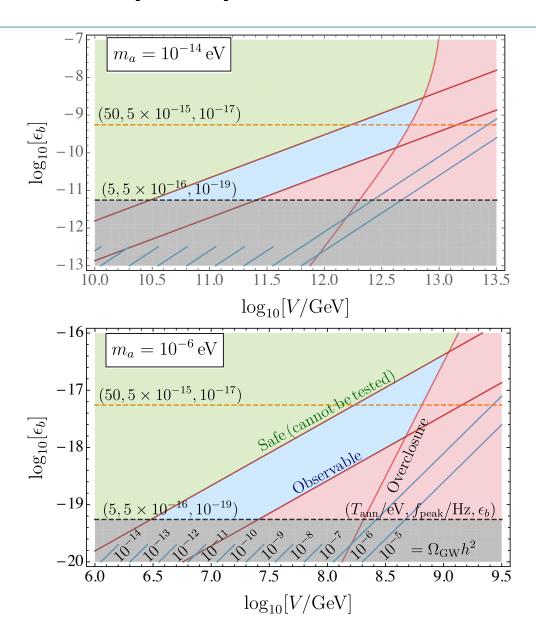
$$\Omega_{\rm GW}^{\rm st} h^2 \simeq 2 \times 10^{-15} \left(\frac{10^{-12} \text{ Hz}}{f}\right)^{1/8} \left(\frac{V}{10^{14} \text{ GeV}}\right)^4$$

Present GW energy density: strings

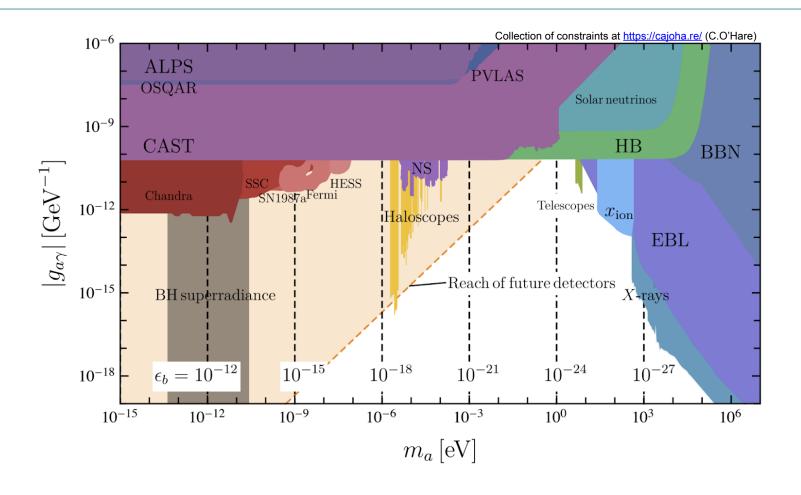


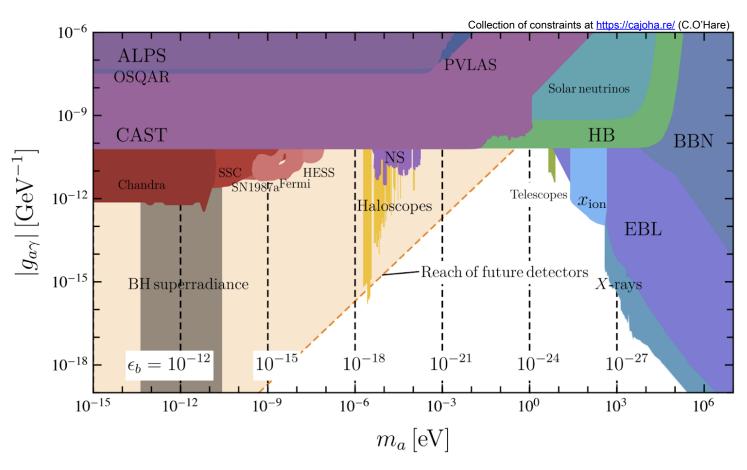
As far as $V \lesssim 10^{14}\,\mathrm{GeV}$, GWs from walls dominate the signal

Observational perspectives



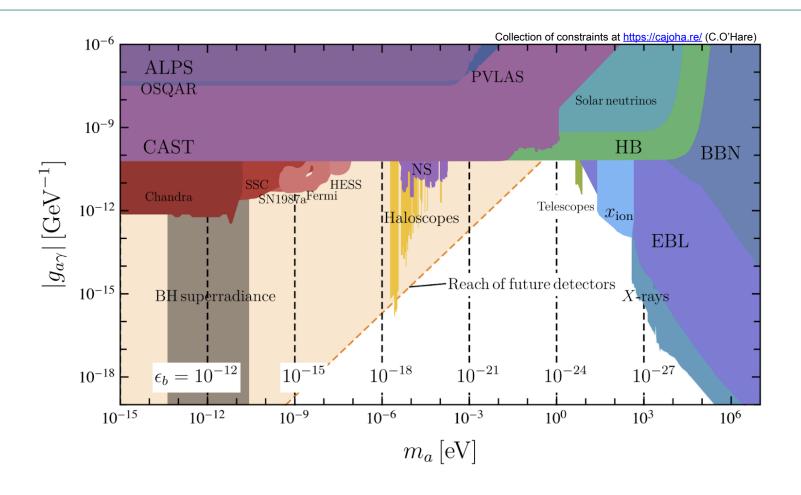
The observable region preserves its shape as $\epsilon_b \propto 1/m_a$


Observational perspectives


Coupling to photons

Coupling to photons

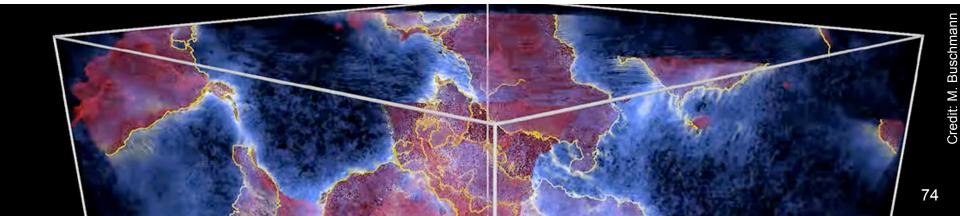
Asking for
$$\Omega_{
m GW}^{
m wall} \gtrsim \Omega_{
m GW}^{
m strings}$$


$$m_a > 5 \times 10^{-16} \text{ eV}$$

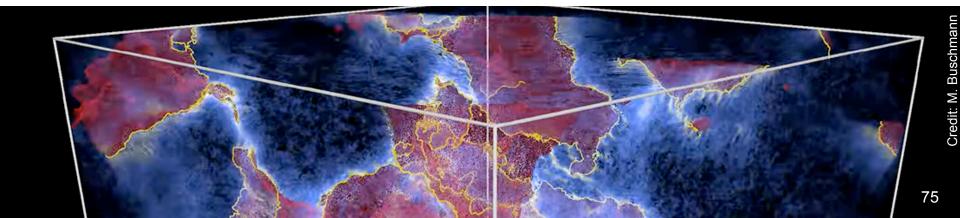
Asking for
$$v < 10^{-2}V$$

$$\begin{cases} V > 2.5 \text{ GeV} \\ m_a < 1.5 \text{ MeV} \end{cases}$$

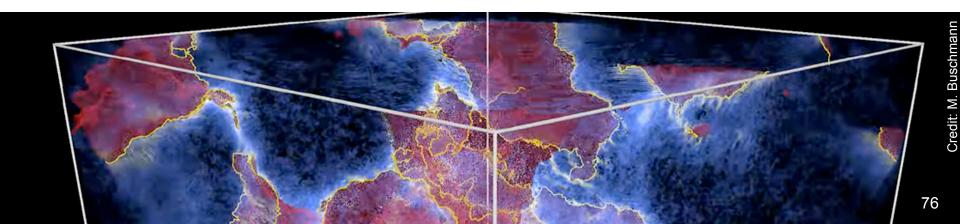
Coupling to photons



If we are lucky, we could discover barely interacting ALPs



 The presence of ALPs leads to the formation of topological defects, i.e. cosmic strings and domain walls



- The presence of ALPs leads to the formation of topological defects, i.e. cosmic strings and domain walls
- For N>1 domain walls produce most of ALP dark matter and gravitational waves

- The presence of ALPs leads to the formation of topological defects, i.e. cosmic strings and domain walls
- For N>1 domain walls produce most of ALP dark matter and gravitational waves
- There is a window in which the gravitational wave background from domain walls would be observable with cosmological and astrometric data

Thank you

This project has received funding/support from the DOE through UCLA.

Thank you

