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Representation of sl2

sl2(C) = {A ∈ End(C2) | Tr(A) = 0}

has the standard basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
with the following commutator relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

A representation of sl2(C) consists of the following data

A collection of vector spaces (weight spaces) Vλ, λ ∈ Z

Linear maps e : Vλ → Vλ+2, f : Vλ → Vλ−2

(ef − fe)|Vλ = λIdVλ
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Representation of sl2

The above data of the representation can be characterized in the following picture
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such that (ef − fe = h)|Vλ = λIdVλ .

Remark
We can consider a more general case, which is the representation of the quantum
group Uq(sl2). The third condition is replaced by (ef − fe)|Vλ = [λ]qIdVλ , where
[λ]q := qλ−1 + qλ−3 + ...+ q−λ+1 is the quantum integer.
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Categorification

Idea: Replace all vector spaces by categories and linear maps by functors.

Such a process can help us to understand deeper structures.

It has many applications, e.g., modular representation theory, equivalence of
categories, knot homologies....etc.

Geometry is a good resource for producing categories.

It can be decategorified to recover the original vector space.

vector spaces
categorify

// categories

decategorify

kk
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The categorical sl2 (or Uq(sl2)) action

We would apply the philosophy of categorification to representations of sl2(C) (or
Uq(sl2)) and we call it the categorical sl2 (or Uq(sl2)) action.

Recall the representations of sl2(C) consisting of the following data.

A collection of vector spaces (weight spaces) Vλ, λ ∈ Z

Linear maps e : Vλ → Vλ+2, f : Vλ → Vλ−2

(ef − fe)|Vλ = λIdVλ
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The categorical sl2 (or Uq(sl2)) action

weight space Vλ, λ ∈ Z // weight category K(λ) λ ∈ Z

e : Vλ → Vλ+2, f : Vλ → Vλ−2
// E : K(λ)→ K(λ+ 2), F : K(λ)→ K(λ− 2)
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K(λ− 2)
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The commutator relation (ef − fe)|Vλ = λIdVλ should be lifted to

EF|K(λ)
∼= FE|K(λ)

⊕
Id⊕λK(λ), if λ ≥ 0

FE|K(λ)
∼= EF|K(λ)

⊕
Id⊕−λK(λ), if λ ≤ 0

Remark

Similarly, there is also a lift of the commutator relation (ef − fe)|Vλ = [λ]qIdVλ
for Uq(sl2) to categorical level.
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Construct categorification from geometries

To construct categorical sl2 actions, the weight categories arise from the spaces of
importance in representation theory like Grassmannians or flag varieties.

Consider the Grassmannian of k-dimensional subspaces in CN

G(k,N) = {0 ⊂ V ⊂ CN | dimV = k}

Let DbCon(G(k,N)) to be the bounded derived categories of constructible
sheaves on G(k,N). These will be our weight categories
K(λ) = DbCon(G(k,N)), where λ = N − 2k.
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Construct categorification from geometries

We have the following natural correspondence

Fl(k − 1, k) = {0
k−1
⊂ V ′

1
⊂ V

N−k
⊂ CN}

p1

tt

p2

**

G(k,N) G(k − 1, N)

Here p1 : Fl(k − 1, k)→ G(k,N) and p2 : Fl(k − 1, k)→ G(k − 1, N) are
natural projections. We define the following functors

E := p2∗p
∗
1 : DbCon(G(k,N)) = K(λ)→ DbCon(G(k − 1, N)) = K(λ+ 2)

F := p1∗p
∗
2 : DbCon(G(k − 1, N)) = K(λ+ 2)→ DbCon(G(k,N)) = K(λ)

Remark
In this talk, all functors between derived categories are assumed to be derived. For
example, we will use f∗, f∗ instead of Lf∗, Rf∗ respectively.
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Construct categorification from geometries

With the categories K(λ) and functors E, F defined above, we have the following
theorem.

Theorem 1 (Beilinson-Lusztig-MacPherson, Chuang-Rouquier)

The categories and functors defined above gives a categorical sl2 (or Uq(sl2))
action. This means that the functors defined above satisfy

EF|K(λ)
∼= FE|K(λ)

⊕
Id⊕λK(λ) if λ ≥ 0

FE|K(λ)
∼= EF|K(λ)

⊕
Id⊕−λK(λ) if λ ≤ 0
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The motivation of our problem

Motivated by the above result, we replace constructible sheaves with coherent
sheaves.

That means that our weight categories K(λ) are bounded derived categories of
coherent sheaves on G(k,N), which is denoted by DbCoh(G(k,N)), where
λ = N − 2k.
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Our functors
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Denoting V,V ′ to be the tautological bundles on Fl(k − 1, k) of rank k, k − 1
respectively, then there is a natural line bundle V/V ′ on Fl(k − 1, k).
Instead of just pullback and pushforward, we have more functors

Er := p2∗(p
∗
1 ⊗ (V/V ′)r) : DbCoh(G(k,N))→ DbCoh(G(k − 1, N))

Fr := p1∗(p
∗
2 ⊗ (V/V ′)r) : DbCoh(G(k − 1, N))→ DbCoh(G(k,N))

where r ∈ Z.
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The main problem

Problem.
We want to understand how this Lsl2 := sl2 ⊗ C[t, t−1]-like algebra acting on⊕

k DbCoh(G(k,N)), where e⊗ tr and f ⊗ ts acting via the functors Er and Fs
respectively for r, s ∈ Z.

We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical action like
sl2 in the introduction?
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We can ask several natural questions, for example,

1 What are the categorical commutator relations between ErFs and FsEr?

2 What is the algebra that we obtain after decategorifying?

3 If we define the algebra, can we give a definition of its categorical action like
sl2 in the introduction?



Fourier-Mukai (FM) transforms

Before we answer those questions, we need the tool of Fourier-Mukai (FM)
transform to help us.

Definition 2

Let X, Y be two smooth projective varieties. A Fourier-Mukai (FM) kernel is any
object P ∈ DbCoh(X × Y ). For such P we define the associated Fourier-Mukai
(FM) transform, which is the functor

ΦP : DbCoh(X)→ DbCoh(Y )

F 7→ π2∗(π
∗
1(F)⊗ P)

where π1, π2 are natural projections.
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FM kernels for Er and Fs

Then the functor Er : DbCoh(G(k,N))→ DbCoh(G(k − 1, N)) isomorphic to a
FM transform with the kernel

Er1(k,N−k) := ι∗(V/V ′)r ∈ DbCoh(G(k,N)×G(k − 1, N))

where ι : Fl(k − 1, k)→ G(k,N)×G(k − 1, N) is the natural inclusion, i.e.,
Er ∼= ΦEr1(k,N−k) .

Similarly, we denote

Fs1(k,N−k) ∈ DbCoh(G(k,N)×G(k + 1, N))

to be the FM kernel for Fs, i.e., Fs ∼= ΦFr1(k,N−k) .
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Categorical commutator relations between Er and Fs

First, we study the relation between the two functors

Er ◦ Fs, Fs ◦ Er : DbCoh(G(k,N))→ DbCoh(G(k,N)).

Since both Er and Fs are FM transforms, a standard fact tells us that composition
of FM transforms is also a FM transform with kernel given by the convolution of
kernels. We denote ∗ to be the operation of convolution.
Then (Er ∗ Fs)1(k,N−k), (Fs ∗ Er)1(k,N−k) ∈ DbCoh(G(k,N)×G(k,N)) are
FM kernels for the functors Er ◦ Fs, Fs ◦ Er, respectively.

Comparing Er ◦ Fs, Fs ◦ Er : DbCoh(G(k,N))→ DbCoh(G(k,N))

��

Comparing (Er ∗ Fs)1(k,N−k), (Fs ∗ Er)1(k,N−k) ∈ DbCoh(G(k,N)×G(k,N))
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Categorical commutator relations between Er and Fs

Theorem 3 (Hsu)

We have the following exact triangles in DbCoh(G(k,N)×G(k,N)).

(Fs ∗ Er)1(k,N−k) → (Er ∗ Fs)1(k,N−k) → (Ψ+ ∗ H1)1(k,N−k), if r + s = N − k + 1

(Fs ∗ Er)1(k,N−k) → (Er ∗ Fs)1(k,N−k) → Ψ+1(k,N−k), if r + s = N − k

(Er ∗ Fs)1(k,N−k) → (Fs ∗ Er)1(k,N−k) → Ψ−1(k,N−k), if r + s = −k

(Er ∗ Fs)1(k,N−k) → (Fs ∗ Er)1(k,N−k) → (Ψ− ∗ H−1)1(k,N−k), if r + s = −k − 1.

Finally, we have

(Fs ∗ Er)1(k,N−k)
∼= (Er ∗ Fs)1(k,N−k), if − k + 1 ≤ r + s ≤ N − k − 1.

Here Ψ+1(k,N−k) = ∆∗ det(CN/V), Ψ−1(k,N−k) = ∆∗ det(V)−1 up to some
homological shift, where ∆ : G(k,N)→ G(k,N)×G(k,N) is the diagonal map.
H±11(k,N−k) are more complicated kernels.

Remark
The exact triangles are non-split in general.
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The idea behind the proof

To compare (Er ∗ Fs)1(k,N−k) and (Fs ∗ Er)1(k,N−k), the geometries is exactly
the same to the setting of constructible derived category for categorical sl2 action.

Geometry for FE or FsEr Geometry for EF or ErFs

Z ′ = {V ′′′
1
⊂ V, V ′′}

π′

**

Z = {V, V ′′
1
⊂ V ′}

π

tt

Y = {(V, V ′′) ∈ G(k,N)×G(k,N) | dim(V ∩ V ′′) ≥ k − 1}

Remark

The variety Y is singular with 2 resolutions π, π′.
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A comparison between constructible and coherent pictures

In the constructible setting, K(λ) = DbCon(G(k,N)), and to compare EF and
FE, we also have to compare their convolution of kernels.
Assuming λ = N − 2k ≥ 0.
In this setting π′ is a small resolution and π is not a small resolution. Using the
theory about perverse sheaves (IC sheaf), we have EF|K(λ)

∼= FE|K(λ)

⊕
Id⊕λK(λ).

The non-zero extra term can be written as

Id⊕λK(λ)
// IdK(λ) ⊗H∗sing(Pλ−1,C)
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A comparison between constructible and coherent pictures

However, in the coherent setting K(λ) = DbCoh(G(k,N)), we do not have
powerful tools like the decomposition theorem we can use for constructible
sheaves.

So we need to use the fiber product

X := Z ′ ×Y Z
ss ++

��

Z ′ = {V ′′′
1
⊂ V, V ′′}

π′

++

Z = {V, V ′′
1
⊂ V ′}

π

ss

Y = {(V, V ′′) ∈ G(k,N)×G(k,N) | dim(V ∩ V ′′) ≥ k − 1}

In this setting, the last isomorphism in Theorem 7 is reflected by the vanishing of
coherent cohomology.

(Fs ∗ Er)1(k,N−k)
∼= (Er ∗ Fs)1(k,N−k), −k + 1 ≤ r + s ≤ N − k − 1

OO

��

H∗(PN−1,OPN−1(−r − s− k)) = 0, −N + 1 ≤ −r − s− k ≤ −1.
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Some information about H1

There is an exact triangle in DbCoh(G(k,N)×G(k,N))

∆∗V → H11(k,N−k) → ∆∗CN/V

with H11(k,N−k) is determined by the non-zero element

(0, id) ∈ Hom(∆∗CN/V,∆∗V[1]) ∼= Ext1(CN/V,V)⊕ End(Ω∆).

Similarly for H−11(k,N−k).

Remark

This tells us that H11(k,N−k) is neither isomorphic to ∆∗(V ⊕ CN/V) nor to
∆∗CN .

Remark

We prove that (H11(k,N−k))R ∼= H−11(k,N−k)
∼= (H11(k,N−k))L.
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Other relations

We define the functors H±1 : DbCoh(G(k,N))→ DbCoh(G(k,N)) to be the FM
transforms with the kernels given by H±11(k,N−k).

Then we study the categorical commutator relations between H±1 and Er.
Similarly for H±1 and Fs.
Again, we use the tools from FM transforms to study the categorical relations.
For example,

Comparing Er ◦ H1, H1 ◦ Er // Comparing (Er ∗ H1)1(k,N−k), (H1 ∗ Er)1(k,N−k)
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Keep tracking the element under the process of convolution

Here we roughly explain the technical details behind the proof.

We prove the first exact triangle and the argument is similar for the rest. Also, it
suffices to prove the case r = 0. To understand the object (E ∗ H1)1(k,N−k), we
have the following analysis.

∆∗V → H11(k,N−k) → ∆∗CN/V (0, id) ∈ Ext1

π∗12∆∗V → π∗12H11(k,N−k) → π∗12∆∗CN/V .... ∈ Ext1

π∗12∆∗V ⊗ π∗23E → π∗12H11(k,N−k) ⊗ π∗23E → π∗12∆∗CN/V ⊗ π∗23E .... ∈ Ext1

ι∗V → (E ∗ H1)1(k,N−k) → ι∗CN/V x ∈ Ext1

Similarly, we obtain the exact triangle

ι∗V ′ → (H1 ∗ E)1(k,N−k) → ι∗CN/V ′ determined by y ∈ Ext1
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Check commutativity and Cone

Check the commutativity of the right square induces a morphism
(H1 ∗ E)1(k,N−k) → (E ∗ H1)1(k,N−k).

ι∗V ′

��

// (H1 ∗ E)1(k,N−k)
// ι∗CN/V ′

��

y
// ι∗V ′[1]

��

ι∗V // (E ∗ H1)1(k,N−k)
// ι∗CN/V

x // ι∗V[1]

ι∗V/V ′ ι∗V/V ′[1] ι∗V/V ′[1]

Finally, we show that Cone ∼= ι∗V/V ′ ⊕ ι∗V/V ′[1] ∼= E1 ⊕ E1[1] to get the desire
exact triangle.
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The main result

Together with the study of other categorical relations, we obtain the following
main result.

Theorem 5 (Hsu)

(1)The resulting algebra acting on
⊕

k DbCoh(G(k,N)) is a new algebra, which

we call it the shifted q = 0 affine algebra. Denoted by U̇0,N (Lsl2).

(2)We give a definition of the categorical U̇0,N (Lsl2) action.

(3)We verify that there is a categorical U̇0,N (Lsl2) action on⊕
k DbCoh(G(k,N)).

Remark
Our main result answers these natural questions that arising from the study of the
Lsl2-like algebra action.

Remark

More generally, we constructed a categorical U̇0,N (Lsln) action on the derived
categories of coherent sheaves on n-step partial flag varieties.
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Exceptional collections

Fixing a triangulated category D, which we may assume it is C-linear.

Definition 6

An object E ∈ Ob(D) is called exceptional if

HomD(E,E[l]) =

{
C if l = 0

0 if l 6= 0.

Then we define the notion of exceptional collections.

Definition 7

An ordered collection {E1, ..., En}, where Ei ∈ Ob(D) for all 1 ≤ i ≤ n, is called
an exceptional collection if each Ei is exceptional and moreover
HomD(Ei, Ej [l]) = 0 for all i > j and all l ∈ Z.
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Semiorthogonal decompositions

Then we define the notion of semiorthogonal decompositions, which can be
thought of as a generalization of exceptional collections.

Definition 8

A semiorthogonal decomposition (SOD for short) of D is a sequence of full
triangulated subcategories A1, ...,An such that

1 there is no non-zero Homs from right to left, i.e. HomD(Ai, Aj) = 0 for all
Ai ∈ Ob(Ai), Aj ∈ Ob(Aj) where 1 ≤ j < i ≤ n.

2 D is generated by A1, ...,An, i.e. the smallest full triangulated subcategory
containing A1, ...,An equal to D.

We will use the notation D = 〈A1, ...,An〉 for a semiorthogonal decomposition of
D with components A1, ...,An.

Remark

Constructing SOD when D = DbCoh(X) is an active research area in algebraic
geometry. There has been many developments due to Bondal-Orlov,
Kuznetsov...etc.
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SOD given by exceptional collection

Note that an exceptional collection of D naturally gives rise to a SOD of D.

Let {E1, ..., En} be an exceptional collection of D. Then we have the following
SOD

D = 〈A, E1, ..., En〉.

where A = 〈E1, ..., En〉⊥ and Ei denote the full triangulated subcategory
generated by the object Ei.

Remark
For a full triangulated subcategory C ⊂ D, we define
C⊥ = {X ∈ Ob(D) | HomD(C,X) = 0 ∀ C ∈ Ob(C)} to be the right orthogonal
to C in D. It is a triangulated subcategories of D.

Remark
An exceptional collection is called full if the subcategory A is zero.
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The Beilinson-Kapranov exceptional collection

The simplest example is given by Beilinson for projective space PN−1 = G(1, N).

Theorem 9 (Beilinson)

There is a full exceptional collection (thus a SOD)

DbCoh(PN−1) = 〈OPN−1(−N + 1),OPN−1(−N + 2), ...,OPN−1〉.

The above result is generalized to Grassmannian G(k,N) by M. Kapranov.
Let V be the tautological bundle on G(k,N). For integers a, b ≥ 0, we denote by
P (a, b) the set of Young diagrams λ such that λ1 ≤ a and λb+1 = 0, i.e.
λ = (λ1, .., λb) with 0 ≤ λb ≤ ... ≤ λ1 ≤ a. Denote Sλ to be the Schur functor
associated to the Young diagram λ.

Theorem 10 (M. Kapranov)

There is a full exceptional collection (thus a SOD)

DbCoh(G(k,N)) = 〈 SλV 〉λ∈P (N−k,k).
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Relate to the categorical action

Since we construct an action of U̇0,N (Lsl2) on
⊕

k DbCoh(G(k,N)) via using
FM kernels, we try to relate the Kapranov exceptional collection to this action.

Fl(1, 2, ..., k)
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F l(k − 1, k)

xx ''

... F l(0, 1)

zz &&

G(k,N) G(k − 1, N)
Fλ11(k,N−k)

oo ... G(1, N) G(0, N) = pt
Fλk1(0,N)
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Relate to the categorical action

More precisely, by using the Borel-Weil-Bott theorem we get

SλV ∼= Fλ1
∗ ... ∗ Fλk1(0,N)

where λ = (λ1, ..., λk) ∈ P (N − k, k). Note that Fλ1 ∗ ... ∗ Fλk1(0,N) is the FM
kernel for the functor Fλ1(0,N) := Fλ1

...Fλk1(0,N).

We know that {SλV | λ ∈ P (N − k, k)} is an exceptional collection, it is natural
to ask the following question.
Question : Given an (abstract) categorical U̇0,N (Lsl2) (or U̇0,N (Lsln)) action
K. Do the functors

Fλ1(0,N) := Fλ1
...Fλk1(0,N) : K(0, N)→ K(k,N − k), λ ∈ P (N − k, k)

behave like an exceptional collection?
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Application 1: SOD of weight categories

Proposition 11 (Hsu)

The functors {Fλ1(0,N) | λ ∈ P (N − k, k)} satisfy the following properties

(1) Hom(Fλ1(0,N),Fλ1(0,N)) ∼= Hom(1(0,N),1(0,N)) (exceptional-like property)

(2) Hom(Fλ1(0,N),Fλ′1(0,N)) ∼= 0, if λ <l λ
′ (semiorthogonal property)

where <l is the lexicographical order.

Remark

When the weight categories are K(k,N − k) = DbCoh(G(k,N)), we have
Hom(1(0,N),1(0,N)) ∼= C. This recovers that SλV is exceptional.

Remark

The first property (1) also implies that the functors
Fλ1(0,N) : K(0, N)→ K(k,N − k) are fully faithful for λ ∈ P (N − k, k).
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Application 1: SOD of weight categories

Then we have the following result.

Theorem 12 (Hsu)

Given a categorical U̇0,N (Lsl2) action K. There is a SOD

K(k,N − k) = 〈A,Kλ(k,N − k)〉λ∈P (N−k,k)

where A := 〈Kλ(k,N − k)〉⊥λ∈P (N−k,k) and Kλ(k,N − k) := 〈Fλ1(0,N)(K(0, N))〉
is the minimal full triangulated subcategories of K(k,N − k) generated by the
class of objects which are the essential images of Fλ1(0,N).

Remark
In fact, we prove the above theorem for general sln action.
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Demazure operators

Let G = SLN (C) and B ⊂ G be the Borel of upper triangular matrices. Consider
the type A full flag variety

G/B = {0 = V0

1
⊂ V1

1
⊂ ...

1
⊂ VN = CN}

and similarly the partial flag variety

G/Pi = {0
1
⊂ V1

1
⊂ V2

1
⊂ ...Vi−1

2
⊂ Vi+1

1
⊂ ...VN = CN}

where Pi is a minimal parabolic subgroup and 1 ≤ i ≤ N − 1.

For each 1 ≤ i ≤ N − 1, let πi : G/B → G/Pi be the natural projection, which is
a P1-fibration for all i.
πi induces pullback π∗i : K(G/Pi)→ K(G/B) and pushforward
πi∗ : K(G/B)→ K(G/Pi) on the K-theory.
We denote Vi to be the tautological bundle of rank i on G/B, and Li = Vi/Vi−1

the natural line bundles. Let xi = [Li] ∈ K(G/B) be the class in the
Grothendieck group.
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q = 0 affine Hecke algebra

The Demazure operators are defined by δi := π∗i πi∗ : K(G/B)→ K(G/B) for all
i.

Those operators {δi} generate the q = 0 Hecke algebra, denoted by HN (0),
with the following relations

δ2
i = δi (idempotent)

δiδi+1δi = δi+1δiδi+1 (Braid relations)

and thus we have an action HN (0) on K(G/B).
By abusing of notations, we still denote xi for the linear operators on K(G/B)
that defined by multiplication with xi = [Li].
{δi, xj} generate the q = 0 affine Hecke algebra, denoted by HN (0), and the
action of HN (0) can be extended to the action of HN (0) on K(G/B).

Remark
Lusztig introduced an q-analogue version of δi, which is called the
Demazure-Lusztig operator. Together with xj , he proved that there is an action
of the affine Hecke algebra on KG×C∗(G/B).
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Lift to categorical level

The action of HN (0) on K(G/B) can be lifted to categorical action of HN (0) on
DbCoh(G/B).

We use FM transforms to categorify the operators δi, xj , and
denote their FM kernels to be Ti,Xj ∈ DbCoh(G/B ×G/B) respectively.

Theorem 13 (Hsu)

There is a categorical action of the q = 0 affine Hecke algebra HN (0) on
DbCoh(G/B), where the generators δi, xj act by lifting to the FM transformation
ΦTi , ΦXj respectively.

Remark
One way to prove this theorem is to verify the categorical relations directly by
calculating many convolutions of the FM kernels Ti,Xj . However, instead of
proving this theorem by direct calculation, we prove this theorem by relating this
action to the categorical action of shifted q = 0 affine algebra.
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Relation to shifted q = 0 affine algebra

For any k = (k1, ..., kn) ∈ Nn such that
∑
i ki = N , we define

Flk(CN ) = {0
k1⊂ V1

k2⊂ ...
kn⊂ Vn = CN}

to be the n-step partial flag variety. We will simply use the notation Flk if there
is no ambiguity.

In particular, when n = N , there is a categorical action of U̇0,N (LslN ) on⊕
k DbCoh(Flk) and thus descend to action on

⊕
kK(Flk). Note that in this

notation, we have G/B = Fl(1,1,...,1), and K(G/B) is one of the direct summand.
The main idea is to interpret the Demazure operators δi in terms of elements in
U̇0,N (LslN ).
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A simple observation

Recall that to construct δi, we need

G/Pi = {0
1
⊂ V1

1
⊂ V2

1
⊂ ...Vi−1

2
⊂ Vi+1

1
⊂ ...VN = CN}

Observe that

Vi−1

2
⊂ Vi+1 = Vi−1

0
⊂ Vi−1

2
⊂ Vi+1

= Vi−1

2
⊂ Vi+1

0
⊂ Vi+1

So
G/Pi = Fl(1,1,...,1)+αi = Fl(1,1,...,1)−αi

where αi = (0, ...,−1, 1, ..., 0) is the simple root with −1 at the ith position.
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Interpretation of δi

We have the following picture

δi XX

K(G/Pi = Fl(1,1,...,1)−αi)

ei,r
..
K(G/B = Fl(1,1,...,1))

ei,r
//

fi,s

oo
K(G/Pi = Fl(1,1,...,1)+αi)

fi,s

oo

As a result, the Demazure operators can be written as

δi = eifi,1(ψ+
i )−11(1,1,...,1) = fiei,−1(ψ−i )−11(1,1,...,1).

Similarly xj = ψ+
j−11(1,1,...,1) = (ψ−j )−11(1,1,...,1).

Remark
Here we simply denote ei for ei,0, fi for fi,0. Similarly for Ei and Fi.
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Lifting

Lifting to the categorical level, as a result, we have the isomorphisms of FM
kernels

Ti ∼= Ei ∗ Fi,1 ∗ (Ψ+
i )−11(1,1,...,1)

∼= Fi ∗ Ei,−1 ∗ (Ψ−i )−11(1,1,...,1)

Xj ∼= Ψ+
j−11(1,1,...,1)

∼= (Ψ−j )−11(1,1,...,1)

Thus the categorical relations that we need to verify for HN (0) can be deduced
from the categorical relations in U̇0,N (LslN ).
In particular, the categorical commutator relations

(Fi,1 ∗ Ei)1(1,1,...,1) → (Ei ∗ Fi,1)1(1,1,...,1) → Ψ+
i 1(1,1,...,1),

(Ei,−1 ∗ Fi)1(1,1,...,1) → (Fi ∗ Ei,−1)1(1,1,...,1) → Ψ−i 1(1,1,...,1),

are precisely the (categorical) affine Hecke relations

Xi ∗ Ti → Ti ∗ Xi+1 → Xi+1,

Ti ∗ Xi → Xi+1 ∗ Ti → Xi+1.
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Generalization to Flk

For k = (k1, ..., kn) with n < N , the pullback induced by the natural projection
π : G/B = Fl(1,1,...,1) → Flk makes K(Flk) as a submodule of K(G/B).

One natural question is to generalize the construction of the Demazure operators
δi from G/B to Flk.
Motivating from the above interpretation of δi for G/B, and since there is a
categorical action of U̇0,N (Lsln) on

⊕
k DbCoh(Flk), we can try to generalize δi

to get operators acting on DbCoh(Flk) and K(Flk).

Remark

Note that the submodule K(Flk) is not invariant under the action of δi, so
δi|K(Flk) does not work.
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Demazure operators for Flk

Now we have the operators

δ′i = eifi,ki+1(ψ+
i )−11k, δ

′′
i = fiei,−ki(ψ

−
i )−11k : K(Flk)→ K(Flk).

Lifting to categorical level by using FM transforms, we denote

T ′i := Ei ∗ Fi,ki+1 ∗ (Ψ+
i )−11k

T ′′i := Fi ∗ Ei,−ki ∗ (Ψ−i )−11k

to be the kernels in DbCoh(Flk × Flk) for the lifting of δ′i, δ
′′
i respectively.

Remark

In general, we have δ′i 6= δ′′i and thus T ′i � T ′′i . They are equal/isomorphic only
when k = (1, 1, ..., 1).
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Demazure operators for Flk

From the categorical commutator relations,

(Fi,ki+1
∗ Ei)1k → (Ei ∗ Fi,ki+1

)1k → Ψ+
i 1k,

(Ei,−ki ∗ Fi)1k → (Fi ∗ Ei,−ki)1k → Ψ−i 1k,

since Ψ+
i 1k, Ψ−i 1k are certain line bundles, we can convolution their inverse to

get the following exact triangle

Fi,ki+1
∗ Ei ∗ (Ψ+

i )−11k → T ′i = Ei ∗ Fi,ki+1
∗ (Ψ+

i )−11k → O∆,

Ei,−ki ∗ Fi ∗ (Ψ−i )−11k → T ′′i = Fi ∗ Ei,−ki ∗ (Ψ−i )−11k → O∆.

We denote S ′i := Fi,ki+1
∗ Ei ∗ (Ψ+

i )−11k and S ′′i := Ei,−ki ∗ Fi ∗ (Ψ−i )−11k.
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Demazure operators for Flk

Theorem 14 (Hsu)

(1) Idempotent

T
′

i ∗ T
′

i
∼= T

′

i , T
′′

i ∗ T
′′

i
∼= T

′′

i .

(2) There exist exact triangles in DbCoh(Flk × Flk)

T
′

i+1 ∗ T
′

i ∗ T
′

i+1 ∗ S
′

i → T
′

i ∗ T
′

i+1 ∗ T
′

i → T
′

i+1 ∗ T
′

i ∗ T
′

i+1,

T
′′

i ∗ T
′′

i+1 ∗ T
′′

i ∗ S
′′

i+1 → T
′′

i+1 ∗ T
′′

i ∗ T
′′

i+1 → T
′′

i ∗ T
′′

i+1 ∗ T
′′

i .

(3) Vanishing

T
′

i ∗ T
′

i+1 ∗ T
′

i ∗ S
′

i+1
∼= T

′′

i+1 ∗ T
′′

i ∗ T
′′

i+1 ∗ S
′′

i
∼= 0

Remark

In particular, when k = (1, 1, ..., 1) (which is G/B), we have T ′i ∼= T ′′i and
S ′i ∼= S ′′i . So (2) and (3) imply the categorical braid relations. Thus the
categorical action of HN (0) on DbCoh(G/B) is a direct consequence of this
theorem.
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Calculations of the actions on a basis

When n = 2, we obtain the action of H2(0) on K(G(k,N)), where the generator
acts by δ′ = efN−k(ψ+)−11(k,N−k).

Since the exceptional collection
{SλV}λ∈P (N−k,k) gives a basis {[SλV]} for K(G(k,N)), we calculate the action
of δ′ on them.

Theorem 15 (Hsu)

δ
′
([SλV]) =

{
0 if λ1 = N − k
[SλV] if 0 ≤ λ1 ≤ N − k − 1,

Remark

Since (δ′)2 = δ′, we have {[SλV] | λ ∈ P (N − k, k)} is an eigenbasis for δ′.

Remark

In fact, we calculate the action of δ′i on the basis given by the Kapranov
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Relate to the action of (quantum) loop algebra

Consider the K-theory of cotangent bundle of n-step partial flag varieties (sln
Nakajima quiver varieties) K(T ∗Flk).

There is an action of U(Lsln) (or Uq(Lsln)
if we work C∗-equivariantly) on it. The action is constructed by Hecke
correspondence with the loop structure also comes from twisting of line bundles.
Since there is the Thom isomorphism, it would be interesting to see the relation
between this action and our action of shifted q = 0 affine algebra.

⊕
kK(T ∗Flk)

Thom
∼=
//
⊕

kK(Flk)

U(Lsln)
��

oo ? // U̇0,N (Lsln)
��
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Relate to shifted quantum affine algebra

Consider the affine Grassmannain GrGLN := GLN (K)/GLN (O) where
O = C[[t]] is the formal power series ring and K = C((t)) its fraction field.

Finkelberg-Tsymbaliuk define shifted quantum affine algebras, and we denote it by
Uq,µ. For g = sl2, they construct a surjective homomorphism

Uq,−2Nα∨
// // K

G̃LN (O)oC̃∗
loc (GrGLN )

(quantized K-theoretic Coulomb branch)

where Uq,−2Nα∨ are certain truncated shifted quantum affine algebra.
On the other hand, for g = sln they also construct action of

Uq,µ mm

⊕
kK

T̃×C̃∗
loc (Qk)

(K-theory of Laumon based parabolic quasiflag spaces )

for certain coweight µ.
It would also be interesting to see the relations to these works, e.g. lifting the
above results from K-theory to derived categories by using our categorical action.



Relate to shifted quantum affine algebra

Consider the affine Grassmannain GrGLN := GLN (K)/GLN (O) where
O = C[[t]] is the formal power series ring and K = C((t)) its fraction field.
Finkelberg-Tsymbaliuk define shifted quantum affine algebras, and we denote it by
Uq,µ.

For g = sl2, they construct a surjective homomorphism

Uq,−2Nα∨
// // K

G̃LN (O)oC̃∗
loc (GrGLN )

(quantized K-theoretic Coulomb branch)

where Uq,−2Nα∨ are certain truncated shifted quantum affine algebra.
On the other hand, for g = sln they also construct action of

Uq,µ mm

⊕
kK

T̃×C̃∗
loc (Qk)

(K-theory of Laumon based parabolic quasiflag spaces )

for certain coweight µ.
It would also be interesting to see the relations to these works, e.g. lifting the
above results from K-theory to derived categories by using our categorical action.



Relate to shifted quantum affine algebra

Consider the affine Grassmannain GrGLN := GLN (K)/GLN (O) where
O = C[[t]] is the formal power series ring and K = C((t)) its fraction field.
Finkelberg-Tsymbaliuk define shifted quantum affine algebras, and we denote it by
Uq,µ. For g = sl2, they construct a surjective homomorphism

Uq,−2Nα∨
// // K

G̃LN (O)oC̃∗
loc (GrGLN )

(quantized K-theoretic Coulomb branch)

where Uq,−2Nα∨ are certain truncated shifted quantum affine algebra.

On the other hand, for g = sln they also construct action of

Uq,µ mm

⊕
kK

T̃×C̃∗
loc (Qk)

(K-theory of Laumon based parabolic quasiflag spaces )

for certain coweight µ.
It would also be interesting to see the relations to these works, e.g. lifting the
above results from K-theory to derived categories by using our categorical action.



Relate to shifted quantum affine algebra

Consider the affine Grassmannain GrGLN := GLN (K)/GLN (O) where
O = C[[t]] is the formal power series ring and K = C((t)) its fraction field.
Finkelberg-Tsymbaliuk define shifted quantum affine algebras, and we denote it by
Uq,µ. For g = sl2, they construct a surjective homomorphism

Uq,−2Nα∨
// // K

G̃LN (O)oC̃∗
loc (GrGLN )

(quantized K-theoretic Coulomb branch)

where Uq,−2Nα∨ are certain truncated shifted quantum affine algebra.
On the other hand, for g = sln they also construct action of

Uq,µ mm

⊕
kK

T̃×C̃∗
loc (Qk)

(K-theory of Laumon based parabolic quasiflag spaces )

for certain coweight µ.

It would also be interesting to see the relations to these works, e.g. lifting the
above results from K-theory to derived categories by using our categorical action.



Relate to shifted quantum affine algebra

Consider the affine Grassmannain GrGLN := GLN (K)/GLN (O) where
O = C[[t]] is the formal power series ring and K = C((t)) its fraction field.
Finkelberg-Tsymbaliuk define shifted quantum affine algebras, and we denote it by
Uq,µ. For g = sl2, they construct a surjective homomorphism

Uq,−2Nα∨
// // K

G̃LN (O)oC̃∗
loc (GrGLN )

(quantized K-theoretic Coulomb branch)

where Uq,−2Nα∨ are certain truncated shifted quantum affine algebra.
On the other hand, for g = sln they also construct action of

Uq,µ mm

⊕
kK

T̃×C̃∗
loc (Qk)

(K-theory of Laumon based parabolic quasiflag spaces )

for certain coweight µ.
It would also be interesting to see the relations to these works, e.g. lifting the
above results from K-theory to derived categories by using our categorical action.



Thank you for your attention.


