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• Common lore:

A lattice model with short-range interactions can be described by an effective
continuum quantum field theory at low-energy/long-distance.

• However, some lattice models pose a challenge to this lore, e.g.
• XY plaquette model [Paramekanti-Balents-Fisher 2002; ...]
• Fracton models [Chamon 2004; Haah 2011; Vijay-Haah-Fu 2016; ... ]
These lattice models do not admit standard continuum field theory descriptions.
They will be examined later in the talk.

• Our goal:

• Understand why these lattice models do not admit standard continuum limit.
• Expand the framework of quantum field theory to incorporate them.



• In this talk, we will discuss 2+1d XY plaquette model as a concrete example of
exotic theories and at the end briefly comment on models of fractons.

For comparison, we will also review the well-known 1+1d XY model.

• We will try our best to find a continuum description for these exotic theories. But
as we will see, occasionally we will need to restore the lattice. We will find that
these continuum theories exhibit various peculiarities:

• Exact or emergent exotic symmetries
• with ’t Hooft anomalies [2110.09529 Gorantla-HTL-Seiberg-Shao]

• UV/IR mixing – IR behavior is sensitive to UV details.
• [2108.00020 Burnell-Devakul-Gorantla-HTL-Shao]
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[ ... ; Jose-Kadanoff-Kirkpatrick-Nelson 1977; ... ]

• We work in the Euclidean Lagrangian formalism.

• On a 2d Euclidean lattice, there is a phase exp(i�)
at each site with the Euclidean action

S = ��

X

link

cos(�µ�) , µ = ⌧, x .

• Exact U(1) momentum symmetry

� ! �+ ↵ .

• It is gapped at small � and gapless at large �.
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• In the continuum limit, the gapless phase is described by the 1+1d theory of
compact boson, with the Euclidean Lagrangian

L =
�

2

⇥
(@⌧�)

2 + (@x�)
2
⇤
, � ⇠ �+ 2⇡

• Global symmetries:
- U(1) momentum symmetry � ! �+ ↵ with current Jµ = i�@µ�

- eU(1) winding symmetry with current J̃µ = 1
2⇡ ✏µ⌫@

⌫
�

- The symmetry does not act on the field � but winding configurations of �,
- such as � = 2⇡x/`, carry nontrivial charges.
- Invariant under scale transformation (⌧, x) ! (�⌧,�x) , [�] = 0
- It is enhanced to conformal symmetry.

• T-duality: � ! e�, � $ 1/(4⇡2
�), U(1) momentum $ eU(1) winding



• The U(1)⇥ eU(1) symmetry has a mixed ’t Hooft anomaly. It can be seen by
coupling the symmetry to background gauge fields Aµ, Ãµ:

L ! R
2

2⇡
(@µ��Aµ)

2 +
i

2⇡
✏µ⌫Ãµ(@⌫��A⌫) .

The partition function is NOT invariant under background gauge transformation

� ! �+ ↵ , Aµ ! Aµ + @µ↵ , Ãµ ! Ãµ + @µ↵̃ .

L ! L� i

2⇡
↵̃(@⌧Ax � @xA⌧ ) .

• Anomaly inflow: the anomaly can be canceled by coupling the system to a 2+1d
symmetry-protected topological phase (SPT) described by the classical theory

LSPT =
i

2⇡
ÃdA ! LSPT +

i

2⇡
d(↵̃dA) .



L =
�

2

⇥
(@⌧�)

2 + (@x�)
2
⇤
, � ⇠ �+ 2⇡

• On a circle of size `

�(x, ⌧) = �0(⌧) + 2⇡W
x

`
+
X

k 6=0

ak(⌧) exp

✓
2⇡ikx

`

◆

- Plane waves E ⇠ 1/`

- States charged under the momentum symmetry E ⇠ 1/(�`)

- States charged under the winding symmetry E ⇠ �/`

• The spectrum is gapless – the energies of all these states vanish as ` ! 1.
They vanish equally fast as 1/`.

• Two-point functions of local operators, such as @⌧�, exp(i�) etc, decay as a
power law on infinite space. (Consequence of the conformal symmetry)
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[Paramekanti-Balents-Fisher 2002]

• We work in the Euclidean Lagrangian formalism.

• On a 3d Euclidean lattice, there is a phase exp(i�)
at each site with the Euclidean action

S = ��0

X

⌧ -link

cos(�⌧�)� �

X

xy-plaq

cos(�x�y�) .

• Exact U(1) momentum subsystem symmetry

� ! �+ ↵x(x̂) + ↵y(ŷ) .

• The model is gapped at small �0,� and gapless at
large �0,�.
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[Paramekanti-Balents-Fisher 2002; Seiberg-Shao 2020]

• In the continuum limit, the gapless phase is described by the continuum �-theory

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

• Exact U(1) momentum subsystem symmetry � ! �+ ↵x(x) + ↵y(y)

@⌧J⌧ = @x@yJxy , (J⌧ , Jxy) =
⇣
iµ0@⌧�,

i

µ
@x@y�

⌘

Discontinuous field configurations, such as �(⌧, x, y) = �x(⌧, x) + �y(⌧, y), are
not suppressed. As we will see, they lead to UV/IR mixing.



[Seiberg-Shao 2020]

@⌧J⌧ = @x@yJxy

• The conserved charges are line operators

Q
x(x) =

I
dy J⌧ , Q

y(y) =

I
dx J⌧

@⌧Q
x(x) =

I
dy @⌧J⌧ =

I
dy @y(@xJxy) = 0

At every point in x (and similarly in y) there is an independent charge

Q
x(x1) 6= Q

x(x2) if x1 6= x2

This leads to infinitely many charges in the continuum.



�
[Seiberg-Shao 2020]

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

• Emergent eU(1) winding subsystem symmetry

@⌧
eJ⌧ = @x@y

eJxy , (J̃⌧ , eJxy) =
⇣ 1

2⇡
@x@y�,

1

2⇡
@⌧�

⌘

The winding subsystem symmetry does not act on the field � but winding
configurations of � carry nontrivial charges.

• A scale symmetry: invariant under (⌧, x, y) ! (�x�y⌧,�xx,�yy)
[Gromov 2018; Karch-Raz 2020]

• Self-duality: (µ0, µ) ! (µ/4⇡2
, 4⇡2

µ0), U(1) momentum $ eU(1) winding



�
[Gorantla-HTL-Seiberg-Shao 2021; Burnell-Devakul-Gorantla-HTL-Shao 2021]

• The U(1)⇥ eU(1) subsystem symmetry has a mixed ’t Hooft anomaly.
It can be seen by coupling the subsystem symmetry to background tensor gauge
fields (2+1d version of [Xu-Wu 2008]):

(A⌧ , Axy) ! (A⌧ + @⌧↵, Axy + @x@y↵) , � ! �+ ↵

(Ã⌧ , Ãxy) ! (Ã⌧ + @⌧ ↵̃, Ãxy + @x@y↵̃) .

The tensor gauge symmetry is due to the conservation equation @⌧J⌧ = @x@yJxy.

• The partition function is NOT gauge invariant

L =
µ0

2
(@⌧��A⌧ )

2 +
1

2µ
(@x@y��Axy)

2 +
i

2⇡
Ã⌧@x@y�+

i

2⇡
Ãxy@⌧�

! L+
i

2⇡
↵(@x@yÃ⌧ � @⌧ Ãxy) .



[Burnell-Devakul-Gorantla-HTL-Shao 2021]

• The bulk geometry is ⌃3 ⇥ Rz0, and the boundary theory is placed at z = 0.
• The background gauge fields are extended to bulk as

(A⌧ , Axy, Az) ! (A⌧ + @⌧↵, Axy + @x@y↵, Az + @z↵) ,

(Ã⌧ , Ãxy, Ãz) ! (Ã⌧ + @⌧ ↵̃, Ãxy + @x@y↵̃, Ãz + @z↵̃) .

• Anomaly inflow: the anomaly can be canceled by coupling the system to a 3+1d
U(1)⇥ eU(1) subsystem SPT described by the classical theory

L =
i

2⇡

h
Axy(@⌧ Ãz � @zÃ⌧ ) +Az(@⌧ Ãxy � @x@yÃ⌧ )�A⌧ (@zÃxy � @x@yÃz)

i

! L� i

2⇡
@z

h
↵(@x@yÃ⌧ � @⌧ Ãxy)

i
+ · · · .



�

Properties 1+1d compact boson 2+1d �-theory

Momentum Sym. U(1) symmetry U(1) subsystem symmetry

Winding Sym. eU(1) symmetry eU(1) subsystem symmetry

Scale Sym. (�⌧,�x) (�x�y⌧,�xx,�yy)

Mixed Anomaly U(1)⇥ eU(1) SPT U(1)⇥ eU(1) subsystem SPT

Self-duality � ! 1/(4⇡2
�) (µ0, µ) ! (µ/4⇡2

, 4⇡2
µ0)



[Seiberg-Shao 2020]

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

We now discuss the spectrum on a torus of size `x = `y = `.
• Plane waves with quantized momenta px = 2⇡kx/`, py = 2⇡ky/`y:

�(x, y, ⌧) =
X

kx,ky 6=0

akx,ky(⌧) exp


2⇡i

✓
kxx

`
+

kyy

`

◆�
.

They have a non-standard dispersion relation

!
2 =

p
2
xp

2
y

µµ0
=

(2⇡)4k2xk
2
y

µµ0`
4

.

- ! ⇠ 1/`2 (not ! ⇠ 1/` as in 1+1d compact boson)
- UV/IR mixing (more below): large momentum does not imply large energy, e.g.
- small ! at large px with a sufficiently small py.



[Seiberg-Shao 2020]

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

• Momentum states: states charged under the momentum subsystem symmetry.

They are obtained by quantizing the plane waves with kx = 0 or ky = 0.

�(x, y, ⌧) = �x(x, ⌧) + �y(y, ⌧)

The momentum subsystem symmetry shifts

�x(x, ⌧) ! �x(x, ⌧) + fx(x) ,

�y(y, ⌧) ! �y(y, ⌧) + fy(y) .

The symmetry appears to be spontaneously broken classically.
But we will soon see that the symmetry is restored quantum mechanically.



[Seiberg-Shao 2020]

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

• We now quantize the momentum states. For simplicity, ignore the common zero
mode of �x(x, ⌧),�y(y, ⌧).

• These modes are independent rotors at different x, y with point-wise periodicity

S =
µ0`

2

Z
d⌧

Z
dx

�
@⌧�x(x, ⌧)

�2
+

Z
dy

�
@⌧�y(y, ⌧)

�2
�

Restore the lattice
R
dx ! a

P
x̂. The Hamiltonian is

H =
1

2µ0`a

hX

x̂

⇡x(x)
2 +

X

ŷ

⇡y(y)
2
i
, ⇡x(x),⇡y(y) 2 Z



[Seiberg-Shao 2020]

L =
µ0

2
(@⌧�)

2 +
1

2µ
(@x@y�)

2
, � ⇠ �+ 2⇡

• Winding states: states charged under the winding subsystem symmetry.

They are obtained from winding configurations

� = 2⇡
h
x

`
⇥(y � y0) +

y

`
⇥(x� x0)�

xy

`2

i

eJ⌧ =
1

2⇡
@x@y� = 2⇡


1

`
�(y � y0) +

1

`
�(x� x0)�

1

`2

�

These states have infinite energies in the continuum. They can be regularized by
restoring the lattice �(0) ! 1/a

E =
4⇡2

�(0)

µ`
! E =

4⇡2

µ`a



[Seiberg-Shao 2020]

• Spectrum on a torus of size `x = `y = ` (lattice with L = `/a sites)

- Plane waves, created by @x@y�, @⌧� E ⇠ 1
p
µµ0`

2
⇠ 1

L2a2

- Momentum states, created by exp(i�) E ⇠ 1

µ0a`
⇠ 1

La2

- Winding states, created by exp(ie�) E ⇠ 4⇡2

µa`
⇠ 1

La2

• States charged under the subsystem symmetries have infinite energies in the
continuum limit a ! 0. They are excluded from the continuum Hilbert space.

This implies that the charged operators are infinitely irrelevant. The continuum
theory is robust under small deformations violating the subsystem symmetries!



[Gorantla-HTL-Seiberg-Shao 2020]

• We can regularize the infinite energies of the momentum and the winding states
by restoring the lattice.

• Plane waves E ⇠ 1

`2
=

1

L2a2

• Momentum and winding states E ⇠ 1

a`
=

1

La2

• There are two interesting limits:

- Continuum limit a ! 0 with ` = aL fixed: we zoom into the plane waves and
- push the charged states to infinity. This recovers the continuum theory.

- Thermodynamic limit L ! 1 with a fixed: all states become light.

• The continuum limit and the thermodynamic limit do not commute – UV/IR mixing.



• We now study Euclidean correlation functions of local operators on the lattice.
The list of local operators include @⌧�, @x@y�, exp(i�), exp(ie�), ...

For simplicity, we will set µ0 = µ = 1 and drop constants of order one.

• We will consider two limits:

- Continuum limit: a ! 0 with ` = aL fixed. The operators are separated further
- and further apart as a ! 0 such that continuum coordinates are fixed.

- Thermodynamic limit: L ! 1 with a fixed. The operators are separated finite
- lattice spacing apart. We can later take them to be far separated.



h@⌧�@⌧�i
[Gorantla-HTL-Seiberg-Shao 2020]

• The two-point function of @⌧� at generic positions is independent of the order of
the continuum limit and the thermodynamic limit. After taking the two limits,

⌦
@⌧�(0, 0, 0)@⌧�(x, y, ⌧)

↵
⇠

8
><

>:

� 1

x2y2
|⌧ | ⌧ |xy|

� 1

⌧2
log

����
⌧

xy

���� |⌧ | � |xy|

Check: covariant under (⌧, x, y) ! (�x�y⌧,�xx,�yy).
• The two-point function diverges at non-coincidental points, xy ! 0 at finite ⌧ .

Such singularities are not present in ordinary Euclidean correlators.
• The non-coincidental singularity is a consequence of the non-standard dispersion

relation !
2 ⇠ p

2
xp

2
y. For example, there is a singularity at x ! 0 because states

with a large px can have a small ! as long as py is sufficiently small.



h@⌧�@⌧�i
[Gorantla-HTL-Seiberg-Shao 2020]

• To better understand the singularity, let us start with the two-point function with
x = 0 on lattice. There is no divergence. The divergence shows up only after we
take both the continuum and the thermodynamic limit.

• Thermodynamic limit first: a UV divergence regularized by a, |px| < 1/a

⌦
@⌧�(0, 0, 0)@⌧�(0, y, ⌧)

↵
⇠ � 1

⌧2
log

����
⌧

ay

����

Continuum limit first: an IR divergence regularized by `, |py| > 1/`

⌦
@⌧�(0, 0, 0)@⌧�(0, y, ⌧)

↵
⇠ � 1

⌧2
log

����
`

y

����

• The non-coincidental divergence can be regularized both by a UV regulator and a
IR regulator. This reflects the UV/IR mixing in the spectrum of plane waves.



hexp(i�) exp(�i�)i
[Gorantla-HTL-Seiberg-Shao 2020]

• Because of the subsystem symmetry, the two-point function of exp(i�) vanishes
unless the two operators are at the same position in space.
(Discontinuities in the observables)

The behavior of the two-point function depends on the order of the continuum
limit and the thermodynamic limit – UV/IR mixing.

• If we take the continuum limit first,
⌦
exp(i�(0, 0, 0)) exp(�i�(0, 0, ⌧))

↵
⇠ exp

✓
� |⌧ |
a`

◆

The exponent represents the infinite energy of the lowest momentum states in
the continuum limit. This demonstrates that the operator exp(i�) acts trivially in
the continuum theory – they are redundant operators.



hexp(i�) exp(�i�)i
[Gorantla-HTL-Seiberg-Shao 2020]

• If we take the thermodynamic limit first [Paranekanti-Balents-Fisher 2002],
⌦
exp(i�(0, 0, 0)) exp(�i�(0, 0, ⌧))

↵
⇠ exp


�
⇣
log

���
⌧

a2

���
⌘2

�

It decays faster than any power law, but is not exponentially suppressed as in the
continuum limit.

This reflects the fact that energies of the momentum states go to zero in the
thermodynamic limit as L ! 1, but is slower than the plane waves.

• Identical analysis for the winding operators exp(ie�).



[Gorantla-HTL-Seiberg-Shao 2020]

spectrum Two-point functions

plane waves @⌧�, @x@y�

- non-standard dispersion !
2 ⇠ p

2
xp

2
y

- small ! at large px or py

- non-coincidental singularity at xy = 0

- can be viewed as a UV/IR divergence

momentum and winding states exp(i�), exp(ie�)

- E ⇠ 1/(a`)

- the thermodynamic limit and the
- continuum limit do not commute

- continuum limit: exp(�⌧/a)

- thermodynamic limit: exp[�(log |⌧ |)2]
- different behaviors in the two limits
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[Vijay-Haah-Fu 2016]

Figure from [Shirley-Slagle-Wang-Chen 2017]

• The theory is gapped and robust – new gapped phases beyond TQFT description

• More peculiar UV/IR mixing: ground state degeneracy depends sensitively on the
number of lattice sites, G.S.D = N

2Lx+2Ly+2Lz�3 (infinite in the continuum limit).
• Gapped excitations have restricted mobility: fractons (immobile excitations)



• We can construct fracton theories by considering gauge theories of subsystem
symmetries. These are dynamical theories of tensor gauge fields.

• As an example, the tensor gauge field for the 2+1d U(1) subsystem symmetry is

(A⌧ , Axy) ⇠ (A⌧ + @⌧↵, Axy + @x@y↵) .

The gauge invariant defect exp(i
R
d⌧A⌧ ) respresents the worldline of a particle.

It is an immobile fracton because the curve cannot be deformed due to the lack of
Ax ⇠ Ax + @x↵ or Ay ⇠ Ay + @y↵.

There are other gauge invariant operators supported on strips wrapping around
the x- or the y-cycle: exp(i

R x2

x1
dx

H
dyAxy) and exp(i

R y2
y1

dy
H
dxAxy).



[Seiberg-Shao 2020]

• The ZN version of this tensor gauge theory describes a gapped fracton theory

L =
N

2⇡
�
xy(@⌧Axy � @x@yA⌧ )

The theory has a ZN subsystem symmetry

�
xy ! �

xy +
2⇡i

N
mx(x) +

2⇡i

N
my(y) , mx(x),my(y) 2 Z .

It is generated by exp(i
R x2

x1
dx

H
dyAxy) and exp(i

R y2
y1

dy
H
dxAxy).

The subsystem symmetry is spontaneously broken. After restoring the lattice, it
leads to a finite number of degenerate ground states G.S.D = N

Lx+Ly�1.

• The X-cube model is described by a 3+1d ZN tensor gauge theory [Slagle-Kim
2017, Seiberg-Shao 2020]. It reproduces the G.S.D after restoring the lattice.



• The low-energy limit of a lattice theory with short-range interactions is expected
to be a continuum quantum field theory.

• Exotic lattice models are challenging counter examples because of
• Subsystem global symmetry (It can have ’t Hooft anomaly)
• UV/IR mixing
• Excitations with restricted mobility
• Sub-extensive ground state degeneracy
• Discontinuous and even singular observables in the continuum limit

• Some exotic continuum theories can capture these facts, but occasionally we
need to restore the lattice.

• We have also studied many other exotic theories with different U(1) or ZN

subsystem symmetries in 3+1d.




