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ζ(s) and L(s, χ)

For <s > 1,

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(
1− p−s

)−1
.

It has a meromorphic continuation to C with a simple pole at s = 1.

It satisfies a functional equation ζ(s)↔ ζ(1− s)

Trivial zeros at s = −2m,m ≥ 1.

(RH) The non-trivial zeros of ζ(s) lie on the line <(s) = 1/2.



ζ(s) and L(s, χ)

A Dirichlet character is a completely multiplicative function

χ : (Z/dZ)∗ → C∗

extended to Z by periodicity, with the property that

χ(a) = 0 whenever (a, d) 6= 1.

χ is primitive with conductor d if d is the smallest modulus for which χ is
a character modulo d .
For <(s) > 1 and χ a character (mod d),

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p-d

(
1− χ(p)p−s

)−1
.

It has an analytic continuation to C
It satisfies a functional equation L(s, χ)↔ L(1− s, χ)

(GRH) The non-trivial zeros of L(s, χ) lie on the line <(s) = 1/2.



Relationship with RMT

Conjecture (Montgomery)

The pair correlation of zeros of ζ(s) is the same as the pair correlation of
matrices from the GUE ensemble.

Katz and Sarnak looked at low-lying zeros in families of L–functions
over function fields and showed that they follow the laws governed by
the corresponding scaling limit of the symmetry group of the family.

Can model L–functions in families by random matrix ensembles

ζ(s)⇐⇒ unitary ensemble

L(s, χd), χ2
d = χ0 ⇐⇒ symplectic ensemble

L(s,E ⊗ χd), χ2
d = χ0 ⇐⇒ orthogonal ensemble



Moments of L–functions

(RH) The non-trivial zeros of ζ(s) lie on the line <(s) = 1/2.

(Lindelöf hypothesis) |ζ(1/2 + it)| = O(tε),∀ε > 0.

Hardy and Littlewood (1916): moments of ζ(s)

Ik(T ) =

∫ T

0
|ζ(1/2 + it)|2k dt

Lindelöf hypothesis ⇐⇒ Ik(T )� T 1+ε, k = 1, 2, . . . .

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,
Rubinstein, Snaith)∫ T

0
|ζ(1/2 + it)|2k dt ∼ MkT (logT )k

2
.

k = 1: Hardy, Littlewood (1916)

k = 2: Ingham (1932), Heath-Brown (1979)



Moments of L–functions

For a prime p, let

(a
p

)
=


1 if a = � mod p, (a, p) = 1

−1 if a 6= � mod p, (a, p) = 1

0 if p|a.

Extend multiplicatively. Let

χd(n) =
(d
n

)
.

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,
Rubinstein, Snaith)∑∗

0<d≤X
L
(

1
2 , χd

)k
∼ CkX (logX )

k(k+1)
2 .



Moments of L–functions

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,
Rubinstein, Snaith)∑∗

0<d≤X
L
(

1
2 , χd

)k
= XPk(logX ) + O(X 1−δ),

where deg(Pk) = k(k + 1)/2, δ > 0.

k = 1, 2: Jutila (1981)

k = 2, 3: Soundararajan (2000)

k = 3: Diaconu, Goldfeld, Hoffstein (2003)

k = 4: Shen (2019) on GRH, using ideas of Soundararajan and Young

Upper bounds of the right order of magnitude, on GRH:
Soundararajan, Harper

Lower bounds of the right order of magnitude: Soundararajan,
Rudnick



The Ratios Conjecture for ζ(s)

Conjecture (Farmer, 1993)

For s = 1/2 + it and complex numbers α, β, γ, δ of size c/ logT , such
that <α,<β,<γ,<δ > 0 we have

1

T

∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ∼ 1 + (1− T−α−β)

(α− γ)(β − δ)

(α + β)(γ + δ)
.

The conjecture implies many interesting results about zeros of ζ(s),
such as the pair correlation conjecture of Montgomery.

By adapting the “recipe” used by Conrey, Farmer, Keating,
Rubinstein and Snaith to conjecture asymptotic formulas for
moments, one can make the following conjectures.



Conjecture (Conrey, Farmer, Zirnbauer, 2007)

∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt

=

∫ T

0

(ζ(1 + α + β)ζ(1 + γ + δ)

ζ(1 + α + δ)ζ(1 + β + γ)
A(α, β, γ, δ)

+
( t

2π

)−α−β ζ(1− α− β)ζ(1 + γ + δ)

ζ(1− β + δ)ζ(1− α + γ)
A(−β,−α, γ, δ)

)
dt + O

(
T 1/2+ε

)
,

where

A(α, β, γ, δ) =
∏
p

(
1− 1

p1+γ+δ

)(
1− 1

p1+β+γ − 1
p1+α+δ + 1

p1+γ+δ

)(
1− 1

p1+β+γ

)(
1− 1

p1+α+δ

)
for |<α|, |<β| < 1/4,

1

logT
� <γ,<δ < 1/4, =α,=β,=γ,=δ � T 1−ε.



The Ratios Conjecture for quadratic Dirichlet L–functions

Conjecture (Conrey, Farmer, Zirnbauer, 2007)

∑∗

d≤X

L(1/2 + α, χd)

L(1/2 + β, χd)
=
∑∗

d≤X

( ζ(1 + 2α)

ζ(1 + α + β)
A(α, β)

+
(d
π

)−αΓ(1/4− α/2)

Γ(1/4 + α/2)

ζ(1− 2α)

ζ(1− α + β)
A(−α, β)

)
+ O

(
X 1/2+ε

)
,

where

A(α, β) =
∏
p

(
1− 1

p1+α+β

)−1(
1− 1

(p + 1)p1+2α
− 1

(p + 1)pα+β

)
,

for |<α| < 1/4,
1

logX
� <β < 1/4, =β � X 1−ε.

M. Cech (2021): restricted range of parameters, nonuniform



The Ratios Conjecture in Random Matrix Theory

One can compute ratios of characteristic polynomials in matrix ensembles:

Conrey-Farmer-Zirnbauer
Borodin-Strahov
Conrey-Forrester-Snaith
Bump-Gamburd
Huckleberry-Puttmann-Zirnbauer

Theorem (Conrey-Farmer-Zirnbauer)

For <γk > 0, we have∫
Usp(2N)

∏K
k=1 ΛA(e−αk )∏K
k=1 ΛA(e−γk )

dA

=
∑

ε∈{−1,1}K
eN

∑K
k=1(εkαk−αk )

∏
j≤k≤K z(εjαj + εkαk)

∏
q<r≤K z(γq + γr )∏K

k=1

∏K
q=1 z(εkαk + γq)

,

where z(x) = (1− e−x)−1.



Applications of the Ratios Conjecture

Compute the one-level density of zeros in families of L–functions, for
test functions whose Fourier transforms have any support.

Conjecture (Chowla’s conjecture)

L(1/2, χ) 6= 0 for any χ a Dirichlet character.

Soundararajan: ≥ 87.5% of L(1/2, χd) 6= 0
Ozluk-Snyder: ≥ 93.75% of L(1/2, χd) 6= 0 by computing the one-level
density of zeros with support (−2, 2) (GRH)
The Ratios Conjecture ⇒ 100% of L(1/2, χd) 6= 0

Compute the lower order terms for the pair correlation of the zeros of
ζ(s), which were previously heuristically computed by Bogomolny and
Keating.

Compute mollified moments of ζ(s) or other L–functions

Obtain conjectures for moments of |ζ ′(ρ)|
Etc.



Negative moments of ζ(s)

Conjecture (Gonek, 1989)

Let k > 0 be fixed. Uniformly for 1
log T ≤ δ ≤ 1, we have∫ T

1

∣∣∣ζ(1

2
+ δ + it

)∣∣∣−2k
dt � T

(1

δ

)k2

,

and uniformly for 0 < δ ≤ 1
log T , we have

∫ T

1

∣∣∣ζ(1

2
+ δ + it

)∣∣∣−2k
dt �


T (logT )k

2
if k < 1/2

log(e/(δ logT ))T (logT )k
2

if k = 1/2

(δ logT )1−2kT (logT )k
2

if k > 1/2.

Random matrix theory computations (Berry-Keating;
Forrester-Keating) suggest transition regimes when k = (2n + 1)/2,
for n a positive integer



Negative moments of ζ(s)

Gonek obtained lower bounds consistent with the conjecture for all
k > 0 in the range 1

log T ≤ δ ≤ 1 and for k < 1/2 in the range

0 < δ ≤ 1
log T .

Upper bounds??

Work in progress with H. Bui: upper bounds when
log(1/δ)� log logT .



Function fields background

Dictionary

N monic polynomials in Fq[t]

|n| |f | := qdeg(f )

primes p monic irreducible polynomials P

Define the zeta-function

ζq(s) =
∑

f monic

1

|f |s
=
∞∑
n=0

qn

qns
=

1

1− q1−s .

u = q−s : Z(u) =
∑

f monic

udeg(f ) =
1

1− qu
.



Function fields background

Let χ be a primitive character (mod h). The L–function associated to
χ is defined by

L(s, χ) = L(u, χ) =
∑

f monic

χ(f )udeg(f ) =
∏
P-h

(
1− χ(P)udeg(P)

)−1
.

L(u, χ) satisfies the following:

It is a polynomial of degree ≤ deg(h)− 1.
It has a functional equation. If χ is an odd character, then

L(u, χ) = ω(χ)(
√
qu)deg(h)−1L

( 1

qu
, χ
)
,

where ω(χ) is the root number.
All the nontrivial zeros lie on the circle of radius |u| = 1√

q (RH).



The Ratios Conjecture over function fields

Hn = squarefree polynomials of degree n in Fq[t].

Conjecture (Andrade, Keating, 2014)

1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)

L(1/2 + β, χD)
=

ζq(1 + 2α)

ζq(1 + α + β)
A(α, β)

+ q−2gα ζq(1− 2α)

ζq(1− α + β)
A(−α, β) + O(q−g+εg ),

where

A(α, β) =
∏
P

(
1− 1

|P|1+α+β

)−1(
1− 1

(|P|+ 1)|P|1+2α
− 1

(|P|+ 1)P|α+β

)
,

and for

|<α| < 1

4
,

1

g
� <β < 1

4
.



Heuristic arguments

Using the approximate functional equation:

L(1/2 + α, χD) =
∑

deg(f )≤g

χD(f )

|f |1/2+α
+ q−2gα

∑
deg(f )≤g−1

χD(f )

|f |1/2−α .

L(1/2 + β, χD)−1 =
∑

h monic

µ(h)χD(h)

|h|1/2+β

The first piece from the approximate functional equation gives

1

|H2g+1|
∑
f ,h

µ(h)

|h|1/2+β|f |1/2+α

∑
D∈H2g+1

χD(fh),

and keep fh = �. Rewrite f 7→ f 2h.

∑
f ,h

µ(h)

|h|1+α+β|f |1+2α

∏
P|fh

(
1 +

1

|P|

)−1
=⇒ ζq(1 + 2α)

ζq(1 + α + β)
A(α, β).



The Ratios Conjecture over function fields

Theorem (Bui, F., Keating, 2021)

For 1

g
1
2−ε
� <β, and |<α| < 1/2, we have

1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)

L(1/2 + β, χD)
=

ζq(1 + 2α)

ζq(1 + α + β)
A(α, β)

+ q−2gα ζq(1− 2α)

ζq(1− α + β)
A(−α, β) + O

(
q−g<β(3+2α−ε)

)
.

k = 2: RC for 1
g1/4−ε � <β1,<β2 and |<α1|, |<α2| < 1

4 .

k = 3: RC for 1
g1/6−ε � <β1,<β2,<β3 and |<α1|, |<α2|, |<α3| < 1

16 .



Upper bounds for negative moments of L–functions

The main ingredients in the proof are:

Obtaining asymptotic formulas for twisted, shifted moments of
L–functions

Obtaining upper bounds for negative moments of L–functions; builds
on work of Soundararajan, Harper, Radziwill-Soundararajan

Theorem (Bui, F., Keating, 2021)

Let k be a positive integer such that k > 1/2. Let 1

g
1

2k
−ε
� β. Then

1

|H2g+1|
∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|k
�
( 1

β

)k(k−1)/2
(log g)k(k+1)/2.

Theorem (F., 2021)

The bound above and the Ratios Conjecture hold for β � log g
g .



Ideas of proof

1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)

L(1/2 + β, χD)
=

1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)

×
∑

h monic

µ(h)

|h|1/2+β
χD(h)

For some parameter X to be chosen later, let

S≤X =
1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)
∑

deg(h)≤X

µ(h)

|h|1/2+β
χD(h),

S>X =
1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)
∑

deg(h)>X

µ(h)

|h|1/2+β
χD(h).



Ideas of proof

Using Perron’s formula for the sum over h, we rewrite

S>X =
1

|H2g+1|
1

2πi

∮ ∑
D∈H2g+1

L(1/2 + α, χD)

L
(

z
q1/2+β , χD

)
zX (z − 1)

dz

z
,

where we are integrating over a circle |z | > 1. We pick |z | = q<β/2, use
Holder’s inequality for the sum over D and then use upper bounds for
negative moments of L–functions.



A key inequality

We have

log|L(1/2 + β + it, χD)| ≥ 2g

N + 1
log
(

1− q−(N+1)β
)

+ <
( ∑

deg(P)≤N

χD(P)

|P|1/2+β+it

)
+ <

(1

2

∑
deg(P)≤N/2

1

|P|1+2β+2it

)
+ O(1),

so

1

|L(1/2 + β + it, χD)|k
≤
√
N

k
( 1

1− q−(N+1)β

) 2gk
N+1

× exp
(
k

∑
deg(P)≤N

χD(P)a(P)

|P|1/2+β

)
,

where a(P) = − cos(t deg(P) log q).
Think of N ≈ log g

β .



The upper bound

Pointwise bound

1

|L(1/2 + β + it, χD)|
≤
( 1

1− g−2β

) (1+ε)g
logq g

.

Use the inequality

et ≤ (1 + e−`/2)
∑
s≤`

ts

s!
,

for t ≤ `/e2 and ` even.

Split the primes into K intervals, where K ∼ c log(1/β):

I0 = (0,N0], I1 = (N0,N1], . . . , IK = (NK−1,NK ].



The upper bound

If the contribution from primes in I0 is “big” (call this set of
discriminants T0) i.e: if∣∣∣ ∑

deg(P)∈I0

χD(P)a(P)

|P|1/2+β

∣∣∣ > `0

ke2
,

we want to exploit the fact that |T0| is small.∑
D∈T0

1

|L(1/2 + β + it, χD)|k
≤

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k

×
(ke2

`0

∑
deg(P)∈I0

χD(P)a(P)

|P|1/2+β

)s0

,

for some even parameter s0 for which s0N0 ≤ g .



The upper bound

∑
D∈H2g+1

1

|L(1/2 + β + it, χD)|k
(ke2

`0

∑
deg(P)∈I0

χD(P)a(P)

|P|1/2+β

)s0

≤
( ∑

D∈H2g+1

1

|L(1/2 + β + it, χD)|2k
)1/2 ks0e2s0

`s0
0

×
( ∑

D∈H2g+1

( ∑
deg(P)∈I0

χD(P)a(P)

|P|1/2+β

)2s0
)1/2

For the first term, use the pointwise bound for the L–function; for the
second term, we compute the moments and keep the diagonal pieces.
Choose `0 = s0.



The upper bound

∑
D∈M2g+1

( ∑
deg(P)∈I0

χD(P)a(P)

|P|1/2+β

)2s0

= (2s0)!
∑

D∈M2g+1

∑
Ω(f )=2s0

P|f⇒deg(P)∈I0

χD(f )a(f )ν(f )

|f |1/2+β
,

where ν is the multiplicative function given by ν(Pa) = 1/a!.

Only keep f = �. Get

� q2g (2s0)!

s0!

( ∑
deg(P)∈I0

1

|P|

)s0

� q2g (2s0)!

s0!
(logN0)s0 .



The upper bound

∑
D∈T0

1

|L(1/2 + β + it, χD)|k
� q2g

( 1

1− g−2β

) (1+ε)g
logq g

× exp
(
− s0

2
log s0

)
exp(cs0 log logN0) = o(q2g ),

for

s0 = 2
[(2 + 3ε)g log q

2(log g)2
log
( 1

1− g−2β

)]
, N0 = [g/s0],

Nj = rNj−1, sj = [ag/Nj ].



The upper bound

If the contribution from primes in I0 is “small”, move to the next
interval and proceed as before.

. . .

The contribution from the term for which the sums over each interval
are small will be bounded by

� exp
(2gk

NK
log
( 1

1− q−NKβ

))
N

k
2
K

K∏
r=0

∑
s≤`r

1

s!

( ∑
deg(P)∈Ir

kχD(P)a(P)

|P|1/2+β

)s
� exp

(2gk

NK
log
( 1

1− q−NKβ

))
N

k
2
K

×
K∏
r=0

∏
P|fr⇒deg(P)∈Ir

Ω(fr )≤`r

kΩ(fr )χD(fr )a(fr )ν(fr )

|fr |1/2+β
,

where ν is the multiplicative function defined by ν(Pa) = 1/a!.



The upper bound

Keeping the fr = �, this will be

� exp
(2gk

NK
log
( 1

1− q−NKβ

))
N

k/2
K

∏
deg(P)≤NK

(
1− k2

2|P|

)−1

� exp
(2gk

NK
log
( 1

1− q−NKβ

))
N

k2/2+k/2
K .

With the choice NK ≈ log g
β , the bound follows.



The asymptotic formula for S≤X

Recall

S≤X =
1

|H2g+1|
∑

D∈H2g+1

L(1/2 + α, χD)
∑

deg(h)≤X

µ(h)

|h|1/2+β
χD(h),

so we need asymptotic formulas for∑
D∈H2g+1

L(1/2 + α, χD)χD(h)

for h of small enough degree.

α = 0, h = 1: Andrade-Keating; F.

α = 0: Bui-F.



Sketch of proof

Use standard techniques such as

Approximate functional equation

Poisson summation

Upper bounds for positive moments of L–functions, etc.

Approximate functional equation

L
(

1
2 , χD

)
=

∑
f ∈M≤g

χD(f )√
|f |

+
∑

f ∈M≤g−1

χD(f )√
|f |

.

∑
D∈H2g+1

χD(f ) =
∑
C |f∞

∑
h∈M2g+1−2d(C)

χf (h)− q
∑
C |f∞

∑
h∈M2g−1−2d(C)

χf (h)



Poisson summation formula

For a ∈ Fq(( 1
x )), a =

∞∑
i=−∞

ai

(
1

x

)i

, define

e(a) = e
2πia1

q .

Generalized Gauss sums G (V , χf ) =
∑

u (mod f )

χf (u)e

(
uV

f

)
.

If deg(f ) = n is even, then∑
h∈Mm

χf (h) =
qm

|f |

[
G (0, χf ) + (q − 1)

∑
V∈M≤n−m−2

G (V , χf )−

∑
V∈Mn−m−1

G (V , χf )

]



Setup

∑
D∈H2g+1

L
(

1
2 , χD

)
= Sg + Sg−1 + O(q

g
2

(1+ε)),

where

Sg = q2g+1
∑

f ∈M≤g

deg(f ) even

1

|f |
∑
C |f∞

1

|C |2

[
G (0, χf )+

(q − 1)
∑

V∈M≤deg(f )−2g−3+2d(C)

G (V , χf )√
|f |

−
∑

V∈Mdeg(f )−2g−2+2d(C)

G (V , χf )√
|f |

]

G (0, χf ) 6= 0 iff f = �, in which case G (0, χf ) = φ(f ).



Main term from V = 0

Mg−1 = q2g+1
∑

f ∈M≤g−1

deg(f ) even

1

|f |
∑
C |f∞

1

|C |2
G (0, χf )

=
q2g+1

ζq(2)

∑
l∈M

≤[
g−1

2 ]

1

|l |

∏
P|l

|P|
|P|+ 1


=

q2g+1

ζq(2)

1

2πi

∮
|u|< 1

q

C(u)
(qu)−[ g−1

2
]

(1− qu)2

du

u
,

C(u) =
∏
P

(
1− ud(P)

|P|+ 1

)
.



V 6= 0

∑
f

G (V , χf )√
|f |

wd(f ) = L(w , χV )
∏
P

RP(w).

V Focus on V = � = l2.

Sg (V = �) = q2g+1
∑

f ∈M≤g

deg(f ) even

1

|f |
∑
C |f∞

1

|C |2

[
(q − 1)·

∑
l∈M

≤ deg(f )
2 −g−2+d(C)

G (l2, χf )√
|f |

−
∑

l∈M deg(f )
2 −g−1+d(C)

G (l2, χf )√
|f |

]

For the term Sg (V = �), since C |f∞, we roughly have
deg(C ) ≤ deg(f ). Combining this with the condition on the degree of
l implies that deg(f ) ≥ 2g/3. Thus, heuristically we have a sum of
the form

∑
2g
3
≤deg(f )≤g 1.



Mg−1 = q2g+1

ζq(2)

∮
|u|< 1

q
C(u) (qu)−[

g−1
2 ]

(1−qu)2
du
u Sg (V = �) = q

2g+1
3 P1(g)

−q2g+1

ζq(2)

∮
|u|=√q C(u) (qu)−[

g−1
2 ]

(1−qu)2
du
u

Mg−1 + Sg (V = �) = −Res(u =
1

q
) + q

2g+1
3 P1(g).

By matching up the terms, we get rid of the error of size qg(1+ε).

The term corresponding to V 6= � is bounded by q
g
2

(1+ε).



Thank you!
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