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For s > 1,

I | (R
(s) ;ns 1PI(1 p)
It has a meromorphic continuation to C with a simple pole at s = 1.
It satisfies a functional equation ((s) <> ((1 — s)

Trivial zeros at s = —2m,m > 1.

(RH) The non-trivial zeros of ((s) lie on the line R(s) = 1/2.



((s) and L(s, x)
A Dirichlet character is a completely multiplicative function

x:(Z/dZ)" — C*

extended to Z by periodicity, with the property that
x(a) = 0 whenever (a,d) # 1.

X is primitive with conductor d if d is the smallest modulus for which x is
a character modulo d.

For ®(s) > 1 and x a character (mod d),

Lis,x) =) X}SZ) =TI~ ><(l>);f5)_1

n>1 ptd

@ It has an analytic continuation to C
o It satisfies a functional equation L(s, x) <> L(1 — s,%)
@ (GRH) The non-trivial zeros of L(s, x) lie on the line R(s) = 1/2.



Relationship with RMT

Conjecture (Montgomery)

The pair correlation of zeros of ((s) is the same as the pair correlation of
matrices from the GUE ensemble.

@ Katz and Sarnak looked at low-lying zeros in families of L—functions
over function fields and showed that they follow the laws governed by
the corresponding scaling limit of the symmetry group of the family.

@ Can model L—functions in families by random matrix ensembles

((s) <= unitary ensemble
L(s, Xd),xg = xo <= symplectic ensemble
2
Xd

L(s, E® xd), X3 = Xo < orthogonal ensemble



Moments of L—functions

@ (RH) The non-trivial zeros of ((s) lie on the line R(s) = 1/2.
o (Lindelof hypothesis) |¢(1/2+ it)| = O(t),Ve > 0.
@ Hardy and Littlewood (1916): moments of ((s)

:
(T = [ /2 iR de

Lindelsf hypothesis <= I,(T) < T k=1,2,....

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,

Rubinstein, Snaith)

i
/ C(1/2 + it) 2K dt ~ M, T (log T)<".
0

e k = 1: Hardy, Littlewood (1916)
e k =2: Ingham (1932), Heath-Brown (1979)



Moments of L—functions

For a prime p, let

1 if a=0mod p,(a,p) =1

(3) =< -1 ifa#0Omodp,(a,p)=1
0 if p|a.

Extend multiplicatively. Let

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,

Rubinstein, Snaith)

* k k(k+1)
3 L<%,Xd> ~ CiX(log X) 5.
0<d<X




Moments of L—functions

Conjecture (Keating, Snaith; Conrey, Farmer, Keating,

Rubinstein, Snaith)

3 L(l,Xd)k = XPy(log X) + O(X*79),
0<d<X

where deg(Px) = k(k +1)/2, 6 > 0.

e k=1,2: Jutila (1981)

k = 2,3: Soundararajan (2000)

k = 3: Diaconu, Goldfeld, Hoffstein (2003)

k = 4: Shen (2019) on GRH, using ideas of Soundararajan and Young

Upper bounds of the right order of magnitude, on GRH:
Soundararajan, Harper

@ Lower bounds of the right order of magnitude: Soundararajan,
Rudnick



The Ratios Conjecture for ((s)

Conjecture (Farmer, 1993)
For s =1/2 + it and complex numbers ., 3,7, of size ¢/ log T, such
that Ra, NG, Ry, RS > 0 we have

1 Cs—l—oz —s+p5)
C(s+v)¢ 1—s+6)

dt ~1+(1— T 5)—EZ+E;E§+§;

@ The conjecture implies many interesting results about zeros of ((s),
such as the pair correlation conjecture of Montgomery.

o By adapting the “recipe” used by Conrey, Farmer, Keating,
Rubinstein and Snaith to conjecture asymptotic formulas for
moments, one can make the following conjectures.



Conjecture (Conrey, Farmer, Zirnbauer, 2007)

((s ((1—-s+p)
/ S+v st
¢(1+a+B)¢(1+7+9)
_A <C(1+a+5)€(1+6—|—’y)A(a’/B’776)

t \—a—8C(1—a—pB)(1+~+9) 1/2+¢
+ (o) C(l_ﬁ_l_(s)c(l_a+’y)A(—6,—a,7,5))dt+O<T +),

where

H (1 - p1+1v+6)(1 - p1+16+v o p1+1a+5 + p1+1“/+5)

g (1= o) (1 = 5miems)

A(O{, 6777 6) =

for |Ral, |RB| < 1/4,

1
T < Ry, RS < 1/4, S, 36,37, 30 < T
g



The Ratios Conjecture for quadratic Dirichlet L—functions

Conjecture (Conrey, Farmer, Zirnbauer, 2007)

Z*L 1/2+a,xq) Z* (MA(a,ﬁ)

[1/2+Boxa) 25, \e(1+ath)

di—al(1/4 —a/2) ((1-2a) .
) FiATa (i —ar ﬁ)A(_O"ﬁ)) * O<X1/2+ )

d<X

where

Al 8) =] 1 ( 1+a+6)_1 (1 C(p+ 11)p1+2a C(p+ ll)P‘”ﬂ)’

p

for |Ra| < 1/4,

RB<1/4, & X1
IogX<< 0 <1/4, I K

e M. Cech (2021): restricted range of parameters, nonuniform



The Ratios Conjecture in

Random Matrix Theory

One can compute ratios of characteristic polynomials in matrix ensembles:

@ Conrey-Farmer-Zirnbauer
Borodin-Strahov
Conrey-Forrester-Snaith
Bump-Gamburd
Huckleberry-Puttmann-Zirn

Theorem (Conrey-Farmer-Zirnbauer)

For Ry, > 0, we have

/ 1_[l}<<=1 Na(e™*) dA
K _
Usp(2N) szl AA(e ’Yk)

bauer

<<k 2(€j0j + exou) [ <k (g + )

_ Z eN SR (enok—auk) Hf

ee{—1,1}K

where z(x) = (1 — e™¥)7L.

K (K
[T=1 TTg=1 z(ekuc + 7q)

9



Applications of the Ratios Conjecture

@ Compute the one-level density of zeros in families of L—functions, for
test functions whose Fourier transforms have any support.

Conjecture (Chowla’s conjecture)

L(1/2,x) # O for any x a Dirichlet character.

e Soundararajan: > 87.5% of L(1/2,x4) #0
o Ozluk-Snyder: > 93.75% of L(1/2,x4) # 0 by computing the one-level
density of zeros with support (—2,2) (GRH)
o The Ratios Conjecture = 100% of L(1/2,xq4) # 0
@ Compute the lower order terms for the pair correlation of the zeros of
¢(s), which were previously heuristically computed by Bogomolny and
Keating.
e Compute mollified moments of ((s) or other L—functions
@ Obtain conjectures for moments of |¢'(p)|

o Etc.



Negative moments of ((s)

Conjecture (Gonek, 1989)

Let k > 0 be fixed. Uniformly for ——= g T < 0 <1, we have

/1T ‘c(% +5+ it)‘_zk dt < T(%)k2,

and uniformly for 0 < 0 < ;

T' we have
T T(log T)** if k < 1/2
1 N\ |2k ,
/ (5 +0+it)|  dt = logle/(5log T) T(log T)  ifk=1/2
1

(§log T) =2k T(log T)¥* ifk>1/2.

e Random matrix theory computations (Berry-Keating;

Forrester-Keating) suggest transition regimes when k = (2n+1)/2,
for n a positive integer



Negative moments of ((s)

@ Gonek obtained Iower bounds consistent with the conjecture for all
k>0in the range i+ + <6 <1and for k <1/2in the range

0<9 = Iog T
@ Upper bounds??

@ Work in progress with H. Bui: upper bounds when
log(1/0) < loglog T.



Function fields background

Dictionary
N monic polynomials in Fy[t]
|| |f| := gieel)
primes p monic irreducible polynomials P

Define the zeta-function

1 = q" 1
f monic ’f|5 n=0 q“S 1- q °

1
— g Z(u) = deg(r) _ L
u=gq (u) Z u Ty

f monic



Function fields background

@ Let x be a primitive character (mod h). The L—function associated to
x is defined by

L(s,x) = L(u,x) = Z X(f)udeg(f) — H (1 _ X(P)udeg(P)>

f monic Pth

-1

e L(u,x) satisfies the following:

o It is a polynomial of degree < deg(h) — 1.
e It has a functional equation. If x is an odd character, then

£l ) =00V (- %),

where w(x) is the root number.
o All the nontrivial zeros lie on the circle of radius |u| = % (RH).



The Ratios Conjecture over function fields

M, = squarefree polynomials of degree n in Fg[t].

Conjecture (Andrade, Keating, 2014)

1 L(1/2+ o, xp) _  Gq(1+20) A
[Hag+1l De%gﬂ L(1/2+B,xp)  Co(1+a+p) (o, 8)
_2gaMA _ —g+teg
T4 C(1—a+p) (—a,8)+ O(q ),

where

-1 1 1
o8 =1 (= osass) (= prrypmess - ger )

and for

1 1 1
Rao| < =, — RE < —.
Rl 4,g<< B<y



Heuristic arguments

@ Using the approximate functional equation:

B xp(f) —2ga xp(f)
L1/2+a,xp)= > |ﬂ1/2+a+q Y |/

deg(f)<g deg(f)<g—1
o h)
1_ p(h)xp
L(1/2+ B,xp)~ R

h monic

@ The first piece from the approximate functional equation gives

1 p(h)
xp(fh),
|Hog+1] ;; |h[1/2+8|f|1/2+a Z

DeHogi1

and keep fh = [J. Rewrite f — f2h.
°

1yt ((1+ 20)
Z ’h|1+a+ﬁ|f|l+2a H (1 + W) zm%\(a,ﬁ)-

P|fh



The Ratios Conjecture over function fields

Theorem (Bui F., Keating, 2021)
and |Ra| < 1/2, we have

Z L1/2+a XD)_ Cq(1+ 2a) Ala, B)

|H2g+1| D (1/2+B,xp) (e(L+a+B)
—2ga Go(1—2a) —gRB(3+20—¢)
s gy )+ O ),

@ k=2: RC for # < RB1, RB2 and [Raal, |Raz| < 3.
o k=3: RC for gl/% < RB1, RB2, RB3 and [Raul, |Raz|, |Ras| < &.



Upper bounds for negative moments of L—functions

The main ingredients in the proof are:

@ Obtaining asymptotic formulas for twisted, shifted moments of
L—functions

@ Obtaining upper bounds for negative moments of L—functions; builds
on work of Soundararajan, Harper, Radziwill-Soundararajan

Theorem (Bui, F., Keating, 2021)
Let k be a positive integer such that k > 1/2. Let —2— < (. Then
g2k €

1 1 <1>k(k—1)/2

. < (= k(k+1)/2
IL(1/2+ B+ it,xp)[¥ B

T (logg)
|H2g+1| DeHagit

Theorem (F., 2021)
The bound above and the Ratios Conjecture hold for 5 > Io%.




|deas of proof

1 L(1/2+ o, xp) 1 Z

[Hog+1] L(1/2 + B, xp) - |Hog+1]

L(1/2+ a, xp)
DeHog

. Z

h monic

DeHogi1

|h|1/2+/3 xo(h)

For some parameter X to be chosen later, let

p(h)
S<x = > L12+a,xp) D, 17215 Xo(h),
|H2g+1| DeHogi1 deg(h)<X |h| /24P
s S o2raxe) S 0o,
e IHzg+1I |h[1/2+5

DeHorg 11 deg(h)>X



|deas of proof

Using Perron’s formula for the sum over h, we rewrite

?{ 3 L(1/2+a,xp)  dz
]Hng] 2mi ’

D€H2g+1 1/2+,8 ; XD)ZX(Z - 1)

Sox =

where we are integrating over a circle |z| > 1. We pick |z| = ¢"#/2, use
Holder's inequality for the sum over D and then use upper bounds for
negative moments of L—functions.



A key inequality

We have

) 2g _
> _ g (N+1)B
log|L(1/2 + B+ it,xp)| > N+1Iog (1 q )
xp(P) 1 1
+ §R< Z |p‘1/2+ﬁ+:t) + éR(E Z |p|1+25+2it) + O(l)v
deg(P)<N deg(P)<N/2
e}
1 ),f,ikl

1-— q_(N'H)ﬂ

xD(P)a(P)>
|p’1/2+ﬁ ’

1 k
IL(1/2+ B+ it,xp)|¥ < VN (

X exp (k
deg(P)<N

where a
Think o

P)

-+



The upper bound

@ Pointwise bound

1 ( 1 >|°g g
< s,
IL(1/2+ B +it,xp)| — \1—g=2#

@ Use the inequality

¢ vy t°
et <(l+e )Zs!’

s</t
for t < ¢/e? and £ even.
@ Split the primes into K intervals, where K ~ clog(1/5):

Il = (0, No|, h = (No, M1], ..., Ix = (Nk—1, Nk].



The upper bound

@ If the contribution from primes in Iy is “big" (call this set of
discriminants 7o) i.e: if

3 xp(P)a(P ‘ b
‘p’1/2+6 ke2’
deg(P)ely

we want to exploit the fact that |7g| is small.

1
2 IL( 1/2+ﬂ+:t xo)[¥ 2 IL(1/2+ B+ it,xp)|¥

DeTo DeHogi1
ke? XD(P)a(P)>5°
l |p|1/2+/3 !
deg(P)€ly

for some even parameter sy for which spNg < g.



The upper bound

1 xp(P)a
Z |L(1/2 + B + it, XD)‘k< Z |DP’1/2+ﬁ )

beHag 11 deg(P)ch
1 1/2 S0 @250
<( 2
- i 2k S0
o2z, T o)
\o(P)a(P)y 250\ 1/2
(X | |p,1/z+ﬂ> )

DeHogi1  deg(P)el

@ For the first term, use the pointwise bound for the L—function; for the
second term, we compute the moments and keep the diagonal pieces.
Choose £y = sq.



The upper bound

XD(P 250
Sy el
D€M2g+1 deg(P)GIo
xp(f)a(f)v(f)
= (250)! Z Z |F|1/2+B
D€M2g+1 (f) 25y
P|f=-deg(P)<ly
where v is the multiplicative function given by v(P?) = 1/al.
@ Only keep f =[. Get
2g (250)! ( i)so 2g (250)! s
L gt—" Z < q ol (log Np)®.

|
%0’ deg(P)ely ‘P|



The upper bound

(1+€)g

1 2 1 log, &
E - < q g(i g
k _ 2B
5o \L(L/2+ 5 + it, xp)| l1-g

X exp ( — 52—0 log so) exp(csp log log Np) = o(q°%),

for

0= 2[ P78 T bog (1) o= [/l

N;j = rN;_1, s; = [ag/N;].



The upper bound

o If the contribution from primes in Iy is “small”, move to the next
interval and proceed as before.

@ The contribution from the term for which the sums over each interval
are small will be bounded by

<<exp<2NgZ(I0g(1_q_NK5))N§HZ ( > kﬁ,i,(ggia ))

r=0s</{, ! deg(P)€l,

2gk 1 K
<ewp (/TK log (m))NK

K
1 B § AL AL

|fr’1/2+ﬂ ’

r=0 P|f,=-deg(P)€El"
Q(fr )<t

where v is the multiplicative function defined by v(P?) = 1/al.



The upper bound

@ Keeping the f, = [, this will be

<<eXp<2Ng:|0g(]_—c;L—NKﬁ))N}k(/2 H (1_2/;’)—1

deg(P)<Nk
2gk 1 K2 /2+k/2
< exp <N—Klog (71_q—NK,B)>NK .

o With the choice Nk ~ 'c’%, the bound follows.



The asymptotic formula for S<x

Recall

Sex =

> L1/2+Oé xo) >, ’ﬁ(/glﬁXD(h)

’H2g+1| DeHogs deg(h)<X

so we need asymptotic formulas for

> L(1/2+a,xp)xo(h)

D€H2g+1

for h of small enough degree.
o a =0,h=1: Andrade-Keating; F.
o a = 0: Bui-F.



Sketch of proof

Use standard techniques such as
@ Approximate functional equation
@ Poisson summation

@ Upper bounds for positive moments of L—functions, etc.

Approximate functional equation

xp(f xp(f)
i) = wgm 2 A

f€M<g 1

> xolf)=)] > xe(h—a )] > xe(h)

DeHaogi1 C|foe he Mg y1-24(c) C|fo° hE My 1 24(c)



Poisson summation formula

[e'e) 1 I
@ Forae Fq((%)), a= E aj <> , define
bs

i=—o00

o Generalized Gauss sums G(V, xf) = Z xr(u)e <L¢/> .
u(mod f)

o If deg(f) = n is even, then

> Xf(h)_T’:‘][G(O?Xf)—F(q_l) > 6(Vixe)-

hEMpm VEM<pm_s
> 6V
VeMnfmfl



Z L(zaXD) =5+ S,-1+ O(q%(lJrE))’

DeHagia
where
Sg = q2g+1 Z Z [ 0.x)+
feMc, C|foo
deg(f) even
ol xr) G(V.xr)
(q - ]-) Z N IATT Z GV, xr)

Vi |

VeEM <geg(f)—26—3+24(C) VEMgeg() 262 424(C)

e G(0,xf) # 0 iff f =0, in which case G(0, xr) = ¢(f).



Main term from V =0

Mg_1 = g™ Z Z| G(0,xr)

feMcg_ C\r‘"Oo
deg(f) even

_g* 1

e) ’Equ:g; I (l,I,p )

e (qu) 17 du
Cq(2) 27 7{”|<37 (u) (1— qu)? u




> Ww‘“” = L(w,xv)lpim(w)

= Focuson V =0 = /2.

— _ 2g+1 E §
Sg(V_D)_qg | C|: *1
feEM<g C|fo°
deg(f) even

G(2, G(2,
3 (Pxr) 3 ( |;Tf)]

|f]
IGMg“gT(ngfzw(C) IEM“ngfgfud(C)

o For the term Sg(V = [0), since C|f*°, we roughly have
deg(C) < deg(f). Combining this with the condition on the degree of
I implies that deg(f) > 2g/3. Thus, heuristically we have a sum of

the form E%ggdeg(f)ﬁg 1



2g+1 S u 5 ] u 2g+1
Me-1 = Ty $uj<2 € %dﬁ Se(V=0)=q"3 Pi(g)
2g+1 (qu)~ [g ]

35 $ul=ya C0) g %
2g+1

1
Mg—1+ Sg(V = 1) = —Res(u = 5) +4q 3 Pi(g)

@ By matching up the terms, we get rid of the error of size g&(11¢),

@ The term corresponding to V # [ is bounded by q%(1+6).



Thank you!
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