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Introduction

Introduction: Affine Yangian (AY) gl1 and corner vertex operator algebra

AGT correspondence [Alday-Gaiotto-Tachikawa 2009]

Nekrasov partition functions ↔ conformal blocks of Liouville/Toda CFT
4D supersymmetric gauge theory ↔ algebra

Virasoro and WN algebra (free field realization)

ϕi(z)ϕj(w) ∼ −δij log(z − w),

Ri(z) = α0∂ + ∂ϕi(z),

R1R2 · · ·RN =

N∑
k=0

Uk(z)(α0∂)
N−k

WN algebra includes higher spin currents and is a generalization of Virasoro algebra. It is
obtained by Miura transformation.
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Introduction

Corner vertex operator algebra YL,M,N [Gaiotto-Rapčák 2017]

Algebra appearing in brane junctions.
Understood as a pit reduction of the plane partition representation of affine Yangian gl1. (AY
picture).[Prochazak-Rapčák 2017]

The central charge is specialized to

−ψ0σ = Lh1 +Mh2 +Nh3, σ = h1h2h3.

Generalized Miura transformation with fractional power gives free field realizations. (W1+∞
picture)[Prochazka-Rapčák 2018]

Rc =: (α0∂ +
h3

hc
J(c))

hc
h3 :, J(c)(z)J(c)(w) = −hc

σ

1

(z − w)2
, c = 1, 2, 3,

R(c1)R(c2) · · ·R(cL+M+N ) =

∞∑
s=0

Us(z)∂
Lh1+Mh2+Nh3

h3
−s

YL,M,N algebra is a generalization of the WN algebra and can be understood as truncations of
both AY gl1 and W1+∞:

Virasoro ⊂ WN ⊂ YL,M,N ⊂ AY gl1/W1+∞

AY gl1 ≃ W1+∞ Prochazak 2015, Gaberdiel et al. 2017
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Introduction

Corner VOA should give new AGT dualities. Understanding such truncations should be
useful. → We need new affine Yangians and new W-algebras.

Quiver Yangian [Li-Yamazaki 2020, Galakhov-Yamazaki 2020, Galakhov-Li-Yamazaki 2021]

Generalizations of affine Yangian gl1:

Affine Yangian gl1 → Quiver Yangian

plane partition → 3D BPS crystal [Ooguri-Yamazaki]

Algebra is defined from the quiver associated with the toric Calabi-Yau 3-fold [Hanany et al.].

Studying the W-algebra picture is also important.
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Introduction

Introduction: Deformed W algebras and 5D AGT

There is a 5D lift-up of the correspondence (5D AGT).

On the algebra side, quantum algebras appear (q-Virasoro, q-WN , q-YL,M,N ...)

q-Virasoro [Shiraishi et al. 1995]: q, t, p = q/t

T (z) =
∑
n∈Z

Tzz
−n,

f(w/z)T (z)T (w)− f(z/w)T (w)T (w) = − (1− q)(1− t−1)

1− p

[
δ
(pw
z

)
− δ

(
p−1w

z

)]
,

f(z) = exp

( ∞∑
n=1

1

n

(1− qn)(1− t−n)

1 + pn
zn

)
In the limit t = qβ , q = eh → 1

T (z) = 2 + β

(
z2L(z) +

(1− β)2

4β

)
h2 + · · · ,

where L(z) is the Virasoro algebra.
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Introduction

q-Virasoro and q-WN are understood as truncations of quantum toroidal gl1.

Both the affine Yangian picture and W algebra picture are understood in a unified way by the
quantum toroidal gl1. We have two central charges (C,C⊥),

(C,C⊥) = (1, q
L/2
1 q

M/2
2 q

N/2
3 ) → pit reduction picture

(C,C⊥) = (q
L/2
1 q

M/2
2 q

N/2
3 , 1) → free field realizations [FHSSY, Harada et al., Bershtein et al., Kojima]

The deformed algebra captures the algebraic structure in a rather symmetric way than the
degenerate case.
→ basic motivation of considering quantum algebras

Studying truncations as representation theory of quantum toroidal algebras is useful.

Finding the trigonometric deformation of QY should give new perspectives.
→ quiver quantum toroidal algebra [GN-Watanabe 2021,Galakhov-Li-Yamazaki 2021]
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Introduction

Introduction: Intertwiner formalism

One application of quantum toroidal algebras is the intertwiner formalism [Awata-Feigin-Shiraishi

2011].

Using two basic representations “horizontal” and “vertical” representations, we can construct
algebraic objects called “intertwiners”. Composition of them gives Nekrasov partition
functions.
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Introduction

If we change the vertical reps to other reps like Young diagrams with colored boxes and the
horizontal reps to suitable vertex operator reps, we obtain other partition functions.

Algebra Geometry Gauge theory Ref.

QT gl1 C3 5D N = 1 on C2 × S1 [Awata-Feigin-Shiraishi 2011]

QT gln
C2/Zn × C, ωn = 1 5D N = 1 on C2/Zn × S1

[Awata et al. 2017]
(x, y) 7→ (ωx, ω−1y) (x, y) plane

(ν1, ν2)-QT gln

C3/Zn, ω
n = 1

5D N = 1 on C2/Zn × S1

[Bourgine-Jeong 2019]xi 7→ ωνixi
(x1, x2) plane

ν1 + ν2 + ν3 = 0

QQTA Toric CY 3-fold ?? ? ? ?

Studying both reps entering the intertwiner is important.
→ We study two-dimensional crystal reps (vertical reps) here.
→ vertex operator reps (future work)
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Introduction

Goal

Virasoro
Corner VOA

AY

Vir
quantum 

toroidal 

deformation

Quiver Yangian

Quiver quantum 

toroidal algebra 

generalize

Studying the quiver Yangian/quiver quantum toroidal algebra and their truncations should
give generalizations of (q)-corner VOA.
→ Focus on one, two-dimensional crystal representations.
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Quantum toroidal gl1 and its representations

Affine Yangian (AY) gl1

Generators are

e(u) =

∞∑
j=0

ej
uj+1

, f(u) =

∞∑
j=0

fj
uj+1

, ψ(u) = 1 + σ

∞∑
j=0

ψj

uj+1

Depends on parameters h1, h2, h3

h1 + h2 + h3 = 0, ψ(u)ψ(v) ∼ ψ(v)ψ(u),

e(u)e(v) ∼ φ(u− v)e(v)e(u),

ψ(u)e(v) ∼ φ(u− v)e(v)ψ(u), etc.

φ(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)

Symmetric under h1 ↔ h2 ↔ h3.

AYgl1 ≃W1+∞
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Quantum toroidal gl1 and its representations

Quantum toroidal gl1 [Ding-Iohara 1996, Miki 2007, Feigin et al.]

Trigonometric deformation of AY gl1.

Generators are called Drinfeld currents:

E(z) =
∑
m∈Z

Emz
−m, F (z) =

∑
m∈Z

Fmz
−m, K±(z) = (C⊥)∓1 exp

(∑
r>0

±H±rz
∓r

)

Defining relations are

q1q2q3 = 1, K−(z)K+(w) =
φ(z, Cw)

φ(Cz,w)
K+(w)K−(z)

E(z)E(w) = φ(z, w)E(w)E(z),

K±(C(1∓1)/2z)E(w) = φ(z, w)E(w)K±(C(1∓1)/2z), etc.

φ(z, w) =

3∏
i=1

(q
1/2
i z − q

−1/2
i w)

(q
−1/2
i z − q

1/2
i w)
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Quantum toroidal gl1 and its representations

Properties of quantum toroidal gl1

In the degenerate limit qi = ehi → 1 + hi, it becomes AY gl1.

Coproduct structure

∆E(z) = E(z)⊗ 1 +K−(C1z)⊗ E(C1z),

∆F (z) = F (C2z)⊗K+(C2z) + 1⊗ F (z),

∆K+(z) = K+(z)⊗K+(C−1
1 z),

∆K−(z) = K−(C−1
2 z)⊗K−(z), etc.

Triality: q1 ↔ q2 ↔ q3

Central elements are C,C⊥ → values of them determine representations

1 Vertical representations C = 1: vector (C⊥ = 1), Fock (C⊥ = q
1/2
i ), MacMahon (C⊥ = K)

2 Horizontal representations C ̸= 1: Fock (C,C⊥) = (q
1/2
i , 1)
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Quantum toroidal gl1 and its representations

Representations of quantum toroidal gl1: Vector representation

Vector representation

K±(z)[u]j =
[
Ψ[u]j (z)

]
± [u]j ,

E(z)[u]j = Eδ
(
uqj+1

1 /z
)
[u]j+1,

F (z)[u]j+1 = Fδ
(
uqj+1

1 /z
)
[u]j

E(z) adds a box, F (z) removes a box, and K±(z) acts diagonally.
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Quantum toroidal gl1 and its representations

Representations of quantum toroidal gl1: Fock representation

Fock representation is obtained by taking tensor products of vector representations.

|λ⟩ = ⊗∞
j=1[uq

j−1
2 ]λj−1
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Quantum toroidal gl1 and its representations

E(z) adds a box, F (z) removes a box, and K±(z) acts diagonally.
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Quantum toroidal gl1 and its representations

Representations of quantum toroidal gl1: MacMahon representation

Similar to the previous case, MacMahon representation is obtained by taking tensor products
of Fock representations.

E(z) adds a box, F (z) removes a box, and K±(z) acts diagonally.

Actually, we can also consider the action of the algebra on plane partitions with nontrivial
boundary conditions.

Vertical representations captures the AY picture.
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Quantum toroidal gl1 and its representations

q-corner VOA from MacMahon representation

Deformed corner VOA (q-YL,M,N ) is understood as a pit reduction of the MacMahon

representation. The central charge is (C,C⊥) = (1, q
L/2
1 q

M/2
2 q

N/2
3 ).
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Quantum toroidal gl1 and its representations

Representations of quantum toroidal gl1: Horizontal representation

Horizontal representations are vertex operator representations: Fc(u), (c = 1, 2, 3).

The Drinfeld currents are vertex operators now:

E(z) → ηc(z), F (z) → ξc(z), K±(z) → φ±
c (z), (c = 1, 2, 3)

ηc(z)ηc(w) =
(1− w/z)(1− q−1

c w/z)

(1− qc+1w/z)(1− qc−1w/z)
: ηc(z)ηc(w) :,

ηc(z)φ
−
c (q

1/2
c w) =

∏3
i=1(1− q−1

i w/z)∏3
i=1(1− qiw/z)

: φ−
c (q

1/2
c w)ηc(z) :, etc.

Tensor products of these representations give free field realizations of deformed W algebras
(q-Virasoro, q-WN ) or deformed corner vertex operator algebras (q-YL,M,N )[FHSSY

2010,Harada-Matsuo-GN-Watanabe 2021,Kojima 2019,2021].

For the general q-YL,M,N , consider Fc⃗(u⃗) = Fc1 ⊗Fc2 ⊗ · · · ⊗ Fcn , where
#{i|ci = 1} = L, #{i|ci = 2} =M, #{i|ci = 3} = N , n = L+M +N . The central charge is

(C,C⊥) = (q
L/2
1 q

M/2
2 q

N/2
3 , 1).

Go Noshita Quiver Quantum Toroidal Algebra and Crystal Representations



21/54

Quiver Yangian and quiver quantum toroidal algebras

Quiver Yangian [Li-Yamazaki 2020, Galakhov-Yamazaki 2020, Galakhov-Li-Yamazaki 2021]

Geometry

3D BPS crystal

1 2

superpotential
Brane tiling

Quiver Gauge Theory

dual

Quiver Yangian

de�ining data

crystal structure

     bootstrap/

 representation
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Quiver Yangian and quiver quantum toroidal algebras

Definition of Quiver Yangian

Quiver Yangian is defined from the quiver data associated with the geometry. It is generally a
superalgebra.

Quiver data: Q = (Q0, Q1), W (vertices, arrows, and superpotential)

Assign generators e(a)(u), f (a)(u), ψ(a)(u) for each vertex a ∈ Q0

e(a)(u) =

∞∑
n=0

e
(a)
n

un+1
, ψ(a)(u) =

∞∑
n=−∞

ψ
(a)
n

un+1
, f (a)(u) =

∞∑
n=0

f
(a)
n

un+1

Statistics: If node a ∈ Q0 has no self-loop, then e(a)(u), f (a)(u) are fermionic. Otherwise,
e(a)(u), f (a)(u) are bosonic. The ψ(a)’s are bosonic.

Define bond factors as

φa⇒b(u) = (−1)χa→b

∏
I∈{b→a}(u+ hI)∏
I∈{a→b}(u− hI)

, φa⇒b(u)φb⇒a(−u) = 1

Loop and vertex constraints are imposed on parameters hI (I ∈ Q1) (will not discuss).
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Quiver Yangian and quiver quantum toroidal algebras

The defining relations are

ψ(a)(u)ψ(b)(v) = ψ(b)(v)ψ(a)(u),

e(a)(u)e(b)(v) ∼ (−1)|a||b|φb⇒a(u− v)e(b)(v)e(a)(u),

ψ(a)(u)e(b)(v) ∼ φb⇒a(u− v)e(b)(v)ψ(a)(u), etc.

Generalization of AY gl1:

geometry → C3,

loop condition → h1 + h2 + h3 = 0,

bond factor → φ(u) =

∏3
i=1(u+ hi)∏3
i=1(u− hi)

.
1
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Quiver Yangian and quiver quantum toroidal algebras

Quiver Quantum Toroidal Algebra (QQTA) [GN-Watanabe 2021, Galakhov-Li-Yamazaki 2021]

QQTA is a trigonometric deformation of the quiver Yangian. Generally, it is a superalgebra.

The defining data is the same Q = (Q0, Q1), W .

We focus on geometries when there are no compact 4-cycles, which gives non-chiral quivers.

In this case, we assign parameters qI = eϵhI to each edge I ∈ Q1. They satisfy the loop and
vertex constraints.

The generators are

Ei(z) =
∑
k∈Z

Ei,kz
−k, Fi(z) =

∑
k∈Z

Fi,kz
−k, K±

i (z) =
∑
r≥0

K±
i,±rz

∓r, (i ∈ Q0).

The statistics are assign similarly. Currents Ei(z), Fi(z) are fermionic when node i ∈ Q0 does
not have a self-loop. Otherwise, they are bosonic. K±

i (z) are always bosonic.

Bond factors are

φi⇒j(z, w) = (−1)χi→j

∏
I∈{j→i}(q

1/2
I z − q

−1/2
I w)∏

I∈{i→j}(q
−1/2
I z − q

1/2
I w)

, φi⇒j(z, w)φj⇒i(w, z) = 1.

Go Noshita Quiver Quantum Toroidal Algebra and Crystal Representations



25/54

Quiver Yangian and quiver quantum toroidal algebras

The defining relations are

K−
i (z)K+

j (w) =
φj⇒i(z, Cw)

φj⇒i(Cz,w)
K+

j (w)K−
i (z),

Ei(z)Ej(w) = (−1)|i||j|φj⇒i(z, w)Ej(w)Ei(z),

K±
i (C

1∓1
2 z)Ej(w) = φj⇒i(z, w)Ej(w)K

±
i (C

1∓1
2 z), etc.

Generalization of quantum toroidal gl1:

geometry → C3,

loop condition → q1q2q3 = 1,

bond factor → φ(z, w) =

∏3
i=1(q

1/2
i z − q

−1/2
i w)∏3

i=1(q
−1/2
i z − q

1/2
i w)

.
1
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Quiver Yangian and quiver quantum toroidal algebras

Properties

Degenerate limit ϵ→ 0:

qI → 1 + ϵhI , z → 1 + ϵx, w → 1 + ϵy∏
I∈{j→i}(q

1/2
I z − q

−1/2
I w)∏

I∈{i→j}(q
−1/2
I z − q

1/2
I w)

→
∏

I∈{j→i}(x− y + hI)∏
I∈{i→j}(x− y + hI)

It has a Hopf superalgebra structure. In particular, the coproduct is written as

∆Ei(z) = Ei(z)⊗ 1 +K−
i (C1z)⊗ Ei(C1z),

∆Fi(z) = Fi(C2z)⊗K+
i (C2z) + 1⊗ Fi(z),

∆K+
i (z) = K+

i (z)⊗K+
i (C−1

1 z),

∆K−
i (z) = K−

i (C−1
2 z)⊗K−

i (z)

The coproduct gives various representations.

Go Noshita Quiver Quantum Toroidal Algebra and Crystal Representations



27/54

Crystal representations

3D crystal representation

As the quantum toroidal gl1 acts on the
plane partition, QQTA acts on some kind of
3D crystal. These 3D crystals are defined
from the quiver data [Ooguri-Yamazaki 2008].

From the quiver data, we can take copies of
the periodic quiver and consider the
universal covering (we also call this periodic
quiver).

Paths in the periodic quiver ↔ atoms in the
crystal
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Crystal representations

QQTA acts on these 3D crystals. Ei(z) adds an atom of vertex i, Fi(z) removes an atom of
vertex i, and K±

i (z) acts diagonally.

K±
i (z) |Λ⟩ =

[
Ψ

(i)
Λ (z, u)

]
±
|Λ⟩ ,

Ei(z) |Λ⟩ =
∑

i ∈Add(Λ)

E(i)(Λ → Λ + i )δ

(
z

uq( i )

)
|Λ + i ⟩ ,

Fi(z) |Λ⟩ =
∑

i ∈Rem(Λ)

F (i)(Λ → Λ− i )δ

(
z

uq( i )

)
|Λ− i ⟩

It is a generalization of the quantum toroidal gl1, where the 3D crystal is a plane partition.
→ MacMahon representation
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Crystal representations

Subcrystal

Quantum toroidal gl1 has not only MacMahon representation, but also vector and Fock
representations.

QQTA should also have such kind of representations.

The generalizations of the Fock and vector representations are 2D and 1D crystal
representations.

The 2D crystals are surfaces of the 3D crystal [Nishinaka-Yamaguchi-Yoshida], while the 1D
crystals are an extended version of the edges of the 2D crystals.

The 2D crystals are associated with corner divisors of the toric diagram, while the 1D crystals
are associated with the external legs of the toric diagram.
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Crystal representations

Conifold → quantum toroidal gl1|1
2D crystal associated with divisor p2
1D crystal associated with ℓ2
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Crystal representations

Generally, a “shifted” version of the QQTA (shifted QQTA) acts on these crystals.

The generators are modified as K+
i (z) → zriK+

i (z) (i ∈ Q0).

r = (ri)i∈Q0
are shift parameters depending on the subcrystal considered.

Denoting the shifted QQTA as Ür
Q, we also have a “shifted coproduct”

∆r,r′ : Üs
Q → Ür

Q ⊗ Ür′

Q , s = r+ r′.

Using this shifted coproduct, we can take tensor products of the 1D crystal representations
and obtain 2D crystal representations. This is a generalization of the story between vector and
Fock representation of quantum toroidal gl1.

We expect we can obtain nontrivial three-dimensional subcrystals by taking tensor products of
the 2D crystal representations.
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Crystal representations

One-dimensional crystal representations
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Crystal representations

Two-dimensional crystal representations

Stacking the 1D crystal rep and using the shifted coproducts, we obtain the 2D crystal rep.

The action of K±
s (z) on the vacuum |∅⟩ is

K±
s (z) |∅⟩ =

[
(q

1/2
1 z − q

−1/2
1 u)δs,2

(z − u)δs,1

]
±

|∅⟩ .

The shifts are r1 = −1, r2 = 1.
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Summary

Summary

Quiver Yangian

trigonometric 
deformation

(Shifted) QQTA

representations 3D  crystal

2D  crystal

1D  crystal

   shifted 
coproduct

   shifted 
coproduct
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Summary

Future directions

Deriving vertex operator representations (C ̸= 1) of QQTA.

Shifted intertwiner formalism.

Quantum toroidal algebras associated with brane tilings including orientifolds.

Deriving crystal representations of quantum toroidal algebras of DE-type orbifolds.

Crystal representations and intertwiner formalism of general quantum N -toroidal algebras.

Gluing of quantum toroidal algebras.

· · ·
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Appendix: Deformed W algebra and quantum toroidal gl1
[FHSSY 2010, Bershtein-Feigin-Merzon 2015, Harada-Matsuo-GN-Watanabe 2021, Kojima 2019,2021]

We have three horizontal representations denoted Fc(u) (c = 1, 2, 3) [Bershtein-Feigin-Merzon 2015]:

[ar, as] = r
(q

r/2
c − q

−r/2
c )3

−κr
δr+s,0, κr =

3∏
i=1

(q
r/2
i − q

−r/2
i ),

E(z) → 1− qc
κ1

ηc(z), F (z) → 1− q−1
c

κ1
ξc(z), K±(z) → φ±

c (z),

ηc(z) = u exp

( ∞∑
r=1

q
−r/2
c κr

r(q
r/2
c − q

−r/2
c )2

a−rz
r

)
exp

( ∞∑
r=1

κr

r(q
r/2
c − q

−r/2
c )2

arz
−r

)
,

ξc(z) = u−1 exp

( ∞∑
r=1

−κr
r(q

r/2
c − q

−r/2
c )2

a−rz
r

)
exp

( ∞∑
r=1

−qr/2c κr

r(q
r/2
c − q

−r/2
c )2

arz
−r

)
,

φ±
c (z) = exp

( ∞∑
r=1

−κr
r(q

r/2
c − q

−r/2
c )

a±rz
∓r

)
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Deformed WN algebra and deformed corner vertex operator algebra q-YL,M,N are obtained by
tensor products of the horizontal representations of quantum toroidal gl1. [FHSSY

2010,Harada-Matsuo-GN-Watanabe 2021,Kojima 2019,2021]

For the general q-YL,M,N , consider Fc⃗(u⃗) = Fc1 ⊗Fc2 ⊗ · · · ⊗ Fcn , where
#{i|ci = 1} = L, #{i|ci = 2} =M, #{i|ci = 3} = N , n = L+M +N .
Actually, there is an extra Heisenberg algebra and we need to remove it. We can define a
current t(z) that commutes with the Heisenberg Hr as

E(z) → t(z) = α(z)E(z)β(z), Hr → ar

q
r/2
c − q

−r/2
c

α(z) = exp

( ∞∑
r=1

−κr
r(1− qrc )

H−rz
r

)
, β(z) = exp

( ∞∑
r=1

−q−r/2
c κr

r(1− q−r
c )

Hrz
−r

)
.

Choose the Drinfeld current E(z) and apply the coproduct ∆(n−1):

∆n−1(E(z)) →
n∑

i=1

yiΛi(z), yi =
q
1/2
ci − q

−1/2
ci

q
1/2
3 − q

−1/2
3

Λi(z) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗ηci(q−1/2
ci+1

· · · q−1/2
cn z)⊗ φ+

ci+1
(q−1/2

ci+1
· · · q−1/2

cn z)⊗ · · · ⊗ φ+
cn(q

−1/2
cn z).
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After the decoupling process, we obtain

∆n−1(t(z)) →
n∑

i=1

yiΛ̃i(z).

Define currents

Tm(z) = t(q−m+1
3 z)t(q−m+2

3 z) · · · t(z)

and these are the currents of deformed corner VOA. Actually they satisfy the following
quadratic relation:

fi,j

q i−j
2

3 w

z

Ti(z)Tj(w)− fj,i

q j−i
2

3 z

w

Tj(w)Ti(z) =
(q

1
2
1 − q

− 1
2

1 )(q
1
2
2 − q

− 1
2

2 )

q
1
2
3 − q

− 1
2

3

×
i∑

k=1

k−1∏
l=1

(1− q1q
−l
3 )(1− q2q

−l
3 )

(1− q−l−1
3 )(1− q−l

3 )

(
δ

(
qk3w

z

)
fi−k,j+k(q

i−j
2

3 )Ti−k(q
−k
3 z)Tj+k(q

k
3w)

− δ

(
qi−j−k
3 w

z

)
fi−k,j+k(q

j−i
2

3 )Ti−k(z)Tj+k(w)

)
, (i ≤ j)
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The function fi,j(z) does not depend on the ordering of the tensor products.
→ relation with R-matrix (?)

fi,j(z) = exp

[ ∞∑
m=1

1

m
(q

i
2m
3 − q

− i
2m

3 )(q
m
2

c⃗ q
− j

2m
3 − q

−m
2

c⃗ q
j
2m
3 )

(q
m
2
1 − q

−m
2

1 )(q
m
2
2 − q

−m
2

2 )

(q
m
2

c⃗ − q
−m

2

c⃗ )(q
m
2
3 − q

−m
2

3 )
zm

]
(i ≤ j).

Examples:
1 q-Virasoro=F3 ⊗F3 [Shiraishi et al. 1995]
2 q-WN=F3 ⊗ · · · ⊗ F3︸ ︷︷ ︸

N

[Awata et al. 1996, Feigin-Frenkel 1996]

3 Wq,t(sl2,1)=F3 ⊗F3 ⊗F2 [Ding-Feigin 1999, Kojima 2019]

We can also use F (z) instead of E(z) to get the same algebra.

By some manipulation, we can also define a generating function of the currents which is a
q-deformation of the generalized Miura transformation defined in [Prochazka-Rapčák 2018].
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q-deformed Miura operators

R(c)(z) =

∞∑
n=0

:

n∏
j=1

−q
1
2
c q

− j−1
2

3 − q
− 1

2
c q

j−1
2

3

q
j
2
3 − q

− j
2

3

Λ(q−j+1
3 z)

 : q−nDz
3 ,

R
(c1)
1 R

(c2)
2 · · ·R(cn)

n =

∞∑
m=0

(−1)mTm(z)q−mDz
3 ,

Dz = z
d

dz
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Appendix: Affine Yangian gl1

Generators and defining relations:

en, fn, ψn (n ∈ Z≥0),

σ2 = h1h2 + h1h3 + h2h3, σ3 = h1h2h3,

0 = [ψm, ψn],

0 = [em+3, en]− 3[em+2, en+1] + 3[em+1, en+2]− [em, en+3]

+ σ2[em+1, en]− σ2[em, en+1]− σ3{em, en},
0 = [fm+3, fn]− 3[fm+2, fn+1] + 3[fm+1, fn+2]− [fm, fn+3]

+ σ2[fm+1, fn]− σ2[fm, fn+1] + σ3{fm, fn},
0 = [em, fn]− ψm+n,

0 = [ψm+3, en]− 3[ψm+2, en+1] + 3[ψm+1, en+2]− [ψm, en+3]

+ σ2[ψm+1, en]− σ2[ψm, en+1]− σ3{ψm, en},
0 = [ψm+3, fn]− 3[ψm+2, fn+1] + 3[ψm+1, fn+2]− [ψm, fn+3]

+ σ2[ψm+1, fn]− σ2[ψm, fn+1] + σ3{ψm, fn},
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Boundary conditions:

[ψ0, em] = 0, [ψ1, em] = 0, [ψ2, em] = 2em,

[ψ0, fm] = 0, [ψ1, fm] = 0, [ψ2, fm] = −2fm

Serre relations

Sym(m1,m2,m3)[em1 , [em2 , em3+1]] = 0,

Sym(m1,m2,m3)[fm1
, [fm2

, fm3+1]] = 0,

where Sym is the complete symmetrization over all indicated indices.

We can rewrite the modes in a compact form:

e(u) =

∞∑
j=0

ej
uj+1

, f(u) =

∞∑
j=0

fj
uj+1

, ψ(u) = 1 + σ3

∞∑
j=0

ψj

uj+1
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Modes of affine Yangian gl1:
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In the currents form, the defining relations are

ψ(u)ψ(v) ∼ ψ(v)ψ(u),

e(u)e(v) ∼ φ(u− v)e(v)e(u),

f(u)f(v) ∼ φ(u− v)−1f(v)f(u),

ψ(u)e(v) ∼ φ(u− v)e(v)ψ(u),

ψ(u)f(v) ∼ φ(u− v)−1f(v)ψ(u),

[e(u), f(v)] − 1

σ3

ψ(u)− ψ(v)

u− v
,

φ(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)
.

The function φ(u) is called “structure function” and it obeys

φ(u)φ(−u) = 1.
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MacMahon representation:

h( ) = h1x1( ) + h2x2( ) + h3x3( ),

ψ(z) |Λ⟩ = [ΨΛ(z − u)]+ |Λ⟩ ,

e(z) |Λ⟩ =
∑

∈Add(Λ)

[
E(Λ → Λ + )

z − u− h( )

]
+

|Λ + ⟩ ,

f(z) |Λ⟩ =
∑

∈Rem(Λ)

[
F (Λ → Λ− )

z − u− h( )

]
+

|Λ− ⟩ ,

ΨΛ(z) = ψ0(z)
∏
∈Λ

φ(z − h( )), ψ0(z) = 1 + σ3
ψ0

z
,

E(Λ → Λ + ) =

√
− 1

σ3
Res

z→u+h( )

ΨΛ(z),

F (Λ → Λ− ) =

√
1

σ3
Res

z→u+h( )

ΨΛ(z).
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Appendix: Quiver Yangian

Defining relations:

ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z),

ψ(a)(z)e(b)(w) ≃ φb⇒a(z − w)e(b)(w)ψ(a)(z),

e(a)(z)e(b)(w) ∼ (−1)|a||b|φb⇒a(z − w)e(b)(w)e(a)(z),

ψ(a)(z)f (b)(w) ≃ φb⇒a(z − w)−1f (b)(w)ψ(a)(z),

f (a)(z)f (b)(w) ∼ (−1)|a||b|φb⇒a(z − w)−1f (b)(w)f (a)(z),

[e(a)(z), f (b)(w)} ∼ −δa,b
ψ(a)(z)− ψ(b)(w)

z − w
,

for a, b ∈ Q0. In the above equations, ≃ means the equality up to znwm≥0 terms and ∼ means
the equality up to zn≥0wm and znwm≥0 terms.

[e(a)(z), f (b)(w)} = e(a)(z)f (b)(w) + f (b)(w)e(a)(z), |a| = |b| = 1

[e(a)(z), f (b)(w)} = e(a)(z)f (b)(w)− f (b)(w)e(a)(z), otherwise.

Go Noshita Quiver Quantum Toroidal Algebra and Crystal Representations



47/54

Appendix: Symmetries and conditions imposed on QY

Spectral shift:

e(z) → e(z + u), f(z) → f(z + u), ψ(z) → ψ(z + u)

Gauge-symmetry shift:

hI → h′I = hI + ϵasigna(I),

signa(I) =


+1 (s(I) = a, t(I) ̸= a),

−1 (s(I) ̸= a, t(I) = a),

0 (otherwise)

Vertex condition: ∑
I∈Q1(a)

hI = 0, a ∈ Q0,

where Q1(a) is the subset of Q1 where the vertex a ∈ Q0 is contained either in the start point
of the endpoint.
Loop condition:

∑
I∈L hI = 0, arbitrary loop L
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Appendix: Quantum Toroidal gl1

Generators and defining relations:

E(z) =
∑
m∈Z

Emz
−m, F (z) =

∑
m∈Z

Fmz
−m, K±(z) = (C⊥)∓1 exp

(∑
r>0

±H±rz
∓r

)
,

C, C⊥,D,D⊥,

DE(z) = E(qz)D, DF (z) = F (qz)D, DK±(z) = K±(qz)D,

D⊥E(z) = qE(z)D⊥, D⊥F (z) = q−1F (z)D⊥,
[
D⊥,K±(z)

]
= 0 ,

E(z)E(w) = g(z/w)E(w)E(z), F (z)F (w) = g(z/w)−1F (w)F (z),

K±(z)K±(w) = K±(w)K±(z), K−(z)K+(w) =
g(C−1z/w)

g(Cz/w)
K+(w)K−(z),

K±(C(1∓1)/2z)E(w) = g(z/w)E(w)K±(C(1∓1)/2z),

K±(C(1±1)/2z)F (w) = g(z/w)−1F (w)K±(C(1±1)/2z) ,

[E(z), F (w)] = g̃(δ(
Cw

z
)K+(z)− δ(

Cz

w
)K−(w)).
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Modes and Miki automorphism [Miki 2007]
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Appendix: Quiver Quantum Toroidal Algebra

Defining relations:

KiK
−1
i = K−1

i Ki = 1,

C−1C = CC−1 = 1,

K±
i (z)K±

j (w) = K±
j (w)K±

i (z),

K−
i (z)K+

j (w) =
φj⇒i(z, Cw)

φj⇒i(Cz,w)
K+

j (w)K−
i (z),

K±
i (C

1∓1
2 z)Ej(w) = φj⇒i(z, w)Ej(w)K

±
i (C

1∓1
2 z),

K±
i (C

1±1
2 z)Fj(w) = φj⇒i(z, w)−1Fj(w)K

±
i (C

1±1
2 z),

[Ei(z), Fj(w)] = δi,j

(
δ

(
Cw

z

)
K+

i (z)− δ

(
Cz

w

)
K−

i (w)

)
,

Ei(z)Ej(w) = (−1)|i||j|φj⇒i(z, w)Ej(w)Ei(z),

Fi(z)Fj(w) = (−1)|i||j|φj⇒i(z, w)−1Fj(w)Fi(z),
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Symmetries and conditions imposed on QQTA

Spectral shift:

Ei(z) → Ei(az), Fi(z) → Fi(az), K±
i (z) → K±

i (az)

Gauge-symmetry shift:

qI → q′I = qIp
signi(I)
i

Vertex condition: ∏
I∈Q1(i)

q
signi(I)
I = 1

Loop condition: ∏
I∈L

qI = 1.
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Appendix: (ν1, ν2) deformed quantum toroidal gln[Bourgine-Jeong 1906.01625]

Currents: ω, ω′ ∈ Zn

x±ω (z) =
∑
k∈Z

z−kx±ω,k, ψ±
ω (z) = ψ±

ω,0z
∓a±

ω,0 exp

(
±
∑
k>0

z∓kaω,±k

)

Defining relations: (ν1, ν2) ∈ Zn, ν1 + ν2 + ν3 = 0

x±ω (z)x
±
ω′(w) = gωω′(z/w)±1x±ω′(w)x

±
ω (z), ψ±

ω (z)x
±
ω′(w) = gωω′(z/w)±1x±ω′(w)ψ

+
ω (z),

ψ−
ω (z)x

+
ω′(w) = gω−ν3c(q

−c
3 z/w)x+ω′(w)ψ

−
ω (z), ψ−

ω (z)x
−
ω′(w) = gωω′(z/w)−1x−ω′(w)ψ

−
ω (z),

ψ+
ω (z)ψ

−
ω′(w) =

gωω′−ν3c(q
c
3z/w)

gωω′(z/w)
ψ−
ω′(w)ψ

+
ω (z), [ψ±

ω (z), ψ
±
ω′(w)] = 0,

[x+(z), x−ω′(w)] = Ω[δω,ω′δ (z/w)ψ+
ω (z)− δω,ω′−ν3cδ (q

c
3z/w)ψ

−
ω+ν3c(q

c
3z)].
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Structure functions:

gωω′(z) = fωω′(z−1)
∏

i=1,2,3

(1− qiz)
δω,ω′−νi

(1− q−1
i z)δω,ω′+νi

,

fωω′(z) = Fωω′zβωω′ ,

βωω′ = δωω′ + δωω′+ν1+ν2
− δωω′+ν1

− δωω′+ν2
,

Fωω′ = (−1)δωω′ (−q3)−δω,ω′−ν3 (−q1)−δωω′+ν1 (−q2)−δωω′+ν2

Quiver
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Coproduct:

∆(x+ω (z)) = x+ω (z)⊗ 1 + ψ−
ω+ν3c(1)

(q
c(1)
3 z)⊗ x+ω (z),

∆(x−ω (z)) = x−ω (z)⊗ ψ+
ω−ν3c(1)

(q
−c(1)
3 z) + 1⊗ x−ω−ν3c(1)

(q
−c(1)
3 z)

∆(ψ+
ω (z)) = ψ+

ω (z)⊗ ψ+
ω−ν3c(1)

(q−c(1)z),

∆(ψ−
ω (z)) = ψ−

ω−ν3c(2)z
(q

−c(2)
3 )⊗ ψ−

ω−ν3c(1)
(q

−c(1)
3 z)
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