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Introduction: Affine Yangian (AY) gl; and corner vertex operator algebra

@ AGT correspondence [Alday-Gaiotto-Tachikawa 2009
Nekrasov partition functions <+ conformal blocks of Liouville/Toda CFT
4D supersymmetric gauge theory < algebra

e Virasoro and Wy algebra (free field realization)

¢i(2)¢j(w) ~ —d;5log(z — w),
Ri(z) = aoa—i- 00i(z),

RiRy---Ry = ZUk Y(agd) Y

@ Wy algebra includes higher spin currents and is a generalization of Virasoro algebra. It is
obtained by Miura transformation.
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Introduction

o Corner vertex operator algebra Y7, N [Gaiotto-Rapcdk 2017

o Algebra appearing in brane junctions.

e Understood as a pit reduction of the plane partition representation of affine Yangian gl;. (AY
picture).[Prochazak-Rapcdk 2017]
The central charge is specialized to

—poo = Lhy + Mha + Nhz, o = hihahs.

o Generalized Miura transformation with fractional power gives free field realizations. (Wi4oo
picture) [Prochazka-Rapcdk 2018|

he 1

c_. LN © () 7
R =: (a08+ EJ )}3 J (Z)J (w):—;m, 0:1,273,
RV ple2) | pleymin) — Z U, (2)8%75
s=0

o Y7 um,n algebra is a generalization of the Wi algebra and can be understood as truncations of
both AY gl; and Wiyoeo:

Virasoro C Wy C Yo, m,n C AY gl /Wit

e AY gl; ~ Wit Prochazak 2015, Gaberdiel et al. 2017
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Introduction

@ Corner VOA should give new AGT dualities. Understanding such truncations should be
useful. — We need new affine Yangians and new W-algebras.

@ Quiver Yangian [Li-Yamazaki 2020, Galakhov-Yamazaki 2020, Galakhov-Li-Yamazaki 2021]
o Generalizations of affine Yangian gl;:

Affine Yangian gl; — Quiver Yangian
plane partition — 3D BPS crystal [Ooguri-Yamazaki]

o Algebra is defined from the quiver associated with the toric Calabi-Yau 3-fold [Hanany et al.].

o Studying the W-algebra picture is also important.
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Introduction: Deformed W algebras and 5D AGT

@ There is a 5D lift-up of the correspondence (5D AGT).
@ On the algebra side, quantum algebras appear (¢-Virasoro, ¢-Wn, ¢-Yz m N -..)
@ ¢-Virasoro [Shiraishi et al. 1995]: ¢,t,p = ¢/t

T(z) = ZTZZ’”,
nez
_ (=g -t [ pw
/=TT ) — T = - DO [y (
f(z) = exp (Z % (1- qlnlgg; t_")zn>

o In the limit t = ¢%, ¢=¢" =1

1— 2
T(2) 2+ﬁ<22L(z)+(46ﬂ)> h? 4.,
where L(z) is the Virasoro algebra.
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Introduction

@ ¢-Virasoro and ¢-Wy are understood as truncations of quantum toroidal gl;.

@ Both the affine Yangian picture and W algebra picture are understood in a unified way by the
quantum toroidal gl;. We have two central charges (C,C*),

(c,ct) =, qlL/QqéWZqéV/Q) — pit reduction picture

L/2 M/2 N/2 . .
(C, Cl) = (ql/ qs / qs / ,1) — free field realizations [FHSSY, Harada et al., Bershtein et al., Kojima]

@ The deformed algebra captures the algebraic structure in a rather symmetric way than the
degenerate case.
— basic motivation of considering quantum algebras

@ Studying truncations as representation theory of quantum toroidal algebras is useful.

o Finding the trigonometric deformation of QY should give new perspectives.
— quiver quantum toroidal algebra [GN-Watanabe 2021,CGalakhov-Li-Yamazaki 2021]

m Quiver Quantum Toroidal Algebra and Crystal Representations



Introduction: Intertwiner formalism

@ One application of quantum toroidal algebras is the intertwiner formalism [Awata-Feigin-Shiraishi
2011].

o Using two basic representations “horizontal” and “vertical” representations, we can construct
algebraic objects called “intertwiners”. Composition of them gives Nekrasov partition
functions.

L q)u
( q> (17Q+1)7uv

oy Bat
(0,1)y

(9)*
Oa 1), ® [u’ ’U]
GD(Q)[lL,U] (0:1)

(1, g+ 1)y
(1,q)u
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Introduction

o If we change the vertical reps to other reps like Young diagrams with colored boxes and the
horizontal reps to suitable vertex operator reps, we obtain other partition functions.

’ Algebra ‘ Geometry Gauge theory Ref.
QT g, c? 5D N =1on C? x S! [Awata-Feigin-Shiraishi 2011]
27 "=1|5DN =1o0nC?Z, x 5
QT gl, C/Zn x G, w SDN on C/Zn xS [Awata et al. 2017]

(,9) = (wz,w™'y)

(z,y) plane

(Vlv VQ)_QT g[n

C3/Zp, w" =1
T; — Wiz
141 =+ 1) + V3 = O

5D N =1on C?/Z, x S*

(xl, 362) plane

[Bourgine-Jeong 2019]

QQTA

Toric CY 3-fold

77

@ Studying both reps entering the intertwiner is important.
— We study two-dimensional crystal reps (vertical reps) here.

— vertex operator reps (future work)
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Goal

Corner VOA
virasoro C Wy C v,y AY g, /[Witoo
@ - deformation l t l l
quantum

q-vir C q-Wyx C q-Ypun C

toroidal gl;

_——

generalize

—_—

4 N\
Quiver Yangian
Quiver quantum

L toroidal algebra )

e Studying the quiver Yangian/quiver quantum toroidal algebra and their truncations should

give generalizations of (g)-corner VOA.
— Focus on one, two-dimensional crystal representations.

m Quiver Quantum Toroidal Algebra and Crystal Representations



Affine Yangian (AY) gl

o Generators are

o0

e(u)zzwﬂ, Z ESE —1+0‘Z

7=0

@ Depends on parameters hq, ho, hs

hi+ha +hs =0, Y(u)(v) ~P(v)(u),
e(u)e(v) ~ o(u —v)e(v)e(u),
(u), ete.

P(u)e(v) ~ o(u —v)e(v)
<p(u) _ (u =+ h1)( + hg)(u + h3)
(’LL*hl)(U*hg)(u hg)

@ Symmetric under hy <> ho <> hg.
o AYgl, ~ Wit
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Quantum toroidal g7 and its representations

Quantum toroidal gl; [ping-iohara 1996, Miki 2007, Feigin et al ]

o Trigonometric deformation of AY gl;.

@ Generators are called Drinfeld currents:

= Z Enz"™, F(z)= Z Fnz™, K*(z) = (CH)Tlexp (Z iHiszFr>

meZ meZ r>0

@ Defining relations are

G123 =1, K (2)KT(w) =

E(z)E(w) = ¢(z, w)E(w)E(2),
KE(CUFV2)E(w) = (2, w)E(w)KE(CATY/22) ete.

w) = [ ‘”2w>
-1 2 1 2
i=1 (qz / / w)
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Properties of quantum toroidal g,

In the degenerate limit ¢; = e — 1 + h;, it becomes AY gl;.

Coproduct structure

Triality: ¢1 <> q2 <> q3

Central elements are C, C+ — values of them determine representations
@ Vertical representations C' = 1: vector (C*+ = 1), Fock (C*+ = qil/Q), MacMahon (C+ = K)
@ Horizontal representations C' # 1: Fock (C,Ct) = (q-1/27 1)

7
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Representations of quantum toroidal gl;: Vector representation

@ Vector representation

K@)l = [, ()] [,
B(z)lul; = €5 (ug}*/z) [ulj4a.

F()ulj1 = F6 (ugl™ /) [u);
u uq]
/ \
[ul; = e *
0o 1 2 J

e FE(z) adds a box, F(z) removes a box, and K*(z) acts diagonally.
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Representations of quantum toroidal gl;: Fock representation

@ Fock representation is obtained by taking tensor products of vector representations.

IA) = @52, [ugd 'y, —1

) 8
@ (a5~ @Zth, -1
®
[q2u]x,—1
®
A
L % [u]x, -1
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Quantum toroidal gl and its representations

e E(z) adds a box, F(z) removes a box, and K*(z) acts diagonally.
A+ m) BY;

E(z) F(z)

[ A=)

O k=)
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_ Quanium toroidal aly and itsrepresentations |
Representations of quantum toroidal gl;: MacMahon representation

@ Similar to the previous case, MacMahon representation is obtained by taking tensor products
of Fock representations.

e F(z) adds a box, F(z) removes a box, and K*(z) acts diagonally.

[A+m) A) [ A—m)

@ Actually, we can also consider the action of the algebra on plane partitions with nontrivial
boundary conditions.

@ Vertical representations captures the AY picture.
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g-corner VOA from MacMahon representation

@ Deformed corner VOA (g-Y7 ar,nv) is understood as a pit reduction of the MacMahon

representation. The central charge is (C,C+) = (1 qL/ 2gM/2 N/ 2

% (2,0,0) (0,2,0)
(L+1,M+1,N +1)
(27270)
(07072)
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Representations of quantum toroidal gl;: Horizontal representation

e Horizontal representations are vertex operator representations: F.(u), (¢ =1,2,3).

@ The Drinfeld currents are vertex operators now:

B(2) = ne(2), F(2) = &(2), K¥(2) = 9i(2), (c=1,2,3)
L—w/z)(—gtw/z)
1— qc+1'UJ/Z)(1 _ qc—1w/2) . 776( )776( ) i

5 1/2, 0\ — H?:l(]- - qi_lw/z)

nC( )@c (qc ) H?:1(1 B qzw/z)

@ Tensor products of these representations give free field realizations of deformed W algebras
(g-Virasoro, ¢-Wy) or deformed corner vertex operator algebras (g-Y7, ar,n)[FHSSY
2010, Harada-Matsuo-GN-Watanabe 2021, Kojima 2019,2021].
e For the general ¢-Y, p n, consider Fz(t0) = Fo, @ Fe, @ -+ - @ Fe, , where
#{ile, =1} = L, #{ile;, =2} = M, #{ilc; =3} = N, n=L+ M + N. The central charge is
L/2 M/2 N/2
(C,CH) = (a%ay" 45", 1),
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Quiver Yangian and quiver quantum toroidal algebras

Quiver Yangian [Li-Yamazaki 2020, Galakhov-Yamazaki 2020, Galakhov-Li-Yamazaki 2021]

oy, 0

N
[ o
dual 1 %f 2
_|_
superpotential

Brane tiling

crystal structure
- Quiver Gauge Theory

defining data
bootstrap/
representation . .
- . Quiver Yangian

3D BPS crystal
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Definition of Quiver Yangian

@ Quiver Yangian is defined from the quiver data associated with the geometry. It is generally a
superalgebra.

e Quiver data: Q = (Qo,Q1), W (vertices, arrows, and superpotential)
o Assign generators e(® (u), (@ (u), (@ (u) for each vertex a € Qo

(a) Sl W = u = i
ea(u)zzunﬂ’ v (u) = Z a1 A (“):Zunﬂ
n=0 n=—oo n=0

o Statistics: If node a € Qg has no self-loop, then e(® (u), f(®)(u) are fermionic. Otherwise,
el (u), f(*)(u) are bosonic. The ¥(*)’s are bosonic.

@ Define bond factors as

[icipsay(uthr)

, (pa=>b u)(pb=>a —u) =1
HIE{a—)b} (u—hr) ( ()

¢ w) = (—1r

e Loop and vertex constraints are imposed on parameters hy (I € Q1) (will not discuss).
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Quiver Yangian and quiver quantum toroidal algebras

@ The defining relations are

@ @@ (v) = ¢ () (u),

) (@) () ~ (~D)IIP = (0 — 0)e® (0)el®) 1),

V(e (v) ~ "7 (u = 0)e® () (), ete.
o Generalization of AY gl;:

hy
geometry — C3,
loop condition — hy + ho + hy =0, O

[T (u + hi) h [ E A
ond factor u) = —e=—— =,
bond factor =+ o) = 1 () OO
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Quiver Quantum Toroidal Algebra (QQTA) [6N-Watanabe 2021, Galakhov-Li-Yamazaki 2021]

QQTA is a trigonometric deformation of the quiver Yangian. Generally, it is a superalgebra.
The defining data is the same Q = (Qo, @1), W.
We focus on geometries when there are no compact 4-cycles, which gives non-chiral quivers.

In this case, we assign parameters q; = e’ to each edge I € Q. They satisfy the loop and
vertex constraints.

The generators are
Ez(z) = ZEi,kzika FZ(Z) = ZFi,kzili Kzi(z) = ZKii,j:rZ:FTa (Z S QO)
kez kez r>0

The statistics are assign similarly. Currents E;(z), F;(z) are fermionic when node i € Qo does
not have a self-loop. Otherwise, they are bosonic. K Zi(z) are always bosonic.

Bond factors are
1/2 —~1/2

Hle{j—m‘}(ql/ Z—dqr / w)
—1/2

Hle{i—m'}(ql

@iij(sz) = (71)Xiﬁj s @iij(sz)(pj:”(waz) =1

z— q}ﬂw)

m Quiver Quantum Toroidal Algebra and Crystal Representations



Quiver Yangian and quiver quantum toroidal algebras

@ The defining relations are

_ @77z, Cw) B
K (2)K] (w) = WK;F(W)KZ- (2),
Ey(2)Ej(w) = (=1)"VpI= (2, w0) Ej (w) Ei(2),
= )

K (C % 2)Ej(w) = ¢’ (z,w) Ej(w) K (C

i , etc.

@ Generalization of quantum toroidal gl;:

qi

geometry — C3,
loop condition — g1¢2q3 = 1, O
3 1/2 —-1/2 . 1
. ; —q. w
bond factor — ¢(z,w) = H§=1(q11/22 i 7 ) O D
[lici(e; 72— q;""w) 43 q2
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Quiver Yangian and quiver quantum toroidal algebras

Properties

@ Degenerate limit € — 0:

z—=14ex, w—1+ey
1/2 —-1/2
Hle{j—n}(‘h/ 2 —a; *w) — [egjmn(@—y+hi)

Mrepop (@ 2 —qw)  regop @ —y+h)

qr = 1+ e€hy,

o It has a Hopf superalgebra structure. In particular, the coproduct is written as

= Ei(2) @ 1+ K; (C12) ® E;i(Cr2),

Ei(z) =

Fi(z) = Fi(Cy2) ® K+(C’2z) +1® Fi(2),
AK+<z>=KZ (=) & KH(Cr '),

K; (2) = K; (Cy Z)®Ki (2)

@ The coproduct gives various representations.

m Quiver Quantum Toroidal Algebra and Crystal Representations



Crystal representations

3D crystal representation

@ As the quantum toroidal gl; acts on the
plane partition, QQTA acts on some kind of
3D crystal. These 3D crystals are defined
from the quiver data [Ooguri-Yamazaki 2008].

o From the quiver data, we can take copies of
the periodic quiver and consider the
universal covering (we also call this periodic
quiver).

@ Paths in the periodic quiver <+ atoms in the
crystal
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Crystal representations

e QQTA acts on these 3D crystals. F;(z) adds an atom of vertex i, F;(z) removes an atom of
vertex i, and K f (z) acts diagonally.

KE)A) = [0 ()] 1A),

E(z)|A)= > EOA-A +[i)s < o
[{leadac) ua

F(z) 1A= F(i)(A%A—)fS( 'l ) A -
GRem(A) q

o It is a generalization of the quantum toroidal gl;, where the 3D crystal is a plane partition.
— MacMahon representation

>A+
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Subcrystal

o Quantum toroidal gl; has not only MacMahon representation, but also vector and Fock
representations.

o QQTA should also have such kind of representations.

@ The generalizations of the Fock and vector representations are 2D and 1D crystal
representations.

@ The 2D crystals are surfaces of the 3D crystal [Nishinaka-Yamaguchi-Yoshida], while the 1D
crystals are an extended version of the edges of the 2D crystals.

@ The 2D crystals are associated with corner divisors of the toric diagram, while the 1D crystals
are associated with the external legs of the toric diagram.
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@ Conifold — quantum toroidal gl
2D crystal associated with divisor p
1D crystal associated with £

Igl l3 !
p3 p4 Qy, Q2
ly by °® .f\\.
\\%
C I E s
b1 P2 '
s

ts
2

12
12
-
l3
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Crystal representations

Generally, a “shifted” version of the QQTA (shifted QQTA) acts on these crystals.
The generators are modified as K™ (2) — 2" K" (2) (i € Qo).
r = (r;)icq, are shift parameters depending on the subcrystal considered.

Denoting the shifted QQTA as Z/{é, we also have a “shifted coproduct”

Ay Ué—)blé@ug, s=r+r.

Using this shifted coproduct, we can take tensor products of the 1D crystal representations
and obtain 2D crystal representations. This is a generalization of the story between vector and
Fock representation of quantum toroidal gl;.

We expect we can obtain nontrivial three-dimensional subcrystals by taking tensor products of
the 2D crystal representations.
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One-dimensional crystal representations

a
q1
v. q2
3!
1
a(H=d"'a
[
i
q1 __62 A
012 I qB)=dd
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Crystal representations

Two-dimensional crystal representations

i+j+1 i—
a’ V=a""e”

1 -
a L @
=y I . g/ ) =gl
AN~ IS W - e
7 92 4 -
"y ! !
T N ey NS

e Stacking the 1D crystal rep and using the shifted coproducts, we obtain the 2D crystal rep.

o The action of KF(2) on the vacuum |0)) is

1/2 ~1/2
Ch/ Z—q / U)és’z

KZ(2)|0) = [( 1 ] ).
(z — u)d N

@ The shifts are 1 = —1, ro = 1.
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Summary

Summary

representations — 3D crystal — shifted

coproduct
# (Shifted) QQTA

—_—
trigonometric L

deformation
~— 2D crystal — shifted

coproduct
[ 1D crystal ]

Quiver Yangian
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Future directions

Deriving vertex operator representations (C' # 1) of QQTA.

Shifted intertwiner formalism.

Quantum toroidal algebras associated with brane tilings including orientifolds.

Deriving crystal representations of quantum toroidal algebras of DE-type orbifolds.
Crystal representations and intertwiner formalism of general quantum N-toroidal algebras.

Gluing of quantum toroidal algebras.
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Appendix: Deformed WV algebra and quantum toroidal gl
[FHSSY 2010, Bershtein-Feigin-Merzon 2015, Harada-Matsuo-GN-Watanabe 2021, Kojima 2019,2021]

@ We have three horizontal representations denoted F.(u) (¢ = 1,2, 3) [Bershtein-Feigin-Merzon 2015]:

r/2  —r/2\3 3
lar, as] = TM(SH_S,O, Kr = H(Q;/Q - QZT/2)7

—K
r i=1

Ko .
exp | D a |
<r=1 7ﬂ(qc/Q —{qc /2)2 >
i _qiz/%r arz~ "
e

oo K, .
%i(z) = exp (Z ﬂairzq:
r=1r(ae’™ —ae )
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@ Deformed Wy algebra and deformed corner vertex operator algebra ¢-Y7, as, n are obtained by
tensor products of the horizontal representations of quantum toroidal gl;. [FHSSY
2010, Harada-Matsuo-GN-Watanabe 2021, Kojima 2019,2021]

o For the general ¢-Y ar v, consider Fa(@) = Fe, ® Fe, ® -+ - @ Fe,, where
#{ile; =1} = L, #{i|le; =2} = M, #{i|le; =3} =N, n=L+ M + N.

@ Actually, there is an extra Heisenberg algebra and we need to remove it. We can define a
current ¢(z) that commutes with the Heisenberg H, as

E(2) = t(2) = a(2)E(2)B(z), H, - ——

qr/2 - qc—7‘/2

00 00 —r/2
— Ky —qc Ky —
a(z) = exp —H_ 2", B(z)=exp —H,27"|.
) (,Z_l = a) ) ) (,Z_l g
@ Choose the Drinfeld current E(z) and apply the coproduct A=1).

1 qi/2 _qgl/Z

n— T 7

A _> E yz ’L 7 Y; = 1/2 71/2
ds — (g3

Ai(2) = 1®~--®1®ml(qcbi{2 g Py @ el (P qn P @ @ ol (2)72).
i—1
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o After the decoupling process, we obtain

AN 1 %Zyz i

@ Define currents
Ton(2) = t(gz " 2)t(g5 ™ 22) - 1(2)
and these are the currents of deformed corner VOA. Actually they satisfy the following
quadratic relation:
img gz ( 1 _;)( 1 _1)
q‘ 2 w q‘ 2 z q2 _ q 2 q2 _ q 2
fig |7 T;(2)Tj(w) = fia | Tj(w)Ti(z) = 21—
z 2
43 — (g3
ST - g )1 - e ((dw i
k .
XZH j 1 (1 qu) (5 <Z> fiekj+r(a3® )Ti—k(a3 " 2) Tt (g3w)
43

k=11=1

z
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o The function f; ;(2) does not depend on the ordering of the tensor products.
— relation with R-matrix (?)

e P N (i THLD [ it Y U IO

fii@) =exp | Y — (5" =05 ")Na7 4"~z T 05 ) e 2| (0 <)
m 2 _ 2 2 2
m=1 (7 —az * (g3 a3 *)

o Examples:
@ ¢-Virasoro=F3 ® F3 [Shiraishi et al. 1995]

Q ¢ WhN=F3® --®@Fz [Awata et al. 1996, Feigin-Frenkel 1996]
—_———
N
Q Wy,i(slo1)=F3 ® F3 ® F2 [Ding-Feigin 1999, Kojima 2019]
@ We can also use F(z) instead of E(z) to get the same algebra.

@ By some manipulation, we can also define a generating function of the currents which is a
g-deformation of the generalized Miura transformation defined in [Prochazka-Rapcdk 2018].
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@ g-deformed Miura operators

1 j—1 -1 i1
. o n c§ — 2 _ e 2q 2 i
R( )(Z) _ Z : H 711 43 - — 3 A(Q3 J+1Z)
n=0 j=1 a5 — 43 ”
REVR - RED = 3 (<) T(2)as ™
m=0
d
D, =z—
Zdz
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Appendix: Affine Yangian gl;

@ Generators and defining relations:

eny, fns Un (n€Z>o),
oy = hiha + hihz + haohz, 03 = hihghs,
0= ["/vawn]a
0= [em+3v en] - 3[em+27 en+1] + 3[6m+17 en+2} - [em, en+3]
+ oalem+1, en) — 02]em, ent1] — o3{em, ent,
0= [fm+3afn] - 3[fm+27fn+1] + S[fm+17fn+2] - [fﬂ’mfn-‘r?)}
+ U2[fm+17fn} - 02[fm7fn+l] + U3{fm7fn}a
0= [emafn] = Yimtn,
0= [Ym+3,€n] = 3[¥m+2, ent1] + 3[mi1, €nga] = [hm, €nys]
+ 02[m+1,€n] — 02[tm, ent1] — o3{Pm, en},
0= [Wm+3, fn] = 3[Wm+2, fat1] + 3[Wmt1, frt2] — [Yms frss]
+ UQ[wanl»fn] - 02[¢m,fn+1] + JS{wmvfn}v
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@ Boundary conditions:

[1/10, em] =0, W)la em] =0, [7/)23 em] = 2em,
[¢0afm] = 07 hblafm] = 07 [w%fm] = _2fm

@ Serre relations

Synknuﬂn%nm)knuak%maem3+ﬂ}::Oa
SYM (11 iy ms) [ s [fmas fmg+1]] = 0,
where Sym is the complete symmetrization over all indicated indices.
@ We can rewrite the modes in a compact form:
) ) )
(W= G J0=3 gk vw=1lta ) nn
=

Jj=0 Jj=0
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|
@ Modes of affine Yangian gl;:

V67 @

O
\—,

) ‘@2 @
Vig! @
Yo

N

(e

O 0 0 ©
O © @ ©
¢ €., e,

D)

(BOOO

0
T.O
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@ In the currents form, the defining relations are

Y(w)y(v) ~ Y(v)Y(u),

e(u)e(v) ~ p(u —v)e(v)e(u),
fu)f(v) ~ p(u—v)"t f(v) f(u),
Y(u)e(v) ~ p(u —v)e(v)y(u),
D) f(v) ~ p(u—v) "t f(v)i(u),

N
() (u+h1)(u+h2)(u+h3).
(u—h1)(u—h2)(u—hs)

e The function p(u) is called “structure function” and it obeys
pup(—u) = 1.

O INO
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@ MacMahon representation:
h(D) = hlxl([]) + hQJEQ(D) + hszs (D),
P(2) [A) = [Walz —u)], [A),

cm=_ Y [EEEE] meo),
OeAdd(a)

3
_ F(A—>A-0O) -
f(z)|A) = —————| A-0),
Degn(l\){ z—u— h(O) Lr 5

Wa(z) =vo(2) [[ o(z = h(@), wolz) =1+ T3,
Oea

EA—=A+D) = S Res  Wa(2),
o3 z~>u+h([])

F(A>A-O)= /= Res_ Wa(2).
03 z—u+h({)
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Appendix: Quiver Yangian

@ Defining relations:

B ()0 () = w0 () (),
P (e w) = (2 — w)el® () (2),
O (2)el® () ~ (1) P2z — w)el® (w)el®) (2),
PO ) = 7z 0) 7 O )y (2),
£ ()50 ) ~ (1) — ) 1O ) £ ),
(a) ®) (1
£)(2), SO )} ~ gy TV,

for a,b € Qp. In the above equations, ~ means the equality up to z"w™=° terms and ~ means

the equality up to z"Z%w™ and z"w™Z° terms.

€92, £ @)} = ) O w) + FOw)e ) (2),

[ (2), f O (w)} = @ () f O (w)
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— fO(w)e (2),

la| = [b] =1

otherwise.
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Appendix: Symmetries and conditions imposed on QY

@ Spectral shift:
e(z) »e(z+u), f(z)—= fz+uw), (=) =+
o Gauge-symmetry shift:
hr — by = hy + eqsign, (1),
+1 (s(I)=a, t(I)#a),
a

sign,(I) = ¢ -1 (s(I) #a, t(I) )s
0 (otherwise)

@ Vertex condition:
> hr=0, acQ,
IeQi(a)

where Q1 (a) is the subset of Q; where the vertex a € Qg is contained either in the start point
of the endpoint.
o Loop condition: ), ., hy =0, arbitrary loop L
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Appendix: Quantum Toroidal gl;

@ Generators and defining relations:

E(z)=> Epnz™, F(z)=)Y Fnz ™ K*z)=(C")Texp (Z j:Hir,ﬁ’”) ,

meZ meZ r>0
C,C*+,D,D+,
DE(z) = E(qz)D, DF(z)=F(qz)D, DK*(z)=K¥(q2)D,
DYE(2) = qE(z)D*, D'F(2) =q 'F(z)D*, [D* K*(z)] =0,
E(2)E(w) = g(z/w)E(w)E(2), F(2)F(w) = g(z/w)™ F(w)F(2),
9(C~'2/w)
9(Cz/w)
K*(CUFV2)E(w) = g(z/w)E(w)K*T(CUF)/23),
K*(CUFV22)F(w) = g(z/w) ™ F(w)K*(CHED22),

K*(2)K*(w) = KF(w)K¥(2), K~ (2)K"(w) = K (w)K~(2),
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@ Modes and Miki automorphism [Miki 2007]

o o ¢ 60 @ © 0o e ®© 0 O
e @ o:0e20 o © 0o o) ©
o o ¢ Jie'e o © 0 0/ |o oNo
SORSRSN SRshes
o0 o|ld|le o o
o0 o @ 0 ©
o0 ol\d/e o o
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Appendix: Quiver Quantum Toroidal Algebra
@ Defining relations:
KK '=K 'K, =1,
clc=cct =1,
K (2)K (w) = K (w)K;(2),
7 (2, Cw)

K; (2) j(w):mK;r(w)Kf(z),
Kﬂc%z)Ej(w):w:‘( w) B (w)KE(CF 2),
Kf(oi (w) = = (z,w) " Fy(w) KF(C *1>

Cw
(2. )] = (< )re < ) ")
(2)E;(w) = (=)= (2 w) B (w) E;

Fi(z)F(w) ( DT = (2, ) = Fy (w ) ()
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Symmetries and conditions imposed on QQTA

@ Spectral shift:
Ei(z) = Ei(az), Fi(z)— Fi(az), Kf(z) — Kii(az)
o Gauge-symmetry shift:

.
ar — ¢y = qipi e

@ Vertex condition:

H qiigni (I) =1

ITeQ1()

@ Loop condition:

HCII=1-

IcL
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Appendix: (11, 1) deformed quantum toroidal gl,,[Bourgine-Jeong 1906.01625]

o Currents: w, w' € Z,

keZ k>0

@ Defining relations: (v1,12) € Zy, v1 +v2+1v3 =0

()02 (1) = g (2/0) 5 0% ()a (2), GE(E)rE () = guw (/0) 0 () (2),
U5 ()25 (1) = Gomae(g5 2/ 0)2, (NS (2), 5 (2)ay () = Gt (2/0) 2 (0l (2),
U (g (w) = Tzl B20) o) (), g ()] = 0,

Juwr (2/W)
(2% (2), 25 ()] = Qb ,wrd (2/w) Y5 (2) = S —v5e0 (452/W) V410 (052)]-
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@ Structure functions:

(1-— qiz)%,wuui
R

gww/(z) = fww’(zil) H

i=1,2,
fww’(z) = Fww’zﬁww/v
ﬂww’ = Oww’ + 5ww/+1/1+u2 - 6ww/+l/1 - 5ww’+u27

Flow = (_1)5W(_qs)féw,wuu?,(_ql)ﬂwwul (_qz),gw,Hz

@ Quiver
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o Coproduct:
=25(2) @ 1+ Ugippe,, (457 2) @ 2 (2),

Az (2))

A(z;(2)) =25 (2) @0, 0y (a5 Vo) 1@, (a5 " 2)
AWS(2) = vl () @ut_, 0@ W),

AWG(2) = Vovgern (@5 ) @ VG e, (03 2)
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