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A brief review of CC problems

Highlight the roles of dS horizon of zero point energy
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Cosmological Implications:

Dark Energy

Dark Matter

H0 tension

 arXiv: 2201.02016, H. F.

Speculations?!



The Standard Model of Cosmology

• Ordinary Atoms:(Baryons) 5%

• Dark Matter: 26%

• Dark Energy:  69%

• Spatial Curvature ~ 0

Nobel 2011 (dark energy)

Dark Photon

⇤CDM

Planck Collaboration



Cosmological Constant Problems

A constant term, ⇤, is consistent with the Einstein Field equations:

Gµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫

Einstein added this term to obtain a static cosmological solution.

After the observation of the expansion of the Universe
by Hubble,Einstein discarded this CC term, calling it:

“the biggest blunder of his life.”

⇤CDM is working well and it seems that something like a
cosmological constant term is the source of Dark Energy.

On the other hand, in QFT vacuum carries energy.

In the semi-classical approximations where the matter fields are quantized while
gravity is a classical field, we can have the quantum contribution: h0|Tµ⌫ |0i

Gµ⌫ + ⇤b gµ⌫ = 8⇡Gh0|Tµ⌫ |0i
The e↵ective “physical” cosmological constant term is:

⇤e↵ = ⇤+ 8⇡G⇢v , ⇢v ⌘ h0|T00|0ib



The Cosmological constant problems

The Old Cosmological Constant Problem:

Why is not ⇢V very large?

h⇢i =
1

2

Z M

0
d3k

p
k2 +m2 ⇠ M4

examples:

M ⇠ me ! h⇢i ⇠ 1024 eV 4

M ⇠ TeV ! h⇢i ⇠ 1048 eV 4

M ⇠ MP ! h⇢i ⇠ 10108 eV 4

The new Cosmological Constant Problem:

Why is dark energy comparable to the current matter energy density?

⇢V ⇠ ⇢C ⇠ 10�29gr/cm3 ⇠ 10�12eV 4

Weinberg, Rev. Mod. Phys. , 1989



Some Proposals for CC Problems

1- The Quintessence:

There is an extremely light field which rolls slowly
towards its minima at � ! 1 with V ! 0.

2- Supersymmetry :

P
B,F

⇣
⇢F + ⇢B

⌘
= 0.

SUSY is not observed in Nature for E . TeV .

3- Self-tuning in Extra Dimensions:

As in RS scenario, one can have a D3 brane where the
SM fields are confined. Gravity can leak to extra dimension.

4- Anthropic Considerations:

The CC should have a value in the “Landscape” to allow
formation of gravitationally bound object like galaxies
in order for the intelligent life to form.

Weinberg has employed this type of reasoning
and concluded the existence of ⇢V . 102⇢0.

ϕ

V(ϕ)

D3-brane bulkbulk

ϕ

V(ϕ)

D3-brane bulkbulk



Troubles with hard cuto↵

The conventional approach leading to h⇢V i ⇠ M4 su↵ers from serious flaws.

1- The hard momentum cuto↵ violates underlying Lorentz invariance.
It only respects the spatial O(3) invariance.

2- It predicts a wrong equation of state for the pressure:

hpi =
1

3
h⇢i

One has to use a regularization scheme which respects
the underlying Lorentz invariance.

For example, using the dimensional regularization approach,
for a real scalar field of mass m we obtain

h⇢i = �hpi =
m4

64⇡2
ln(

m2

µ2
)

in which µ is the scale of renormalization.

J. Martin, arXiv: 1205.3365

Akhmedov, hep-th/0204048

Koksma, Prokopec, arXiv:1105.6296



The contributions from all fields (bosons and fermions) are given by

h⇢i =
X

i

ni
m4

i

64⇡2
ln(

m2
i

µ2
)

ni : the degree of freedom (polarizations) of each field.

real scalar : n = 1

massive vector : n = 3

Dirac fermion : n = �4.

Some notable conclusions:

1- The massless fields (gravitons, photons, gluons) do not contribute in ⇢v .

2- The contributions of a given field can be either positive (dS) or negative (AdS).

3- For EW scale m ⇠ 102GeV ! |h⇢V i| ⇠ (1011)4eV 4.

This leads to a hierarchy 1052 instead of the infamous 10120.

Koksma, Prokopec, arXiv:1105.6296

J. Martin, arXiv: 1205.3365



Questions of dS horizon

It is assumed that a homogenous zero point energy covers the entire spacetime.

In the presence of gravity, a positive vacuum energy possesses a dS horizon.

Denote the vacuum energy by the field with mass m by ⇢v (m) ⇠ m4.

Define the associated Hubble expansion rate by H(m):

H(m) '
m2

MP

Example: m = m(e) then H�1
(m) ⇠ 109m .

Compared to current FLRW horizon H0 ⇠ 1026m:

0

@ H�1
0

H�1
(me )

1

A
3

⇠ 1051

For a field of mass m, we require Npatches � 1 dS patches

of size H�1
(m) to cover the observable universe

Npatches ⇠
⇣H�1

(0)

H�1
m

⌘3 ⇠
⇣ m

10�2eV

⌘6

H−1
(m)

H−1
(m)

H−1
(m)H−1

(m)

H−1
(m)

 arXiv: 2201.02016, H. F.

H−1
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The cracks on cosmological constant 



Dark Photon

m�1

H�1
(m)

H�1
0

Dark Photon

m�1

H�1
(m)

H�1
0H−1
0

Correlation length

Later we show that the correlation length ⇠ is ⇠ ⇠ m�1:

⇠

H�1
(m)

⇠ m

MP
⌧ 1

Vast hierarchy of scales for heavy modes:

⇠ ⌧ H�1
(m) ⌧ H�1

0

The energy density for super Compton length scales,
i.e. the long modes with k  m:

�⇢C (m) =
1

2

Z m

0

d3k

(2⇡)3

p
k2 +m2 ⇠ 6m4

64⇡2

Comparing to the would-be background ⇢v

�⇢C (m)

⇢v (m)
⇠ 1

Another hint for the inhomogeneities of background
covered by the zero point energy.

Dark Photon

m�1

H�1
(m)

H�1
0

Dark Photon

m�1

H�1
(m)

H�1
0H−1
0

fields

H−1
0

Dark Photon

m�1

H�1
(m)

H�1
0



Light fields

Suppose we have a very light fields such that H(m) ⇠ H0.

H(m) ⇠ H0 !
m2

MP
⇠ H0 ! m ⇠ 10�2eV

The entire universe is within one dS horizon!

This also seen from our expression for Npatches

Npatches ⇠
⇣H(m)

H0

⌘3
⇠

⇣ m

10�2eV

⌘6

In the spectrum of SM, neutrino can do the job!

The universe is within one patch created by neutrino.

Neutrino is the source of observed dark energy today!!

H−1
(m)

H−1
0

 arXiv: 2201.02016, H. F.



Density Contrast

To justify our conclusion of inhomogeneities in vacuum zero point energy
here we calculate the variance and density contrast �⇢v

⇢v
.

We need to calculate �⇢2 = h⇢2i � h⇢i2.

�(x) =
1

(2⇡)3/2

Z
d3k

p
2!(k)

h
eik·x ak + e�ik·x a†k

i

The energy density is given by ⇢ ⌘ ⇢1 + ⇢2 + ⇢3:

⇢1 ⌘ �̇2

2
, ⇢2 ⌘ 1

2
�ij@i�@j�, ⇢3 ⌘ m2

2
�2

Using dimensional regularization, we obtain

h⇢1i = 1

2

Z
d3q

(2⇡)3
!(q)

2
=

m4

128⇡2
ln
⇣m2

µ2

⌘
,

h⇢2i = 1

2

Z
d3q

(2⇡)3
q2

2!(q)
=

�3m4

128⇡2
ln
⇣m2

µ2

⌘
h⇢1i = �1

3
h⇢2i = 1

4
h⇢3i .

h⇢3i = 1

2

Z
d3q

(2⇡)3
m2

2!(q)
=

4m4

128⇡2
ln
⇣m2

µ2

⌘
.



The variance in density distribution is given by �⇢2v ⌘ h⇢2v i � h⇢v i2 :

�⇢2 = h⇢21i+ h⇢22i+ h⇢23i+ 2h⇢1⇢2i+ 2h⇢1⇢3i+ 2h⇢2⇢3
�

⇣
h⇢1i2 + h⇢2i2 + h⇢3i2

⌘
� 2h⇢1ih⇢2i � 2h⇢1ih⇢3i � 2h⇢2ih⇢3i

We have

h⇢2i i = 3h⇢i i2 , i = 1, 3.

and

h⇢22i = h⇢2i2 + (2)
1

4

Z
d3q1

(2⇡)32!(q1)

d3q2
(2⇡)32!(q2)

(q1 · q2)2

= h⇢2i2 + (2⇥ 1

3
)h⇢2i2 ,

Also

h⇢1⇢2i = 1

4

Z
d3q1
(2⇡)3

d3q2
(2⇡)3

!(q1)

2

q22
2!(q2)

= h⇢1ih⇢2i .

Similarly:

h⇢2⇢3i = h⇢2ih⇢3i , h⇢1⇢3i = h⇢1ih⇢3i



Combining all, we obtain

�⇢2 = 10 h⇢i2

and
�⇢

h⇢i = ±
p
10

The background constructed purely from the
zero point energy is highly inhomogeneous.

Parts of spacetime becomes AdS.

These patches can collapse to black holes.

One can repeat these analysis for fermions.
For a Dirac fermion field we obtain

�� �⇢
h⇢i

�� =
±p

10

4

The spacetime filled purely by vacuum
zero point energy is highly inhomogeneous.



One can also calculate the variance in Tµ
µ ⌘ T .

This is a well-motivated question as Tµ
µ measures the Ricci

scalar of the spacetime: M2
PR = �Tµ

µ .

From the perfect fluid form, we have Tµ
µ = ⇢+ 3p in which

⇢ = ⇢1 + ⇢2 + ⇢3 , p = ⇢1 � ⇢2
3

� ⇢3 .

Performing the analysis as before, we obtain

�T 2 = h(Tµ
µ )2i � hTµ

µ i2 = 40h⇢i2 .

Correspondingly:

�T

T
= ±

p
10 .

Intuitively speaking, at each point in space

⇢(x) = h⇢i+ �⇢(x) = h⇢i
⇣
1±

p
10

⌘

T (x) = hT i+ �T (x) = hT i
⇣
1±

p
10

⌘



Consistent
Not Consistent

In the previous analysis we have neglected the conventional
matter and radiation energy density of the FLRW universe, ⇢F

Now, let us look at the total energy density: ⇢T = ⇢F + ⇢v

Also note that h⇢F i = ⇢F and �⇢T = �⇢v . Therefore,

�⇢T
h⇢T i

=
�⇢v

⇢F + h⇢v i
= ±

p
10

h⇢v i
⇢F + h⇢v i

.

Demanding that | �⇢T
h⇢T i | < 1, we obtain

h⇢v i <
⇣p

10� 1
⌘�1

⇢F ⇠
⇢F
2

.

To have a consistent background one requires h⇢v i . ⇢F .

H−1
(m)

H−1
0

H−1
(m)

H−1
(m)H−1

0

H−1
(m)

H−1
0

H−1
(m)

H−1
(m)H−1

0

Consistent

Inconsistent
H(m) ⌧ H0

H(m) � H0

H(m) ⌧ H0

H(m) � H0



Correlation Length

Define the connected correlation function
⌦
⇢(x)⇢(0)

↵
c
⌘

⌦
⇢(x)⇢(0)

↵
� h⇢2i

The correlation length ⇠ is defined such that

⌦
⇢(x)⇢(0)

↵
c
! e

� r
⇠ , (r ! 1) .

For the scalar field, we typically have

⌦
⇢(x)⇢(0)

↵
c
=

m4

2

⇣Z
d3q

(2⇡)32!(q)
e�iq·x

⌘2
.

The above integral is well-known in QFT:

⌦
⇢3(x)⇢3(0)

↵
c
=

m8

32⇡4

⇣K1(mr)

mr

⌘2
,

Using the asymptotic behaviour K1(x) ⇠ e�x , we obtain

⇠ ' m�1 ! ⇠ ⌧ H�1
(m)

One can not cover the entire FLRW horizon by a
vast number of uncorrelated dS patches and yet expect
them to behave as a uniform cosmological constant.

H−1
(m)

H−1
0

H−1
(m)

H−1
(m)H−1

0
ξ

ξ

Correlation length

Later we show that the correlation length ⇠ is ⇠ ⇠ m�1:

⇠

H�1
(m)

⇠
m

MP
⌧ 1

Serious hierarchy of scales for heavy modes:

⇠ ⌧ H(m) ⌧ H�1
0

The energy density for super Compton length scales,
i.e. the long modes with k  m:

�⇢C (m) =
1

2

Z m

0

d3k

(2⇡)3

p
k2 +m2 ⇠

6m4

64⇡2

Comparing to the would-be background ⇢v

�⇢C (m)

⇢v (m)
⇠ 1

Another hint for the inhomogeneities of background
covered by the zero point energy.

Dark Photon

m�1

H�1
(m)

H�1
0

Dark Photon

m�1

H�1
(m)

H�1
0H−1
0



Light Fields Heavy Fields 

Dark Photon

⇤CDM

⇤Homogeneous 

H−1
(m)

H−1
0

H−1
(m)

H−1
(m)H−1

0

H−1
(m)

H−1
0

H−1
(m)

H−1
(m)H−1

0

Inhomogeneous

Dark Photon

⇤CDM

⇤



Zero Point Energy in dS Background

The analysis of vacuum zero point energy yielding to h⇢v i ⇠ m4

have been performed in a flat background.

Question: is the result reliable in a curved background?

Answer: The combination of the Lorentz invariance and the equivalence principle
guarantees that the above result should be valid in a curved spacetime.

We examine this conclusion for a dS spacetime!

Dimensional regularization for a scalar field in a dS background:

S =

Z
ddx

p�g
h
� 1

2
@µ�@

µ�� m2

2
�2

i
.

defining the canonically normalized field � via � ⌘ a
d�2
2 � the mode function is given

by

�00
k +

h
k2 +

m2

H2⌧2
� (d � 2)2

2⌧2

i
�k = 0 .



Imposing the Minkowski (Bunch-Davies) vacuum deep inside the horizon:

�k =
1p
2k

e�ik⌧ ,

the solution of the mode function is given in terms of the Hankel function of the first
type as follows

�k (t) = (�H⌧)
d�1
2

� ⇡

4H

� 1
2 e�

⇡
2 ⌫H(1)

i⌫ (�k⌧) ,

where

⌫ ⌘
s

m2

H2
� 1 ' m

H
.

The energy density is given by

h⇢i = ⇡µ4�d e�⇡⌫Hd

8(2⇡)d�1

�Z
dd�2⌦

� Z 1

0
dx xd

h ���
d

dx
H(1)

i⌫ (x)
���
2
+ (1 +

⌫2

x2
)
���H(1)

i⌫ (x)
���
2i

The integral over the azimuthal directions is:

Z
dd�2⌦ =

2⇡(d�1)/2

�( d2 � 1
2 )

,



The final step is to perform the following integral

I ⌘
Z 1

0
xd

h ���
d

dx
H(1)
i⌫ (x)

���
2
+ (1 +

⌫2

x2
)
���H(1)

i⌫ (x)
���
2i

Fortunately the above integral can be taken exactly:

I =
(1� d + 2i⌫)

4⇡5/2 sinh2(⌫⇡)
�(�i⌫ � 1

2
+

d

2
) �(i⌫ +

1

2
+

d

2
) �(

d

2
� 1

2
) �(�d

2
) ⇥ C

where C is given by

C ⌘ 2 cosh(⌫⇡) cos(
⇡(2i⌫ � d)

2
) cos(

⇡(2i⌫ + d)

2
)

� cos(
⇡d

2
)


cos(

⇡(2i⌫ + d)

2
) + cos(

⇡(2i⌫ � d)

2
)

�

Expanding d = 4� ✏ in h⇢i, we obtaining

h⇢i = H4

2048⇡2
(4⌫2 + 1)(4⌫2 + 9)

h
�4

✏
+ 2 ln

✓
H2

4⇡µ2

◆
+�+O(✏)

i
,

where �(⌫) ! 4 ln(⌫) for large ⌫ limit.



Expanding h⇢i to leading order in ✏ and taking ⌫ ' m
H � 1, we obtain

h⇢i = �⌫4H4

64⇡2


2

✏
� ln

✓
H2⌫2

4⇡µ2

◆
+ ...

�
,

Performing the regularization we obtain the original result:

h⇢i = m4

64⇡2
ln

✓
m2

µ2

◆

Like in flat background, the correlation length is ⇠ ⇠ m�1.

The energy of long modes beyond the correlation length:

�⇢C ' H4

16⇡

⌫4

⇡
' m4

16⇡2
.

! �⇢C
h⇢v i

⇠ 1

The background is highly inhomogeneous!



Cosmological Implications

The heavy fields with h⇢v i � ⇢F can not contribute to the observed dark energy
today. Question: What roles in cosmology their vacuum energy density play?

Stage 1: Early expansion history when ⇢F � ⇢v so H�1
F ⌧ H�1

(m), then ⇢v is irrelevant.

Stage 2: ⇢F decreases until ⇢F ⇠ ⇢v and H�1
F ⇠ H�1

(m) so ⇢v becomes relevant.

Stage 3: ⇢F falls o↵ rapidly and ⇢v � ⇢F . The regions filled with the zero point
energy develop strong inhomogeneities while falling into the FLRW Hubble horizon. It
takes time of about 1/H(m) for each dS horizon to enter the FLRW horizon.

As more and more of dS patches enter the FLRW horizon the mass inside the dS
patches inside the FLRW Hubble radius collapse to form black holes.

H−1
(m)

H−1
(m)

H−1
(m)H−1

F

H−1
F

ξ

H−1
(m)

H−1
F

H−1
(m)

H−1
(m)

H−1
(m)H−1

F

H−1
F

ξ

H−1
(m)

H−1
F

H−1
(m)

H−1
(m)

H−1
(m)H−1

F

H−1
F

ξ

H−1
(m)

H−1
F

Stage 1 Stage 2 Stage 3



Once the masses inside these patches collapse into black holes, they behave as
dark matter or the seeds of dark matter.

We do not have a deep understanding of the mechanism of collapse for small dS
patches with H�1

(m) ⌧ H�1
F .

Phenomenological Fluid Description

We assume to have two fluid components: ⇢F , ⇢̃m and ⇢T = ⇢F + ⇢̃m with:

⇢̇F + 3H(1 + wF )⇢F = 0, ˙̃⇢m + 3H(1 + wm)⇢̃m = 0

The expansion of FLRW background is given by

⇢T (t) =
h
⇢m

⇣ a(t)

a(tm)

⌘�3(1+wm)
+ ⇢F (tm)

⇣ a(t)

a(tm)

⌘�3(1+wF )
i

in which tm is the time when ⇢F (tm) ⇠ ⇢m. Alternatively:

⇢T (t) = ⇢F (tm)
⇣ a(t)

a(tm)

⌘�3(1+wF )
h
1 + 0

⇣ a(t)

a(tm)

⌘3(wF�wm)i

where ⇢̃m(tm) ⌘ 0⇢F (tm)

H−1
(m)

H−1
(m)

H−1
(m)H−1

(m)

H−1
(m)

H−1
0



Selection Rules:

At each stage in cosmic epoch, only field with H(m) ⇠ HF can be the source of D. E.

Fields which are much lighter, H(m) ⌧ HF , are irrelevant in cosmic expansion.

Heavy fields with H(m) � HF can contribute as the seeds of dark matter.

Solution to CC problems:

Old c.c problem: Why is not ⇢v large?

New c.c problem: Why it becomes comparable to the current matter energy density?

Answer: There is a field in the SM field content, the lightest neutrino with ⇢(⌫) ⇠ m4
⌫

which happens to have a mass at the same order as ⇢
1/4
F0 ' ⇢

1/4
c ⇠ (10�3eV)4.

The entire FLRW universe is currently within a single patch of the lightest neutrino
with the horizon radius H�1

(⌫) .

Dark energy survives in future for roughly H�1
(⌫) ⇠ H�1

0 ⇠ 1010 years.

H−1
0

H−1
(ν)

H−1
(ν)

H−1
(ν)

H−1
F

H−1
0

H−1
(ν)

H−1
(ν)

H−1
(ν)

H−1
F

Current time 10 billion years later !

 arXiv: 2201.02016, H. F.



H0 tension

The proposal predicts multiple transient period of dark energy, early and late time !

This happens when m ⇠ T for a field in SM spectrum for 1-2 e-folds expansion.

This proposal can resolve the H0 tension problem.

As both ⇤ and CDM emerges dynamically, we may call this proposal
emergent ⇤CDM or e⇤CDM for short!

t0

H(t)

H0

HΛCDM
0

tΛ
tCMB t1 t2

ΛCDM
eΛCDM

 arXiv: 2201.02016, H. F.



The Origin of Supermassive Black Holes?

The collapse of zero point energy may be the origin of the
supermassive black holes (SMBHs)!

After the time when T ⇠ m when �⇢
⇢ ⇠ 1, the mass

inside the (A)dS horizon may collapse to form BHs:

MB(m) =
4⇡

3
⇢v (m)H�3

(m) ⇠ 102
M3

P

m2

Surprisingly, the above formula is the same as the Chandrasekhar mass formula!!

For various fields in SM we have:

mt ' 170GeV ! MB(mt) ' 4⇥ 10�5M�

mW ' 80GeV ! MB(W ) ' 2⇥ 10�4M�

m⌧ ' 1.7GeV ! MB(⌧) ' 0.4⇥M�

mµ ' 105MeV ! MB(µ) ' 112⇥M�

me ' 1MeV ! MB(e) ' 5⇥ 106M�

H−1
(m)

H−1
(m)

H−1
(m)H−1

F

H−1
F

ξ

H−1
(m)

H−1
F



Expansion of Bubble of Zero Energy

We can present the toy model of expansion of bubbles of
zero point energy to capture our results.

We can imagine that bubbles of zero point energy
are pupped up from the vacuum and expand in the
ambient cosmological background.

This is somewhat similar to the question of expansion of
bubbles of true vacuum in the false vacuum in the
mechanism of false vacuum decay.

The interior and the exterior of the bubble are given by two FLRW metrics:

ds2± = dt± + a±(t±)2(dr2± + r2±d⌦2) ,

Separated at the boundary by an expansing sphere of radius R(⌧)

ds2 = �d⌧2 + R(⌧)2d⌦2 ,

We imagine that the surface of wall has the energy momentum tensor
Sab = diag(��,�,�).

The unit normal nµ to the wall is

n±µ = (�a±r 0± , a±t0±, 0, 0) ,
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H−1
v
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−

nμ



Imposing the Israel matching conditions we obtain ( dRd⌧ )
2 = A2R2 � 1

in which

A2 =
�2

16M4
P

+
H2

� + H2
+

2
+

M4
P

�2

�
H2

+ � H2
�
�2

.

case 1: H�1
(m) < H�1

F

This is the case when the vacuum bubbles are (deep)
inside the FLRW horizon. Typically this is the case
where the field is massive, i.e. m > T .

case 2: H�1
(m) � H�1

F

This is the case where the FLRW horizon is deep
inside the vacuum bubble and the universe expends.
This corresponds to light fields, m ⌧ T .
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Consider the case H�1
(m) � H�1

F :

dR

dt�
' 1 + R H�

Using the energy conservation equation, one obtains

H� = H(m) coth
�H(m)t�

�

�

We see that as t� ! 1, H� ! H(m).

Correspondingly, for large t�

R ' eH(m)t�

H(m)
, (H(m)t� > 1)

and

t� ' 1

H(m)
ln
�
RH(m)

�

Interestingly, one obtains

R ' 1

H(m)

⇣ HF

2H(m)

⌘� 2
3(1+wF ) / aF

In other words, the radius of the bubble expands as the
FLRW scale factor in the absence of DE.
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Open Questions and Discussions

1- How the mechanism of collapse for the (A)dS patches of heavy fields inside the
FLRW horizon works?

This is crucial for the understanding of dark matter.

2- The value of renormalization scale µ?

To solve the cosmological constant problems, we assumed that µ > m⌫ > eV.
Another option may be simply µ ⇠ MEW ⇠ 102GeV.

If µ ⌧ m⌫ , then one needs a field of mass m ⇠ 10�3eV in beyond SM sector to
address the cosmological constant problems. Axion?

Works of Unruh and collaborators:

arXiv:1703.00543, arXiv:1805.12293, arXiv:1904.08599.

They have questioned the assumption of the homogeneity of the spacetime in the
presence of the vacuum zero point energy. It was concluded that a uniform
cosmological constant can not cover the large scale spacetime and the local spacetime
is very inhomogeneous as in Wheeler’s spacetime foam.



Conclusions

We have revisited the quantum cosmological constant problems.

As already known in the literature, the contribution of each field to CC is like m4.

We highlighted the important roles played by the dS horizon associated with the
vacuum zero point energy. It was argued that only fields which have dS horizon
comparable to the FLRW horizon at that epoch can contribute to dark energy:
the dark energy selection rules.

The proposal solves the old and new cosmological constant problems by noting that
there exists a field in the SM spectrum, the (lightest) neutrino field, which happens to
have a mass comparable to the photon temperature.

The spacetime created purely from the zero point energy is highly inhomogeneous. To
have a stable cosmological background we require a classical source of energy not
much smaller than dark energy.

Both dark energy and dark matter emerges dynamically in this setup so we have the
e⇤CDM setup instead of ⇤CDM.

The e⇤CDM proposal predicts multiple transient periods of dark energy which yield
to a higher value of H0. This can resolve the H0 tension problem.



Thank You 
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