F-theory GUTs

Johanna Knapp

IPMU

May 25, 2010

Outline

What is F-theory?

F-theory GUTs and local models

Why this is not the whole story

F–theory GUTs and local models

Why this is not the whole story 000

F-theory Facts I

- F-theory is type IIB string theory (with D-branes) with non-constant string coupling. [Vafa '96]
 - The complexified string coupling constant is given by the axio-dilaton:

$$au = C_0 + i e^{\phi}$$
 $g_s = e^{\phi}$

- In F-theory the back reaction of the *D*7 branes on the geometry is taken into account.
- F-theory is non-perturbative.
 - There is no world sheet formulation of F-theory.

F-theory GUTs and local models

Why this is not the whole story 000

F-theory Facts II

 For IIB to be invariant under S-duality τ has to transform under the S-duality group SL(2, Z):

$$au o rac{\mathsf{a} au + \mathsf{b}}{\mathsf{c} au + \mathsf{d}}$$

- $a, b, c, d \in \mathbb{Z}$, ad bc = 1
- SL(2, ℤ) is the modular group of a two-torus T².
- au can be viewed as the complex structure of a torus.
- We can geometrize the complexified string coupling.
 - IIB with varying coupling τ ⇔ 'F-theory' on an elliptically fibered Calabi-Yau fourfold

F-theory GUTs and local models

Why this is not the whole story 000

Geometric Picture

• F-theory on elliptically fibered CY_4 :

• What happens at the loci where the torus fiber degenerates?

F–theory GUTs and local models

Why this is not the whole story 000

Elliptic Fibration

• An elliptic fibration is given by a Weierstrass equation:

$$y^2 = x^3 + f(y_i)xz^3 + g(y_i)z^6$$

• (x, y, z)...coords. on T^2 -fiber, y_i ...coords. in base

• The torus degenerates at the zeros of the discriminant Δ:

$$\Delta = 4f^3 + 27g^2$$

• The singularity structures of the elliptic fiber at the degeneration loci have been classified.

[Kodaira '63][Tate '75][Bershadsky et al '96][Katz,Vafa '96]

F-theory GUTs and local models

Why this is not the whole story 000

Singular Fibers

- The degeneration loci S of the elliptic fiber in the base are the positions of (p, q) 7-branes
 - When (p, q) 7-branes collide there will be enhanced gauge symmetry on the worldvolume.
 - Gauge groups correspond to singularities of the elliptic fiber.
 - ADE Lie groups.
- Depending on the singularity type (p, q) 7-branes have an interpretation in IIB:
 - A_n: D7 branes with SU(n) gauge symmetry
 - D_n : D7 branes and O7 planes with SO(2n) gauge symmetry
 - *E*_{6,7,8}: no IIB interpretation
- F-theory makes it possible to realize non-abelian gauge groups.
 - This is essential for constructing GUTs in string theory.

F-theory GUTs and local models •000 Why this is not the whole story 000

F-theory GUTs

• One can realize GUT models along *S* where the elliptic fiber degenerates.

[Donagi, Wijnholt '08][Beasley, Heckman, Vafa '08]

- The GUT brane S wraps a divisor in the three-dimensional base B.
 - The GUTs group (typically SU(5) or SO(10)) is determined by how the elliptic fiber degenerates.
- Decoupling limit
 - Decoupling of gravity
 - This is possible if *S* is a del Pezzo surface.
 - Then the theory can be described by the SUSY gauge theory on the world volume of $S. \Rightarrow \text{local model}$

F-theory GUTs and local models $0 \bullet 00$

Why this is not the whole story 000

Matter Curves

- Chiral matter arises at order 1 enhancements of the GUT singularity.
- Geometrically matter is localized on curves Σ in S where S intersects with a further U(1) 7-brane.

- For an SO(10) GUTs there are the following enhancements:
 - *E*₆: 16 matter curves
 - SO(12): 10 matter curves

F-theory GUTs and local models ○○●○ Why this is not the whole story 000

Yukawa couplings

- Yukawa couplings arise at order 2 enhancements of the GUT singularity.
- Geometrically this corresponds to triple intersections of the GUT brane with further 7-branes.

- For an SO(10) GUTs there are the following enhancements:
 - E7: 16 16 10 Yukawas
 - *SO*(14): 10 10 1 Yukawas not really necessary for a minimal *SO*(10) GUT

F-theory GUTs and local models $000 \bullet$

Why this is not the whole story 000

Phenomenological Features

- For *SU*(5) GUTs many details on phenomenology have been worked out.
 - Break to the Standard Model gauge group by *U*(1) (hypercharge) flux:
 - \Rightarrow This solves the doublet-triplet splitting problem.
 - no μ -problem, no dimension 4 proton decay operators
 - SUSY breaking, neutrino masses, flavor hierarchy from instantons.
 - . . .
- *SO*(10) models cannot be broken directly to the Standard Model.
 - First break to $SU(5) \times U(1)$ (flipped SU(5)).
 - \Rightarrow no doublet-triplet splitting problem
 - No problem with proton decay up to dimension 6 operators.
 - ...

What's nice about local models?

- Local F-theory GUTs elegantly solve many problems GUT models usually have.
- In the local model there are not many parameters which can be adjusted.
 - Matching one quantity with experimental results fixes many others.
 - The numbers match very well with experimental data (e.g. neutrino masses).
- BUT...

F-theory GUTs and local models

Why this is not the whole story $\circ \bullet \circ$

What's missing?

- The GUT model has to be embedded into a consistent string compactification.
 - The local geometry has to 'fit' into a Calabi-Yau fourfold.
 - One should not get too many exotics or a hidden sector that is too large.
 - One has to worry about moduli stabilization.
 - One has to worry about global consistency constraints such as tadpole cancellation.
 - The decoupling limit must be realized explicitly.

F-theory GUTs and local models

Why this is not the whole story 000

Outline of part 2

- Construction of global models.
 - Toric geometry
 - Construction of the base manifold B
 - Identification of GUT divisors
 - Existence of the decoupling limit
 - Construction of the elliptically fibered fourfold
- *SO*(10) GUTs
 - Realization in toric geometry
 - Spectral cover
- Some phenomenology results
 - Split spectral cover to generate chiral matter on the 10 curves
 - Flipped SU(5) models
 - Three generation models

Global SO(10) F-theory GUTs

Johanna Knapp

joint work with C.-M. Chen, M. Kreuzer, C. Mayrhofer: arXiv:1005.xxxx[hep-th]

IPMU

May 25, 2010

Outline

Overview

Construction of Global Models

Toric Geometry Base Manifolds GUT branes Fourfolds

SO(10) Models SO(10) Weierstrass model Spectral Cover

Conclusions

Construction of Global Models

SO(10) Models

Conclusions 00

Setup

- Construction of compact CY fourfolds which are suitable for F-theory model building.
 - Fourfolds are complete intersections in a six-dimensional toric ambient space: [Blumenhagen et al. '09][Grimm et al. '09]

$$P_B(y_i, w) = 0 \qquad P_W(x, y, z, y_i, w) = 0$$

⇒ P_B describes the geometry of the base manifold B: (y_i, w)... base coordinates ⇒ P_W describes the elliptic fibration: (x, y, z)... fiber coordinates

- \Rightarrow w = 0 describes the GUT divisor S.
- The Weierstrass model in Tate form:

$$P_W = x^3 - y^2 + xyza_1 + x^2z^2a_2 + yz^3a_3 + xz^4a_4 + z^6a_6$$

 \Rightarrow The $a_n(y_i, w)$ are sections of K_B^{-n} .

SO(10) Models

Conclusions 00

Goals – Geometry

- Systematically construct fourfold geometries.
- Use toric geometry as a tool.
- First construct a 3-dimensional non-CY base B:
 - Point/curve blowups in Fano threefolds
- Identify candidates for GUT divisors S in B:
 - del Pezzo
 - Decoupling limit
- Make an elliptic fibration over the base *B* that is a CY fourfold.
- This talk: focus on the geometric aspects

SO(10) Models 000 000000 Conclusions 00

Goals – Model building

- Construct *SO*(10) F-theory GUTs on our geometries.
 - Construct an SO(10) Weierstrass model in toric geometry.
 - Describe matter curves and fluxes using the spectral cover construction
- Use a split spectral cover to get chiral matter on the **10** curves.
 - new degrees of freedom to adjust to get three generations
 - Generate Higgs from chiral matter on 10 curves
- Use abelian fluxes to break to flipped SU(5).
- Discuss examples of three-generation models.

SO(10) Models 000 000000 Conclusions 00

Toric Geometry I

- Toric geometry encodes the geometry of a (toric) manifold in the combinatorics of lattice polytopes.
- A toric variety X of dimension n is defined as:

$$X = (\mathbb{C}^r - Z)/((\mathbb{C}^*)^{r-n} \times G)$$

- $(\mathbb{C}^*)^{r-n}$ acts by coordinate-wise multiplication.
- Z is an exceptional set encoding which of the coordinates in \mathbb{C}^r cannot vanish simultaneously.
- G is the action of a discrete group (will not play a role here).
- E.g. CP²:
 - $(z_1, z_2, z_3) \sim (\lambda z_1, \lambda z_2, \lambda z_3), \ \lambda \in \mathbb{C}^*, \ Z = \{z_1 = z_2 = z_3 = 0\}$

$$\mathbb{CP}^2 = (\mathbb{C}^3 - \{z_1 = z_2 = z_3 = 0\})/((z_1, z_2, z_3) \sim (\lambda z_1, \lambda z_2, \lambda z_3))$$

SO(10) Models 000 000000 Conclusions 00

Toric Geometry II

- The information about the geometry is encoded in dual pairs of cones and (reflexive) lattice polytopes.
- N–lattice
 - Polytope $\Delta^{\circ} \subseteq N$, Points $y_i \in N$, Vertices $v_i \in N$, dimN = n.
 - Vertices encode information about coordinates z_i and divisors
 D_i = {z_i = 0}.
 - Encode homogeneous weights $\vec{q} = (q_1, \dots, q_r)$ in r n linear relations

$$\sum_{i=1}^r q_i v_i = 0$$

SO(10) Models 000 000000 Conclusions 00

Toric geometry III

- M-lattice
 - Polytope $\Delta \subseteq M$, Points $y_i \in M$.
 - Points encode information about monomials and hypersurface equations.
 - Regular monomials are:

$$\chi^m = \prod_{j=1}^r z_j^{\langle m, v_j \rangle + 1} \quad m \in M, v_j \in N$$

- CY Hypersurface in toric space: $f = \sum_{m} c_m \chi^m$ Hypersurfaces are divisors in X.
- Δ and Δ° are dual (polar) polytopes:

$$x_i \in N, y_j \in M : \langle x_i, y_j \rangle \geq -1$$

Construction of Global Models OOOOO OOO OOOO OOOO

SO(10) Models 000 000000 Conclusions 00

Example: \mathbb{CP}^2

• N-lattice

- Weights: $\vec{q} = (1, 1, 1) \Leftrightarrow (z_1, z_2, z_3) \sim (\lambda z_1, \lambda z_2, \lambda z_3)$
- Relations: $\sum_i q_i v_i = 0$
- Divisors:

$$\begin{array}{cccc} z_1 & z_2 & z_3 \\ 1 & 1 & 1 \\ D & D & D \end{array}$$

• M-lattice

• Monomials:

$$z_j^{\langle m,v_j
angle+1}$$
 :

$$\begin{array}{c} z_1^3, z_2^3, z_3^3, \\ z_1^2 z_2, z_1^2 z_3, z_2^2 z_3, \\ z_1 z_2^2, z_1 z_3^2, z_2 z_3^2, z_1 z_2 z_3 \end{array}$$

Construction of Global Models

SO(10) Models

Conclusions 00

Complete intersections

• Generalization of the construction:

$$\begin{split} \Delta &= \Delta_1 + \ldots + \Delta_r & \Delta^\circ &= \langle \nabla_1, \ldots, \nabla_r \rangle_{\text{conv}} \\ & (\nabla_n, \Delta_m) \geq -\delta_{nm} \\ \nabla^\circ &= \langle \Delta_1, \ldots, \Delta_r \rangle_{\text{conv}} & \nabla &= \nabla_1 + \ldots + \nabla_r \end{split}$$

- Minkowski sum: $\Delta = \Delta_1 + \ldots + \Delta_r$
- nef partition: $\langle \nabla_1, \ldots \rangle_{conv}$ ($\langle \ldots \rangle_{conv}$: convex hull)
- Each Δ_k yields a hypersurface equation for the complete intersection.
- Analyze toric data with PALP.
 - Input: weight systems or vertices in M/N–lattice
 - Output: Polytope data, Hodge numbers, nef-partitions,...

[Kreuzer,Skarke '02]

Construction of Global Models

SO(10) Models

Conclusions 00

Blowups in Fano threefolds

- Construct non-CY threefold base B as point/curve blowups of a Fano threefold which is a hypersurface of some toric space.
 - Fanos themselves are not good base manifolds because there can be no decoupling limit. [Cordova '09]
- Starting point: Fano threefolds with one Kähler class

$$\mathbb{P}^{4}[d] = \{P_{d}(y_{1}, \ldots, y_{5}) = 0 | [y_{i} : \ldots : y_{5}] \in \mathbb{P}^{4}\} \qquad d = 2, 3, 4, d = 2, 3, d = 2, 3, 4, d = 2, 3, d = 2, d = 2,$$

- Blowups:
 - More Kähler moduli \Leftrightarrow "size" of blowup
 - New exceptional divisors

Construction of Global Models

SO(10) Models

Conclusions 00

Weight matrices

- Blowups can be encoded in the weight matrices describing the toric space X:
 - \mathbb{CP}^4 :

• Curve blowup:

	У1	У2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	w	\sum
w ₁	1	1	1	1	1	0	5
w2	0	0	0	1	1	1	3
	J_1					J_2	

• Point blowup:

Construction of Global Models

SO(10) Models

Conclusions 00

Hypersurfaces

- The weight systems only define the ambient space.
- The hypersurface *B* is specified by a divisor *B*.
- Example: Hypersurface of degree (4,2) in curve blowup in \mathbb{P}^4 [Blumenhagen et al. '09]
 - Class of *B*: [*B*] = 4*J*₁ + 2*J*₂
 - How to see the curve blowup:
 - 1. Tune complex structure in $\mathbb{P}^4[4] = p_4(y_1, \dots, y_5)$:

$$P = f_4 + y_4 f_3 + y_5 g_3 + y_4^2 f_2 + y_5^2 g_2 + y_4 y_5 h_2$$

 $\Rightarrow \text{ singular curve at } (0,0,0,y_4,y_5) \sim \lambda(0,0,0,y_4,y_5).$

2. Blow up by introducing a new coordinate w:

$$\tilde{P} = w^2 f_4 + w y_4 f_3 + w y_5 g_3 + y_4^2 f_2 + y_5^2 g_2 + y_4 y_5 h_2$$

 $\Rightarrow \text{ new weight vector } (y_1, y_2, y_3, y_4, y_5, w) \sim (y_1, y_2, y_3, \lambda y_4, \lambda y_5, \lambda w).$ $\Rightarrow w = 0 \text{ defines a } dP_7.$

Construction of Global Models

SO(10) Models 000 000000 Conclusions 00

GUT divisors

- Having specified a base *B* we must look for a GUT divisor *S* inside *B*.
- The GUT divisor should be del Pezzo. [Donagi, Wijnholt '08][BHV '08]
 - Del Pezzos are two-dimensonal Fanos.
 - They are P¹ × P¹ and dP_n, n = 0,..., 8 which is P² with up to eight points blown up.
- The GUT divisor should satisfy a decoupling limit.
 - physical: the volume of *S* should stay finite when the volume of *B* goes to infinity.
 - mathematical: the volume of *S* goes to 0 whereas the volume of *B* does not

Construction of Global Models

SO(10) Models

Conclusions 00

Del Pezzo divisors

- Identify a del Pezzo by its topological data.
 - Chern class of S in B:

$$c(S) = \frac{\prod_i (1+D_i)}{(1+B)(1+S)}$$

$$\int_{S} c_1(S)^2 = 9 - n \qquad \int_{S} c_2(S) = n + 3 \qquad \Rightarrow \qquad \chi_h = \int_{S} \operatorname{Td}(S) = 1,$$

• Integrals of $c_1(S)$ over all torically induced curves on S have to be positive:

$$D_i \cdot S \cdot c_1(S) > 0$$
 $D_i \neq S$ $\forall D_i \cdot S \neq \emptyset$.

 Input data: Divisor classes, exceptional set (Stanley-Reisner ideal), intersection ring [Kreuzer,Walliser unpublished]

Construction of Global Models

SO(10) Models 000 000000 Conclusions 00

Decoupling Limit

- Calculate the volumes of *B* and *S* explicitly.
 - Find a basis *K_i* of the Kähler cone such that the Kähler form *J* can be decomposed as:

$$J=\sum_i r_i K_i \quad r_i>0$$

• Volumes of *B* and *S*:

$$\operatorname{Vol}(B) = J^3 \quad \operatorname{Vol}(S) = S \cdot J^2$$

- Condition for the decoupling limit: physical: Vol(S) is independent of at least one of the r_i mathematical: tune parameters to get $Vol(S) \rightarrow 0$ while still keeping non-zero terms in Vol(B)
- Input data: previous data+Mori cone (dual of the Kähler cone)

Construction of Global Models

SO(10) Models

Conclusions 00

CY fourfold

- Construct a Calabi–Yau fourfold by fibering a torus CP₁₂₃[6] over B.
 - Torus coordinates x, y transform as sections of K_B^{-2} , K_B^{-3} .
 - The weight system of the torus is:

$$\begin{array}{c|cccc} y & x & z & \sum \\ \hline 3 & 2 & 1 & 6 \end{array}$$

- The data of the (6d) ambient space is encoded in the combined weight system of the base and the torus.
- Since the fourfold is a complete intersection we have to specify a nef-partition that is compatible with the elliptic fibration.

Construction of Global Models

SO(10) Models

Conclusions 00

Example

• Base: blowup of one curve and one point in $\mathbb{P}^{4}[3]$:

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	<i>y</i> 6	У7	Σ	deg
w ₁	1	1	1	1	1	0	0	5	3
w2	0	0	0	1	1	1	0	3	2
w ₃	1	0	0	0	0	0	1	2	1

• The two exceptional divisors are *dP*₃ and *dP*₄ and satisfy the physical decoupling limit.

• Fourfold:

	у	x	z	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	У6	У7	\sum
wo	3	2	1	0	0	0	0	0	0	0	6
w ₁	6	4	0	1	1	1	1	1	0	0	15
w2	3	2	0	0	0	0	1	1	1	0	8
w3	3	2	0	1	0	0	0	0	0	1	7

 Use PALP to list all possible nef-partitions – one gives a Weierstrass model.

 $\begin{array}{c} \text{Construction of Global Models} \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \\ \circ \circ \circ \\ \circ \\$

SO(10) Models

Conclusions 00

Weierstrass model

• Using the toric construction we can explicitly compute the Weierstrass equation for a given geometry:

$$P_W = x^3 - y^2 + xyza_1 + x^2z^2a_2 + yz^3a_3 + xz^4a_4 + z^6a_6$$

- We get explicit expressions for the *a_i* in terms of monomials in the base coordinates *y_i*.
- Using the toric data we can compute the Hodge numbers and the Euler number of the CY fourfold Y.
 - Works if there are no terminal singularities.
 - This data is needed for computing the D3 tadpole cancellation condition:

$$N_{D3} = \frac{\chi(Y)}{24} - \frac{1}{2} \int_Y G \wedge G$$

Construction of Global Models

SO(10) Models

Conclusions 00

Results

- We have considered all weight systems which describe up to three point and curve blowups in P⁴.
 - We have looked at hypersurfaces of deg_i < ∑ weights_i ⇔ blowups inside Fano threefolds.
 - 241 base geometries
- 208 of the base manifolds had at least one del Pezzo divisor with a decoupling limit
- For 86 models we could construct a CY fourfold Y which is described torically by reflexive polytopes.
 - Whenever this works the base is almost Fano.
 ⇒ algebraic threefold which has a non-trivial anti-canonical bundle with at least one non-zero section

Construction of Global Models

SO(10) Models ●○○ ○○○○○○ Conclusions 00

Status

- So far:
 - explicit toric construction of the base B and the fourfold Y
 - identification of possible GUT divisors S
- Next:
 - construct *SO*(10) models
 - identify matter curves and Yukawa couplings
 - construct fluxes

SO(10) Models ○●○ ○○○○○ Conclusions 00

SO(10) Weierstrass model

• To get an *SO*(10) GUT group the *a_i* in the Weierstrass equation have to factorize:

$$a_1 = b_5 w^1$$
 $a_2 = b_4 w^1$ $a_3 = b_3 w^2$ $a_4 = b_2 w^3$ $a_6 = b_0 w^5$

- Matter curves:
 - $b_3 = 0$ **10** matter (*SO*(12) enhancement)
 - $b_4 = 0$ **16** matter (E_6 enhancement)
- Yukawa couplings
 - $b_3 = 0 \cap b_4 = 0$ E_7 Yukawas: **16 16 10**
 - $b_2^2 4b_0b_4 = 0 \cap b_3 = 0$ SO(14) Yukawas: 10101

SO(10) Models ○○● ○○○○○ Conclusions 00

Toric realization

- The SO(10) model can be realized in toric geometry.
- Remember: The points in the M-lattice correspond to monomials in the Weierstrass equation.
 - The a_n are coefficients of z^n .
- Remove all points on the M-lattice where the corresponding monomials do not satisfy the SO(10) factorization condition.
- As a consequence one gets additional vertices in the dual N-lattice.
 - These correspond to new exceptional divisors which one obtains from resolving the SO(10) singularity.
- The equations for the matter curves and Yukawas can be given explicitly.

SO(10) Models ○○○ ●○○○○○ Conclusions 00

Spectral cover I

- In the heterotic string the spectral cover is used to describe stable bundles on elliptically fibered threefolds.
- In F-theory the spectral cover describes bundles and fluxes in the vicinity of the GUT brane. [Donagi,Wijnholt '09]
 - Also for models without a heterotic dual the spectral cover seems to be valid beyond the local picture. [Blumenhagen et al. '09]
- For SO(10) models we must look at an SU(4) spectral cover.
- The spectral cover is a divisor on an auxiliary compact non-CY threefold X
 whose base is the GUT brane S:

 $\bar{X} = \mathbb{P}(\mathcal{O}_S \oplus K_S)$

SO(10) Models ○○○ ○●○○○○ Conclusions 00

Spectral Cover II

- The base S is the vanishing locus of the section σ in \bar{X} .
 - One can show that: $\sigma \cdot \sigma = -\sigma \cdot c_1(S)$
- The spectral cover C_V is associated to the fundamental representation V of G = SU(4) is:

$$C_V: b_0s^4 + b_2s^2 + b_3s + b_4$$

where

$$b_i \sim \eta - i c_1(S) \sim (6 - i)c_1(S) + c_1(\mathcal{N}_{S|B})$$
 $i = 0, \dots, 4$

• Defining a projection $\pi_C : C_V \to S$ the class of C_V is:

$$[C_V] = 4\sigma + \pi_C \eta$$

SO(10) Models ○○○ ○○●○○○ Conclusions 00

Spectral Cover III

- Matter curves are intersections of the spectral cover with σ .
- Fluxes are encoded in a non-trivial spectral line bundle \mathcal{N} on C_V that gives rise to a rank 4 bundle $V = \pi_C \mathcal{N}$ on S.
 - 16 matter curves:

$$\Sigma_{16} = \mathit{C}_{\mathit{V}} \cap \sigma$$

• Flux γ :

$$\gamma = \frac{1}{4}\pi_C^* c_1(V) + \gamma_u \quad \gamma_u = 4[\Sigma_V] - \pi_C^*(\eta - nc_1(S))$$

• Chiral Matter:

$$n_{16} = -\eta \cdot (\eta - 4c_1(S))$$

Construction of Global Models

SO(10) Models ○○○ ○○○●○○ Conclusions 00

10 curves

• **10** curves are obtained from a $\wedge^2 V$ spectral cover:

$$\Sigma_{10} = C_{\wedge^2 V} \cap \sigma$$

- Problem: There is no chiral matter on the 10 curves. [Hayashi et al. 08]
 - For phenomenological reasons the electroweak Higgs should come from the **10** curves.
 - We need extra degrees of freedom to build three generation models.
- Proposed solution: split spectral cover:
 - Factorize: $C_V \rightarrow C^{(1)} + C^{(3)}$ $\Rightarrow S(U(3) \times U(1))$ spectral cover

SO(10) Models ○○○ ○○○○●○ Conclusions 00

Split spectral cover

• From the split spectral cover we get two types of **16** matter curves:

$$\Sigma_a = C^{(1)} \cap \sigma \quad \Sigma_b = C^{(3)} \cap \sigma$$

- The spectral cover for the 10 curves gets mixed contributions from $C^{(1)}$ and $C^{(3)}$.
- By turning on different fluxes on Σ_a and Σ_b we can generate chiral matter on the **10** curves.
- Using the split spectral cover, we worked out several SO(10) models with three generations.

Construction of Global Models

SO(10) Models ○○○ ○○○○○● Conclusions 00

Further results

- Flipped *SU*(5):
 - The SO(10) GUT group cannot be broken directly to the Standard Model gauge group by U(1) flux. [BHV '08]
 - We can use U(1) flux to break SO(10) to $SU(5) \times U(1)$.
 - We show that we can get three generation models and realistic Yukawa couplings.
- Tadpole cancellation:
 - The D3 tadpole cancellation condition requires to know the Euler number of the CY fourfold.
 - We compare the Euler numbers computed from the fourfold geometry with a conjectured formula. [Blumenhagen et al. '09]
 - For some examples we find a discrepancy for the Euler numbers computed by the two methods.

Construction of Global Models 00000 000 000 *SO*(10) Models

Conclusions •0

Summary

- Making use of toric geometry have systematically constructed fourfold geometries which can support global F-theory GUTs.
- We have constructed SO(10) GUTs on these geometries.
- Using a split spectral cover we have generated chiral matter on the **10** curves and were able to produce three generation models.

Construction of Global Models

SO(10) Models

Conclusions 0•

Open Problems

- Moduli stabilization
- Classification of fourfold geometries (computer search).
- Standard Model from SO(10) GUTs.
- Explain the discrepancy in the Euler numbers.
- Is the split spectral cover globally defined for our models? [Hayashi et al. '10]