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F–theory Facts I

• F–theory is type IIB string theory (with D–branes) with
non–constant string coupling. [Vafa ’96]

• The complexified string coupling constant is given by the
axio–dilaton:

τ = C0 + ieφ gs = eφ

• In F–theory the back reaction of the D7 branes on the
geometry is taken into account.

• F–theory is non–perturbative.
• There is no world sheet formulation of F–theory.
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F–theory Facts II

• For IIB to be invariant under S–duality τ has to transform
under the S–duality group SL(2, Z):

τ →
aτ + b

cτ + d

• a, b, c , d ∈ Z, ad − bc = 1
• SL(2, Z) is the modular group of a two–torus T 2.
• τ can be viewed as the complex structure of a torus.

• We can geometrize the complexified string coupling.
• IIB with varying coupling τ ⇔ ’F–theory’ on an elliptically

fibered Calabi–Yau fourfold
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Geometric Picture

• F–theory on elliptically fibered CY4:

elliptic fiber

Threefold Base B (non CY)

degenerate ell. fiber

GUT brane S

• What happens at the loci where the torus fiber degenerates?
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Elliptic Fibration

• An elliptic fibration is given by a Weierstrass equation:

y2 = x3 + f (yi )xz
3 + g(yi )z

6

• (x , y , z). . . coords. on T 2–fiber, yi . . . coords. in base

• The torus degenerates at the zeros of the discriminant ∆:

∆ = 4f 3 + 27g2

• The singularity structures of the elliptic fiber at the
degeneration loci have been classified.

[Kodaira ’63][Tate ’75][Bershadsky et al ’96][Katz,Vafa ’96]
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Singular Fibers

• The degeneration loci S of the elliptic fiber in the base are the
positions of (p, q) 7–branes

• When (p, q) 7–branes collide there will be enhanced gauge
symmetry on the worldvolume.

• Gauge groups correspond to singularities of the elliptic fiber.
• ADE Lie groups.

• Depending on the singularity type (p, q) 7–branes have an
interpretation in IIB:

• An: D7 branes with SU(n) gauge symmetry
• Dn: D7 branes and O7 planes with SO(2n) gauge symmetry
• E6,7,8: no IIB interpretation

• F–theory makes it possible to realize non–abelian gauge
groups.

• This is essential for constructing GUTs in string theory.
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F-theory GUTs

• One can realize GUT models along S where the elliptic fiber
degenerates.

[Donagi, Wijnholt ’08][Beasley, Heckman, Vafa ’08]

• The GUT brane S wraps a divisor in the three–dimensional
base B .

• The GUTs group (typically SU(5) or SO(10)) is determined by
how the elliptic fiber degenerates.

• Decoupling limit
• Decoupling of gravity
• This is possible if S is a del Pezzo surface.
• Then the theory can be described by the SUSY gauge theory

on the world volume of S . ⇒ local model
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Matter Curves

• Chiral matter arises at order 1 enhancements of the GUT
singularity.

• Geometrically matter is localized on curves Σ in S where S

intersects with a further U(1) 7–brane.

GUT brane S
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7-brane

• For an SO(10) GUTs there are the following enhancements:
• E6: 16 matter curves
• SO(12): 10 matter curves
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Yukawa couplings

• Yukawa couplings arise at order 2 enhancements of the GUT
singularity.

• Geometrically this corresponds to triple intersections of the
GUT brane with further 7–branes.

Yukawa point

7-brane

7-brane

GUT brane

• For an SO(10) GUTs there are the following enhancements:
• E7: 16 16 10 Yukawas
• SO(14): 10 10 1 Yukawas – not really necessary for a minimal

SO(10) GUT
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Phenomenological Features

• For SU(5) GUTs many details on phenomenology have been
worked out.

• Break to the Standard Model gauge group by U(1)
(hypercharge) flux:
⇒ This solves the doublet-triplet splitting problem.

• no µ–problem, no dimension 4 proton decay operators
• SUSY breaking, neutrino masses, flavor hierarchy from

instantons.
• . . .

• SO(10) models cannot be broken directly to the Standard
Model.

• First break to SU(5) × U(1) (flipped SU(5)).
⇒ no doublet–triplet splitting problem

• No problem with proton decay up to dimension 6 operators.
• . . .
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What’s nice about local models?

• Local F–theory GUTs elegantly solve many problems GUT
models usually have.

• In the local model there are not many parameters which can
be adjusted.

• Matching one quantity with experimental results fixes many
others.

• The numbers match very well with experimental data (e.g.
neutrino masses).

• BUT. . .
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What’s missing?

• The GUT model has to be embedded into a consistent string
compactification.

• The local geometry has to ’fit’ into a Calabi–Yau fourfold.
• One should not get too many exotics or a hidden sector that is

too large.
• One has to worry about moduli stabilization.
• One has to worry about global consistency constraints such as

tadpole cancellation.
• The decoupling limit must be realized explicitly.
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Outline of part 2

• Construction of global models.
• Toric geometry
• Construction of the base manifold B
• Identification of GUT divisors
• Existence of the decoupling limit
• Construction of the elliptically fibered fourfold

• SO(10) GUTs
• Realization in toric geometry
• Spectral cover

• Some phenomenology results
• Split spectral cover to generate chiral matter on the 10 curves
• Flipped SU(5) models
• Three generation models
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Setup

• Construction of compact CY fourfolds which are suitable for
F–theory model building.

• Fourfolds are complete intersections in a six–dimensional toric
ambient space: [Blumenhagen et al. ’09][Grimm et al. ’09]

PB(yi , w) = 0 PW (x , y , z, yi , w) = 0

⇒ PB describes the geometry of the base manifold B:
(yi , w). . . base coordinates
⇒ PW describes the elliptic fibration: (x , y , z). . . fiber
coordinates
⇒ w = 0 describes the GUT divisor S .

• The Weierstrass model in Tate form:

PW = x3 − y2 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6

⇒ The an(yi , w) are sections of K−n
B .
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Goals – Geometry

• Systematically construct fourfold geometries.

• Use toric geometry as a tool.

• First construct a 3-dimensional non–CY base B :
• Point/curve blowups in Fano threefolds

• Identify candidates for GUT divisors S in B :
• del Pezzo
• Decoupling limit

• Make an elliptic fibration over the base B that is a CY
fourfold.

• This talk: focus on the geometric aspects
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Goals – Model building

• Construct SO(10) F–theory GUTs on our geometries.
• Construct an SO(10) Weierstrass model in toric geometry.
• Describe matter curves and fluxes using the spectral cover

construction

• Use a split spectral cover to get chiral matter on the 10

curves.
• new degrees of freedom to adjust to get three generations
• Generate Higgs from chiral matter on 10 curves

• Use abelian fluxes to break to flipped SU(5).

• Discuss examples of three–generation models.
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Toric Geometry I

• Toric geometry encodes the geometry of a (toric) manifold in
the combinatorics of lattice polytopes.

• A toric variety X of dimension n is defined as:

X = (Cr − Z )/((C∗)r−n × G )

• (C∗)r−n acts by coordinate-wise multiplication.
• Z is an exceptional set encoding which of the coordinates in

C
r cannot vanish simultaneously.

• G is the action of a discrete group (will not play a role here).

• E.g. CP
2:

• (z1, z2, z3) ∼ (λz1, λz2, λz3), λ ∈ C
∗, Z = {z1 = z2 = z3 = 0}

CP
2 = (C3−{z1 = z2 = z3 = 0})/((z1, z2, z3) ∼ (λz1, λz2, λz3))
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Toric Geometry II

• The information about the geometry is encoded in dual pairs
of cones and (reflexive) lattice polytopes.

• N–lattice
• Polytope ∆◦ ⊆ N , Points yi ∈ N , Vertices vi ∈ N , dimN = n.
• Vertices encode information about coordinates zi and divisors

Di = {zi = 0}.
• Encode homogeneous weights ~q = (q1, . . . , qr ) in r − n linear

relations
r∑

i=1

qivi = 0
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Toric geometry III

• M–lattice
• Polytope ∆ ⊆ M , Points yi ∈ M .
• Points encode information about monomials and hypersurface

equations.
• Regular monomials are:

χm =

r∏
j=1

z
〈m,vj 〉+1
j m ∈ M , vj ∈ N

• CY Hypersurface in toric space: f =
∑

m cmχm

Hypersurfaces are divisors in X .

• ∆ and ∆◦ are dual (polar) polytopes:

xi ∈ N, yj ∈ M : 〈xi , yj 〉 ≥ −1
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Example: CP
2

• N-lattice
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(0,1)

(1,0)

(-1,-1)

• Weights: ~q = (1, 1, 1) ⇔
(z1, z2, z3) ∼ (λz1, λz2, λz3)

• Relations:
∑

i qivi = 0

• Divisors:

z1 z2 z3

1 1 1
D D D

• M-lattice

(2,-1)

(-1,2)

(-1,-1)

• Monomials:

z
〈m,vj〉+1
j :

z3
1 , z3

2 , z3
3 ,

z2
1 z2, z

2
1 z3, z

2
2 z3,

z1z
2
2 , z1z

2
3 , z2z

2
3 , z1z2z3
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Complete intersections

• Generalization of the construction:

∆ = ∆1 + . . . + ∆r ∆◦ = 〈∇1, . . . ,∇r 〉conv

(∇n, ∆m) ≥ −δnm

∇◦ = 〈∆1, . . . , ∆r 〉conv ∇ = ∇1 + . . . + ∇r

• Minkowski sum: ∆ = ∆1 + . . . + ∆r

• nef partition: 〈∇1, . . .〉conv (〈. . .〉conv : convex hull)
• Each ∆k yields a hypersurface equation for the complete

intersection.

• Analyze toric data with PALP. [Kreuzer,Skarke ’02]

• Input: weight systems or vertices in M/N–lattice
• Output: Polytope data, Hodge numbers, nef–partitions,. . .
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Blowups in Fano threefolds

• Construct non–CY threefold base B as point/curve blowups of
a Fano threefold which is a hypersurface of some toric space.

• Fanos themselves are not good base manifolds because there
can be no decoupling limit. [Cordova ’09]

• Starting point: Fano threefolds with one Kähler class

P
4[d ] = {Pd (y1, . . . , y5) = 0|[yi : . . . : y5] ∈ P

4} d = 2, 3, 4,

• Blowups:
• More Kähler moduli ⇔ “size” of blowup
• New exceptional divisors
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Weight matrices

• Blowups can be encoded in the weight matrices describing the
toric space X:

• CP
4:

y1 y2 y3 y4 y5
P

w1 1 1 1 1 1 5

• Curve blowup:

y1 y2 y3 y4 y5 w
P

w1 1 1 1 1 1 0 5
w2 0 0 0 1 1 1 3

J1 J2

• Point blowup:

y1 y2 y3 y4 y5 w
P

w1 1 1 1 1 1 0 5
w2 1 0 0 0 0 1 2

J1 J2
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Hypersurfaces

• The weight systems only define the ambient space.

• The hypersurface B is specified by a divisor B .

• Example: Hypersurface of degree (4, 2) in curve blowup in P
4

[Blumenhagen et al. ’09]

• Class of B: [B] = 4J1 + 2J2

• How to see the curve blowup:

1. Tune complex structure in P
4[4] = p4(y1, . . . , y5):

P = f4 + y4f3 + y5g3 + y2
4 f2 + y2

5 g2 + y4y5h2

⇒ singular curve at (0, 0, 0, y4, y5) ∼ λ(0, 0, 0, y4, y5).

2. Blow up by introducing a new coordinate w :

P̃ = w 2f4 + wy4f3 + wy5g3 + y2
4 f2 + y2

5 g2 + y4y5h2

⇒ new weight vector (y1, y2, y3, y4, y5, w) ∼ (y1, y2, y3, λy4, λy5, λw).
⇒ w = 0 defines a dP7.
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GUT divisors

• Having specified a base B we must look for a GUT divisor S

inside B .

• The GUT divisor should be del Pezzo. [Donagi,Wijnholt ’08][BHV ’08]

• Del Pezzos are two–dimensonal Fanos.
• They are P

1 × P
1 and dPn, n = 0, . . . , 8 which is P

2 with up to
eight points blown up.

• The GUT divisor should satisfy a decoupling limit.
• physical: the volume of S should stay finite when the volume

of B goes to infinity.
• mathematical: the volume of S goes to 0 whereas the volume

of B does not
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Del Pezzo divisors

• Identify a del Pezzo by its topological data.
• Chern class of S in B:

c(S) =

∏
i (1 + Di)

(1 + B)(1 + S)

•
Z

S
c1(S)

2
= 9 − n

Z

S
c2(S) = n + 3 ⇒ χh =

Z

S
Td(S) = 1,

• Integrals of c1(S) over all torically induced curves on S have to
be positive:

Di · S · c1(S) > 0 Di 6= S ∀Di · S 6= ∅ .

• Input data: Divisor classes, exceptional set (Stanley-Reisner
ideal), intersection ring [Kreuzer,Walliser unpublished]
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Decoupling Limit

• Calculate the volumes of B and S explicitly.
• Find a basis Ki of the Kähler cone such that the Kähler form J

can be decomposed as:

J =
∑

i

riKi ri > 0

• Volumes of B and S :

Vol(B) = J3 Vol(S) = S · J2

• Condition for the decoupling limit:
physical: Vol(S) is independent of at least one of the ri
mathematical: tune parameters to get Vol(S) → 0 while still
keeping non–zero terms in Vol(B)

• Input data: previous data+Mori cone (dual of the Kähler
cone)
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CY fourfold

• Construct a Calabi–Yau fourfold by fibering a torus CP123[6]
over B .

• Torus coordinates x , y transform as sections of K−2
B , K−3

B .
• The weight system of the torus is:

y x z
∑

3 2 1 6

• The data of the (6d) ambient space is encoded in the
combined weight system of the base and the torus.

• Since the fourfold is a complete intersection we have to specify
a nef–partition that is compatible with the elliptic fibration.
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Example

• Base: blowup of one curve and one point in P
4[3]:

y1 y2 y3 y4 y5 y6 y7
P

deg
w1 1 1 1 1 1 0 0 5 3
w2 0 0 0 1 1 1 0 3 2
w3 1 0 0 0 0 0 1 2 1

• The two exceptional divisors are dP3 and dP4 and satisfy the
physical decoupling limit.

• Fourfold:

y x z y1 y2 y3 y4 y5 y6 y7
P

w0 3 2 1 0 0 0 0 0 0 0 6
w1 6 4 0 1 1 1 1 1 0 0 15
w2 3 2 0 0 0 0 1 1 1 0 8
w3 3 2 0 1 0 0 0 0 0 1 7

• Use PALP to list all possible nef-partitions – one gives a
Weierstrass model.
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Weierstrass model

• Using the toric construction we can explicitly compute the
Weierstrass equation for a given geometry:

PW = x3 − y2 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6

• We get explicit expressions for the ai in terms of monomials in
the base coordinates yi .

• Using the toric data we can compute the Hodge numbers and
the Euler number of the CY fourfold Y .

• Works if there are no terminal singularities.
• This data is needed for computing the D3 tadpole cancellation

condition:

ND3 =
χ(Y )

24
−

1

2

∫
Y

G ∧ G
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Results

• We have considered all weight systems which describe up to
three point and curve blowups in P

4.
• We have looked at hypersurfaces of degi <

∑
weightsi ⇔

blowups inside Fano threefolds.
• 241 base geometries

• 208 of the base manifolds had at least one del Pezzo divisor
with a decoupling limit

• For 86 models we could construct a CY fourfold Y which is
described torically by reflexive polytopes.

• Whenever this works the base is almost Fano.
⇒ algebraic threefold which has a non–trivial anti-canonical
bundle with at least one non–zero section
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Status

• So far:
• explicit toric construction of the base B and the fourfold Y
• identification of possible GUT divisors S

• Next:
• construct SO(10) models
• identify matter curves and Yukawa couplings
• construct fluxes
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SO(10) Weierstrass model

• To get an SO(10) GUT group the ai in the Weierstrass
equation have to factorize:

a1 = b5w
1 a2 = b4w

1 a3 = b3w
2 a4 = b2w

3 a6 = b0w
5

• Matter curves:
• b3 = 0 10 matter (SO(12) enhancement)
• b4 = 0 16 matter (E6 enhancement)

• Yukawa couplings
• b3 = 0 ∩ b4 = 0 E7 Yukawas: 16 16 10

• b2
2 − 4b0b4 = 0 ∩ b3 = 0 SO(14) Yukawas: 10 10 1
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Toric realization

• The SO(10) model can be realized in toric geometry.

• Remember: The points in the M–lattice correspond to
monomials in the Weierstrass equation.

• The an are coefficients of zn.

• Remove all points on the M–lattice where the corresponding
monomials do not satisfy the SO(10) factorization condition.

• As a consequence one gets additional vertices in the dual
N–lattice.

• These correspond to new exceptional divisors which one
obtains from resolving the SO(10) singularity.

• The equations for the matter curves and Yukawas can be
given explicitly.
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Spectral cover I

• In the heterotic string the spectral cover is used to describe
stable bundles on elliptically fibered threefolds.

• In F–theory the spectral cover describes bundles and fluxes in
the vicinity of the GUT brane. [Donagi,Wijnholt ’09]

• Also for models without a heterotic dual the spectral cover
seems to be valid beyond the local picture. [Blumenhagen et al. ’09]

• For SO(10) models we must look at an SU(4) spectral cover.

• The spectral cover is a divisor on an auxiliary compact
non–CY threefold X̄ whose base is the GUT brane S :

X̄ = P(OS ⊕ KS)
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Spectral Cover II

• The base S is the vanishing locus of the section σ in X̄ .
• One can show that: σ · σ = −σ · c1(S)

• The spectral cover CV is associated to the fundamental
representation V of G = SU(4) is:

CV : b0s
4 + b2s

2 + b3s + b4

where

bi ∼ η − i c1(S) ∼ (6 − i)c1(S) + c1(NS|B) i = 0, . . . , 4

• Defining a projection πC : CV → S the class of CV is:

[CV ] = 4σ + πCη
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Spectral Cover III

• Matter curves are intersections of the spectral cover with σ.

• Fluxes are encoded in a non–trivial spectral line bundle N on
CV that gives rise to a rank 4 bundle V = πCN on S .

• 16 matter curves:
Σ16 = CV ∩ σ

• Flux γ:

γ =
1

4
π∗

Cc1(V ) + γu γu = 4[ΣV ] − π∗
C (η − nc1(S))

• Chiral Matter:
n16 = −η · (η − 4c1(S))
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10 curves

• 10 curves are obtained from a ∧2V spectral cover:

Σ10 = C∧2V ∩ σ

• Problem: There is no chiral matter on the 10 curves. [Hayashi et al.

08]

• For phenomenological reasons the electroweak Higgs should
come from the 10 curves.

• We need extra degrees of freedom to build three generation
models.

• Proposed solution: split spectral cover:
• Factorize: CV → C (1) + C (3)

⇒ S(U(3) × U(1)) spectral cover
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Split spectral cover

• From the split spectral cover we get two types of 16 matter
curves:

Σa = C (1) ∩ σ Σb = C (3) ∩ σ

• The spectral cover for the 10 curves gets mixed contributions
from C (1) and C (3).

• By turning on different fluxes on Σa and Σb we can generate
chiral matter on the 10 curves.

• Using the split spectral cover, we worked out several SO(10)
models with three generations.
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Further results

• Flipped SU(5):
• The SO(10) GUT group cannot be broken directly to the

Standard Model gauge group by U(1) flux. [BHV ’08]

• We can use U(1) flux to break SO(10) to SU(5) × U(1).
• We show that we can get three generation models and realistic

Yukawa couplings.

• Tadpole cancellation:
• The D3 tadpole cancellation condition requires to know the

Euler number of the CY fourfold.
• We compare the Euler numbers computed from the fourfold

geometry with a conjectured formula. [Blumenhagen et al. ’09]

• For some examples we find a discrepancy for the Euler
numbers computed by the two methods.



Overview Construction of Global Models SO(10) Models Conclusions

Summary

• Making use of toric geometry have systematically constructed
fourfold geometries which can support global F–theory GUTs.

• We have constructed SO(10) GUTs on these geometries.

• Using a split spectral cover we have generated chiral matter
on the 10 curves and were able to produce three generation
models.
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Open Problems

• Moduli stabilization

• Classification of fourfold geometries (computer search).

• Standard Model from SO(10) GUTs.

• Explain the discrepancy in the Euler numbers.

• Is the split spectral cover globally defined for our models?
[Hayashi et al. ’10]
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