Connecting the visible Universe to the dark

Recent advances on galaxy bias predictions

ORIGINS Cluster LMU - Munich

Standard cosmological model: **\CDM**

The ACDM model fits *almost* all of the data *almost* perfectly !

Standard cosmological model: **\CDM**

The ACDM model fits *almost* all of the data *almost* perfectly !

Lots of observational data

Cosmic Microwave Background

- Probably the most solid support for LCDM.
- <u>Existing surveys</u>: WMAP, Planck, ACT, SPT.
- <u>Future surveys:</u> Litebird, CORE, PIXIE, Simons Observatory.

Type la Supernovae

- First concrete evidence for the acceleration of the Universe.
- Important low-z anchor on the expansion rate.

Large-scale structure

- Probably has the greatest potential for discoveries.
- Existing surveys: BOSS, DES, KiDS, HSC, eROSITA, DESI.
- <u>Future surveys</u>: Euclid, Vera Rubin, Nancy Roman, SKA, SphereX.

Lots of observational data

Cosmic Microwave Background	This talk !	Large-scale structure
 Probably the most solid support for LCDM. 		 Probably has the greatest potential for discoveries.
• <u>Existing surveys:</u> WMAP, Planck, ACT, SPT.	Type la Supernovae	 <u>Existing surveys</u>: BOSS, DES, KiDS, HSC, eROSITA, DESI.
 Future surveys: Litebird, CORE, DIXIE, Simons Observatory. Angular scale Output of the scale of	<text></text>	 Future surveys: Euclid, Vera Rubin, Nancy Roman, SKA, SphereX. Image: SphereX

Large-scale structure and cosmology

Large-scale structure

- Forms under gravitational instability out of the primordial density fluctuations.
- Nonlinear, non-Gaussian field.
- Strong potential for discoveries on dark energy, dark matter, inflation, gravity, neutrinos.

Large-scale structure and cosmology

Large-scale structure

- Forms under gravitational instability out of the primordial density fluctuations.
- Nonlinear, non-Gaussian field.
- Strong potential for discoveries on dark energy, dark matter, inflation, gravity, neutrinos.

Outstanding modeling challenge: only ~15% of the total matter is visible!

Total matter =
$$\frac{\text{dark matter}}{\sim 85\%}$$
 + $\frac{\text{baryonic matters}}{\sim 15\%}$

Large-scale structure and cosmology

Large-scale structure

- Forms under gravitational instability out of the primordial density fluctuations.
- Nonlinear, non-Gaussian field.
- Strong potential for discoveries on dark energy, dark matter, inflation, gravity, neutrinos.

Outstanding modeling challenge: only ~15% of the total matter is visible!

Total matter =
$$\frac{\text{dark matter}}{\sim 85\%}$$
 + $\frac{\text{baryonic matters}}{\sim 15\%}$

Large scale structure

Stars

Large scale structure

Neutral Hydrogen (21cm emission)

Stars

Large scale structure

Illustris TNG Illustris TNG

Large scale structure

Neutral Hydrogen (21cm emission)

Quenched *

the dark

• Recent results from galaxy formation simulations.

Consequences for <u>tests of inflation</u> using galaxy data.

• Recent results from galaxy formation simulations.

Consequences for <u>tests of inflation</u> using galaxy data.

Desjacques, Jeong & Schmidt (2016)

Desjacques, Jeong & Schmidt (2016)

Local galaxy
number density
$$n_{\rm g}(\boldsymbol{x},z) = \bar{n}_{\rm g}(z) \left[1 + \sum_{\substack{\mathcal{O} \\ \mathcal{O} \\ \text{parameters}}} b_{\mathcal{O}}(z) \mathcal{O}(\boldsymbol{x},z) \right] + \epsilon(\boldsymbol{x},z)$$

Desjacques, Jeong & Schmidt (2016)

How does galaxy formation depend on its **dark** environment?

Desjacques, Jeong & Schmidt (2016)

How does galaxy formation depend on its **dark** environment?

Desjacques, Jeong & Schmidt (2016)

How does galaxy formation depend on its **dark** environment?

Desjacques, Jeong & Schmidt (2016)

How does galaxy formation depend on its **dark** environment?

Desjacques, Jeong & Schmidt (2016)

Desjacques, Jeong & Schmidt (2016)

Desjacques, Jeong & Schmidt (2016)

Two reasons to study galaxy bias

Galaxy data = Cosmology X

(dark energy, gravity, inflation, etc)

(galaxy-environment connection)

Two reasons to study galaxy bias

Robust constraints on cosmology

Galaxy Galaxy data = Cosmology X hias

(dark energy, gravity, inflation, etc)

(galaxy-environment connection)

Two reasons to study galaxy bias

Robust constraints on cosmology

Insights on the galaxy-environment connection

A long history of halo bias studies

Density contrast

$$\delta_g(\boldsymbol{x}, z) \stackrel{\text{det.}}{=} b_1(z)\delta_m(\boldsymbol{x}, z) + b_\phi(z)f_{\text{NL}}\phi(\boldsymbol{x})$$

+
$$\frac{b_2(z)}{2}\delta_m(x,z)^2 + b_{K^2}(z)K_{ij}(x,z)^2 + b_{\phi\delta}(z)f_{\rm NL}\phi(x)\delta_m(x,z)$$

P.S. No such thing as scale-dependent bias: the bias parameters are only a function of z.

4 -0.2 0 0.2 0.4 0.6

 $M[M_{o}/h]$

Most of the existing knowledge of **biasing** is limited to the case of dark matter halos in gravity-only simulations.

Not quite sufficient since we don't observe halos, but the galaxies inside them.

Barreira(2021 $\log(\nu)$ **Density contrast** $\delta_q(\boldsymbol{x}, z)$ Galaxy bias studies made possible only recently as galaxy formation simulations approach cosmological volumes.

0.0

0.5

1.0

1.5

Grossi+(2009)

 $_{
m box} pprox 800 \; {
m Mpc}$ (Gravity) Halos (M_t -selection) Subhalos $(M_t$ -selection)

• What is galaxy bias?

• Recent results from galaxy formation simulations.

Consequences for <u>tests of inflation</u> using galaxy data.

The IllustrisTNG galaxy formation model

- Gravity + hydrodynamical cosmological simulations of galaxy formation. (Lbox = 205Mpc/h, 75Mpc/h)
- Includes modeling of: gas cooling; star formation, stellar feedback, black hole growth & feedback.
- Broadly matches a series of observations: cosmic star formation history, low-z stellar mass function, galaxy sizes, gas fractions in groups/clusters, color bimodality, etc.

The IllustrisTNG galaxy formation model

- Gravity + hydrodynamical cosmological simulations of galaxy formation. (Lbox = 205Mpc/h, 75Mpc/h)
- Includes modeling of: gas cooling; star formation, stellar feedback, black hole growth & feedback.
- Broadly matches a series of observations: cosmic star formation history, low-z stellar mass function, galaxy sizes, gas fractions in groups/clusters, color bimodality, etc.

simulations
This region of our Universe behaves as a Separate universe Cosmic mean in our Universe
Perturbation in our Universe Sirko+(2005), Wagner+(2014), Li+(2014, 2016)

The IllustrisTNG galaxy formation model

- Gravity + hydrodynamical cosmological simulations of galaxy formation. (Lbox = 205Mpc/h, 75Mpc/h)
- Includes modeling of: gas cooling; star formation, stellar feedback, black hole growth & feedback.
- Broadly matches a series of observations: cosmic star formation history, low-z stellar mass function, galaxy sizes, gas fractions in groups/clusters, color bimodality, etc.

Separate Universe simulations
This region of our Universe behaves as a Separate universe Cosmic mean in our Universe Perturbation in our Universe
Sirko+(2005), Wagner+(2014), Li+(2014, 2016) Schmidt+(2018), Barreira+(2019)

Separate Universe simulations

Local structure formation inside long-wavelength perturbations in a Fiducial cosmology is equivalent to global structure formation in a modified cosmology.

Significant advantage of this method:

simulation does not have to have a large volume to encompass large-scale perturbations! (especially significant for hydrodynamical simulations, which are more expensive)

Separate Universe simulations

Local structure formation inside long-wavelength perturbations in a Fiducial cosmology is equivalent to global structure formation in a modified cosmology.

Simulation of one cosmology

Bias as the **response** of the galaxy abundance to changes in the **cosmological parameters**.

Simulation of another cosmology

Separate Universe simulations

Local structure formation inside long-wavelength perturbations in a Fiducial cosmology is equivalent to global structure formation in a modified cosmology.

From separate universe simulations w/ IllustrisTNG

 $\delta_q(\boldsymbol{x}, z) \supset b_1(z) \delta_m(\boldsymbol{x}, z) + b_{\phi}(z) f_{\mathrm{NL}} \phi(\boldsymbol{x})$ Mass density Gravitational potential 10 Sensitivity to grav. potentials in PNG **Recall:** the space of **bias parameters** cosmologies organizes the tracers by their sensitivity 5 to changes in their environment. Sensitivity to mass perturbations 0 0.51.01.52.02.53.0 b_1

From separate universe simulations w/ IllustrisTNG

 $\delta_q(\boldsymbol{x},z) \supset b_1(z)\delta_m(\boldsymbol{x},z) + b_{\phi}(z)f_{\mathrm{NL}}\phi(\boldsymbol{x})$ Mass density Gravitational potential

From separate universe simulations w/ IllustrisTNG

 $\delta_q(\boldsymbol{x},z) \supset b_1(z)\delta_m(\boldsymbol{x},z) + b_{\phi}(z)f_{\mathrm{NL}}\phi(\boldsymbol{x})$ Mass density Gravitational potential

From separate universe simulations w/ IllustrisTNG

 $\delta_q(\boldsymbol{x}, z) \supset b_1(z) \delta_m(\boldsymbol{x}, z) + b_{\phi}(z) f_{\mathrm{NL}} \phi(\boldsymbol{x})$ Mass density Gravitational potential

Barreira+(2020)

From separate universe simulations w/ IllustrisTNG

occupation

distribution

Voivodic & Barreira 2021

Bias of the galaxies

 $b_g = \frac{1}{\bar{n}_g} \int \mathrm{d}M n_h(M) N_g(M) \quad b_h(M)$ _{Halo mass} Galaxy _{Halo bias}

function

Voivodic & Barreira 2021

Bias of the galaxies

 $b_g = \frac{1}{\bar{n}_g} \int \mathrm{d}M n_h(M) N_g(M) \left(b_h(M) + R_{N_g}(M) \right)$ _{Halo mass Galaxy Halo bias Occupation bias} **Occupation bias** occupation function

distribution

Voivodic & Barreira 2021

Bias of the galaxies

 $b_g = \frac{1}{\bar{n}_g} \int dM n_h(M) N_g(M) \left(b_h(M) + R_{N_g}(M) \right)$ _{Halo mass}
_{Galaxy}
_{Halo bias}
_{Galaxy}
_{Halo bias}
_{Galaxy}
_{Galaxy}
_{Galaxy}
_{Galaxy}
_{Galaxy}
_{Halo bias}
_{Galaxy} Halo bias **Occupation bias** occupation function distribution

Bias of the neutral hydrogen

 $b_{\mathrm{H}_{\mathrm{I}}} = \frac{1}{\bar{\rho}_{\mathrm{H}_{\mathrm{I}}}} \int \mathrm{d}M n_{\mathrm{h}}(M) M_{\mathrm{H}_{\mathrm{I}}}(M) \left(b_{\mathrm{h}}(M) + R_{M_{\mathrm{H}_{\mathrm{I}}}}(M) \right)$ Halo mass Hi content Halo bias Hi content bias **H**ı content Halo bias H_l content bias function

Voivodic & Barreira 2021

Bias of the galaxies

 $b_g = \frac{1}{\bar{n}_g} \int dM n_h(M) N_g(M) \left(b_h(M) + R_{N_g}(M) \right)$ _{Halo mass Galaxy Halo bias Occupation bias} Halo bias **Occupation bias** occupation function Positive distribution for grav. potentials in IllustrisTNG

Bias of the neutral hydrogen

 $b_{\mathrm{H}_{\mathrm{I}}} = \frac{1}{\bar{\rho}_{\mathrm{H}_{\mathrm{I}}}} \int \mathrm{d}M n_{\mathrm{h}}(M) M_{\mathrm{H}_{\mathrm{I}}}(M) \left(b_{\mathrm{h}}(M) + R_{M_{\mathrm{H}_{\mathrm{I}}}}(M) \right)$ Halo mass Hi content Halo bias Hi content bias H_l content Halo bias H_l content bias function

for grav. potentials in IllustrisTNG

From separate universe simulations w/ IllustrisTNG

The IllustrisTNG galaxy formation model

- Gravity + hydrodynamical cosmological simulations of galaxy formation. (Lbox = 205Mpc/h, 75Mpc/h)
- Includes modeling of: gas cooling; star formation, stellar feedback, black hole growth & feedback.
- Broadly matches a series of observations: cosmic star formation history, low-z stellar mass function, galaxy sizes, gas fractions in groups/clusters, color bimodality, etc.

Separate Universe simulations
This region of our Universe behaves as a Separate universe Cosmic mean in our Universe Perturbation in our Universe
Sirko+(2005), Wagner+(2014), Li+(2014, 2016) Schmidt+(2018), Barreira+(2019)

The IllustrisTNG galaxy formation model

http://www.tng-project.org; Pillepich+(2017); Weinberger+ (2017);

Let us look at recent results obtained with two different numerical methods:

- Gravity + hydrodynamical cosmological simulations of galaxy formation. (Lbox = 205Mpc/h, 75Mpc/h)
- Includes modeling of: gas cooling; star formation, stellar feedback, black hole growth & feedback.
- Broadly matches a series of observations: cosmic star formation history, low-z stellar mass function, galaxy sizes, gas fractions in groups/clusters, color bimodality, etc.

Galaxy forward models $\delta_g(x,z) = \sum_{\mathcal{O}} b_{\mathcal{O}}(z) \mathcal{O}(x,z)$ \mathcal{O} \mathcal{O} <

Galaxy forward models

Tractable disadvantage: numerically intensive

Significant advantage: inference is at the field-level (not a summary statistic), so it uses all available information. Good signal-to-noise even from ~100Mpc boxes.

Galaxy forward models

Tractable disadvantage: numerically intensive

Significant advantage: inference is at the field-level (not a summary statistic), so it uses all available information. Good signal-to-noise even from ~100Mpc boxes.

Results: quadratic bias parameters

Results: connection to assembly bias

Barreira, Lazeyras & Schmidt (2021) Lazeyras, Barreira & Schmidt (2021)

Results: connection to assembly bias

Barreira, Lazeyras & Schmidt (2021) Lazeyras, Barreira & Schmidt (2021)

Results: connection to assembly bias

Barreira, Lazeyras & Schmidt (2021) Lazeyras, Barreira & Schmidt (2021)

Imprints of halo assembly bias on the galaxy bias relations?

• What is galaxy bias?

• Recent results from galaxy formation simulations.

Consequences for <u>tests of inflation</u> using galaxy data.

Future galaxy surveys aiming at:

 $\sigma_{f_{\rm NL}} \lesssim 1$

Local PNG leaves a distinct scale-dependent signature on the large-scale galaxy power spectrum (2pt function) (Dalal+ 2008)

Local PNG contributes also sizeably to the galaxy bispectrum (3pt function)

(Scoccimarro+(2003), Sefusatti&Komatsu(2007), Jeong&Komatsu(2011))

How did all past works constrain/forecast f_{NL} then?

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The universality relations

(fix b_{ϕ} and $b_{\phi\delta}$ in terms of b₁, which can be fitted for)

The impact of bias uncertainties

Barreira 2021

Simulated likelihood analysis for an idealized fictitious survey.

Barreira 2021

Prior centered on the wrong relation **Uncertainty of** $\Delta b_{\phi} = 10$, $\Delta b_{\phi\delta} = 50$ 10 10 p_{ϕ}^{5} $b_{\phi\delta}$ Wide priors are not conservative! Fiducial -10We really need accurate and precise priors Assumed prior from simulations to constrain f_{NL}. 1.52.51.01.52.02.53.0 2.01.03.0 b_1 b_1

Aproach 1:

marginalize over Gaussian priors on the bias parameter relations

The impact of bias uncertainties

Barreira 2021

<u>Aproach 2</u>: fits for the products of $f_{NL}b_{\phi}$ and $f_{NL}b_{\phi\delta}$.

The advantage

Bypasses any assumptions on PNG bias, while still allowing to distinguish f_{NL} from zero (we just won't know the exact value).

The impact of bias uncertainties

Barreira 2021

<u>Aproach 2</u>: fits for the products of $f_{NL}b_{\phi}$ and $f_{NL}b_{\phi\delta}$.

The advantage

Bypasses any assumptions on PNG bias, while still allowing to distinguish fNL from zero (we just won't know the exact value).

The disadvantage

The bispectrum does not improve the constraints (new parameter degeneracies arise).

The recommendation

At least power spectrum analyses should adopt this **bias-assumption-free approach**.

-1.5

IllustrisTNG

1.5

2.0

 b_1

2.5

1.0

2.5

2.0

 b_1

1.0

1.5

Summary

• <u>Galaxy bias</u> is the relation between the visible and the dark Universe: it is crucial to infer cosmology from galaxy data.

It leads also to new insights about the galaxy-environment connection (eg. halo occupation responses, assembly bias).

- Separate universe simulations and field-level forward models are powerful tools to advance our understanding of galaxy bias and the differences to halo bias.
- <u>Need to revisit local PNG contraints using galaxy data</u>, which make unjustified assumptions about galaxy bias!

HOD bias derivation

Origin of the HOD bias:

$$b_{g,\mathcal{O}} = \frac{\partial \ln n_g}{\partial \mathcal{O}}$$

$$= \frac{1}{\bar{n}_g} \frac{\partial}{\partial \mathcal{O}} \int dM n_h(M) N_g(M)$$

$$= \frac{1}{\bar{n}_g} \int dM n_h(M) N_g(M) \left[\frac{\partial \ln n_h(M)}{\partial \mathcal{O}} + \frac{\partial \ln N_g(M)}{\partial \mathcal{O}} \right]$$

$$= \frac{1}{\bar{n}_g} \int dM n_h(M) N_g(M) \left[b_{h,\mathcal{O}}(M) + R_{N_g,\mathcal{O}}(M) \right]$$
Halo bias expansion:
$$n_h(\boldsymbol{x}, z) = \bar{n}_h(z) \left[1 + b_h(z) \mathcal{O}(\boldsymbol{x}, z) \right]$$
HOD bias expansion:
$$N_g(\boldsymbol{x}, M, z) = \bar{N}_g(M, z) \left[1 + R_{N_g}(M, z) \mathcal{O}(\boldsymbol{x}, z) \right]$$