Amplitudes and the Riemann Zeta Function

Grant Remmen

Kavli Institute for Theoretical Physics University of California, Santa Barbara

arXiv:2108.07820 (PRL)

Mathematics - String Theory Seminar, Kavli IPMU April 2022

UC SANTA BARBARA Kavli Institute for Theoretical Physics

Motivation

 Introduced by Bernhard Riemann in 1859, a particular function of a single complex variable:

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

for $\operatorname{Re}(z) > 1$. Extend to the rest of the complex plane by analytic continuation.

 Introduced by Bernhard Riemann in 1859, a particular function of a single complex variable:

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

for $\operatorname{Re}(z) > 1$. Extend to the rest of the complex plane by analytic continuation.

 Many interesting properties, with deep connections to the distribution of the primes:

$$\zeta(z) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-z}} \quad \text{(Euler)}$$

$$\log \zeta(z) = z \int_0^\infty \frac{\pi(x)}{x(x^z - 1)} dx \quad \text{for} \quad \pi(x) = (\# \text{ primes} \le x)$$

• The zeta function has been the subject of 150 years of mathematical interest, and its properties have been intensively investigated.

• The zeta function has been the subject of 150 years of mathematical interest, and its properties have been intensively investigated.

• The zeta function has been the subject of 150 years of mathematical interest, and its properties have been intensively investigated.

• The zeta function has been the subject of 150 years of mathematical interest, and its properties have been intensively investigated.

• Functional equation: $\zeta(z) = 2^z \pi^{z-1} \sin(\pi z/2) \Gamma(1-z) \zeta(1-z)$

• Zooming out, we find a collection of additional zeros that all seem to lie on the "critical line" where $\operatorname{Re}(z) = \frac{1}{2}$.

• Zooming out, we find a collection of additional zeros that all seem to lie on the "critical line" where $\operatorname{Re}(z) = \frac{1}{2}$.

• The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie on the critical line with $\operatorname{Re}(z) = \frac{1}{2}$.

- The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie on the critical line with $\operatorname{Re}(z) = \frac{1}{2}$.
- If true it would have various nice number theory consequences, e.g.,

$$\left|\pi(x) - \int_0^x \frac{\mathrm{d}t}{\log t}\right| < \frac{1}{8\pi} \sqrt{x} \log x \quad \text{for} \quad x \ge 2657 \quad \text{Schoenfeld (1976)}$$

- The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie on the critical line with $\operatorname{Re}(z) = \frac{1}{2}$.
- If true it would have various nice number theory consequences, e.g.,

$$\left|\pi(x) - \int_0^x \frac{\mathrm{d}t}{\log t}\right| < \frac{1}{8\pi} \sqrt{x} \log x \quad \text{for} \quad x \ge 2657 \quad \text{Schoenfeld (1976)}$$

- One of Hilbert's 23 problems and a Millennium Problem
- Currently verified through the first 12 trillion zeros Platt, Trudgian [2004.09765]

- The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie on the critical line with $\operatorname{Re}(z) = \frac{1}{2}$.
- If true it would have various nice number theory consequences, e.g.,

$$\left|\pi(x) - \int_0^x \frac{\mathrm{d}t}{\log t}\right| < \frac{1}{8\pi} \sqrt{x} \log x \quad \text{for} \quad x \ge 2657 \quad \text{Schoenfeld (1976)}$$

- One of Hilbert's 23 problems and a Millennium Problem
- Currently verified through the first 12 trillion zeros Platt, Trudgian [2004.09765]
- Other open questions:
 - Are all the zeros simple ones?
 - What can be be proven about the statistical properties of the zeros?
 - What is the asymptotic behavior of ζ on the critical line?

Connections to physics

• There is a long history of ideas connecting the Riemann zeta function to physics.

Connections to physics

- There is a long history of ideas connecting the Riemann zeta function to physics.
- Hilbert-Pólya conjecture (attributed to remark of Landau to Pólya in 1914):

Does there exist a quantum Hamiltonian whose eigenvalues correspond to the imaginary parts of the nontrivial zeros of zeta?

Connections to physics

- There is a long history of ideas connecting the Riemann zeta function to physics.
- Hilbert-Pólya conjecture (attributed to remark of Landau to Pólya in 1914):

Does there exist a quantum Hamiltonian whose eigenvalues correspond to the imaginary parts of the nontrivial zeros of zeta?

• Montgomery's pair correlation conjecture: Montgomery (1973) The correlation function for the normalized spacings of the nontrivial zeros is: $(\sin \pi u)^2$

$$1 - \left(\frac{\sin \pi u}{\pi u}\right)^2 + \delta(u)$$

This is the same as the two-point function for a Gaussian unitary ensemble. Dyson

• Other work in quantum chaotic nonrelativistic scattering includes Gutzwiller (1983); Bhaduri, Khare, Law [chaodyn/9406006]; see also Srednicki [1105.2342]

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

Interesting function from number theory

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

Previous illustrious results from this process!

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- General idea:

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- Indeed, the Veneziano amplitude itself can be written in terms of ζ : Freund, Witten (1987)

$$A_4(s,t,u) = B(-\alpha(s), -\alpha(t)) + B(-\alpha(t), -\alpha(u)) + B(-\alpha(s), -\alpha(u)) = \prod_{x=s,t,u} \frac{\zeta(1+\alpha(x))}{\zeta(-\alpha(x))}$$

- Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?
- Indeed, the Veneziano amplitude itself can be written in terms of ζ : Freund, Witten (1987)

$$A_4(s,t,u) = B(-\alpha(s), -\alpha(t)) + B(-\alpha(t), -\alpha(u)) + B(-\alpha(s), -\alpha(u)) = \prod_{x=s,t,u} \frac{\zeta(1+\alpha(x))}{\zeta(-\alpha(x))}$$

However, this is somewhat illusory: the nontrivial zeros cancel out entirely. He, Jejjala, Minic [1501.01975]

$$\frac{\zeta(1+z)}{\zeta(-z)} = \pi^{\frac{1}{2}+z} \frac{\Gamma\left(-\frac{z}{2}\right)}{\Gamma\left(\frac{1+z}{2}\right)}$$

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

$\mathcal{M}(s,t)$		$\zeta(z)$
Poles at $s, u = m_n^2$ for m_n real	\longleftrightarrow	Riemann hypothesis
Locality (simple poles)	\longleftrightarrow	Meromorphicity

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

$\mathcal{M}(s,t)$		$\zeta(z)$
Poles at $s, u = m_n^2$ for m_n real	\longleftrightarrow	Riemann hypothesis
Locality (simple poles)	\longleftrightarrow	Meromorphicity
Universal coupling	\longleftrightarrow	Simple zero conjecture

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

$\mathcal{M}(s,t)$		$\zeta(z)$
Poles at $s, u = m_n^2$ for m_n real	\longleftrightarrow	Riemann hypothesis
Locality (simple poles)	\longleftrightarrow	Meromorphicity
Universal coupling	\longleftrightarrow	Simple zero conjecture
Dispersive bounds from analyticity/unitarity	\longleftrightarrow	Positive odd moments of μ_n^{-2} sequence

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

$\mathcal{M}(s,t)$		$\zeta(z)$
Poles at $s, u = m_n^2$ for m_n real	\longleftrightarrow	Riemann hypothesis
Locality (simple poles)	\longleftrightarrow	Meromorphicity
Universal coupling	\longleftrightarrow	Simple zero conjecture
Dispersive bounds from analyticity/unitarity	\longleftrightarrow	Positive odd moments of μ_n^{-2} sequence
On-shell constructibility	\longleftrightarrow	Hadamard product expansion

• Rather than try to prove the Riemann hypothesis, can we gain any insight if we somehow recast the zeta function as a relativistic scattering amplitude?

$\mathcal{M}(s,t)$		$\zeta(z)$
Poles at $s, u = m_n^2$ for m_n real	\longleftrightarrow	Riemann hypothesis
Locality (simple poles)	\longleftrightarrow	Meromorphicity
Universal coupling	\longleftrightarrow	Simple zero conjecture
Dispersive bounds from analyticity/unitarity	\longleftrightarrow	Positive odd moments of μ_n^{-2} sequence
On-shell constructibility	\longleftrightarrow	Hadamard product expansion
CPT invariance	\longleftrightarrow	Reflection of zeros across critical line

Building the amplitude
• Most important feature: ζ has nontrivial zeros that (appear to) all lie on a line

Connection with amplitudes: poles all lie on lines corresponding to real kinematics, $s, t, u = m^2$

$$s = -(p_1 + p_2)^2$$

$$t = -(p_1 + p_3)^2$$

$$u = -(p_1 + p_4)^2 = -s - t$$

• Most important feature: ζ has nontrivial zeros that (appear to) all lie on a line

Connection with amplitudes: poles all lie on lines corresponding to real kinematics, $s, t, u = m^2$

• Let's use this as a guiding principle to design our zeta-amplitude. We'll start by trying to build a forward amplitude (t = 0) with poles corresponding to zeros of ζ .

 $s = -(p_1 + p_2)^2$ $t = -(p_1 + p_3)^2$ $u = -(p_1 + p_4)^2 = -s - t$

• Suppose $\mathcal{M}(s,t) = \mathcal{A}(s) + \mathcal{A}(u)$ is described by *s*- and *u*-channel exchange, with poles corresponding to the zeros of the zeta function.

- Suppose $\mathcal{M}(s,t) = \mathcal{A}(s) + \mathcal{A}(u)$ is described by *s* and *u*-channel exchange, with poles corresponding to the zeros of the zeta function.
- What can $\mathcal{A}(s)$ be?

• What about $\mathcal{A}(s) = 1/\zeta \left(\frac{1}{2} + is\right)$?

× Poles with opposite-sign residues: tachyons

• What about
$$\mathcal{A}(s) = \frac{\zeta'\left(\frac{1}{2} + is\right)}{\zeta\left(\frac{1}{2} + is\right)}$$
?

× No more poles

• To cancel all the wrong poles, we compute their residues and add terms to remove them. Also adding a term to make the forward amplitude real, we find:

• Poles at $s = \mu_n^2$

• To cancel all the wrong poles, we compute their residues and add terms to remove them. Also adding a term to make the forward amplitude real, we find:

$$\mathcal{A}(s) = -\frac{i}{4\sqrt{s}} \begin{bmatrix} \psi\left(\frac{1}{4} + \frac{i}{2}\sqrt{s}\right) + \frac{2\zeta'\left(\frac{1}{2} + i\sqrt{s}\right)}{\zeta\left(\frac{1}{2} + i\sqrt{s}\right)} \end{bmatrix} + \frac{i\log\pi}{4\sqrt{s}} - \frac{1}{s + \frac{1}{4}} \end{bmatrix}$$

Digamma function: $\psi(z) = \Gamma'(z)/\Gamma(z)$
Poles at $\psi(-n)$ cancel trivial zeros at $\zeta(-2n)$ for integer $n > 0$
Pole at $\psi(0)$ canceled by $1/\left(s + \frac{1}{4}\right)$ term

No branch cuts: $\lim_{\epsilon \to 0} \mathcal{A}(s + i\epsilon) - \mathcal{A}(s - i\epsilon) = 0$

• To cancel all the wrong poles, we compute their residues and add terms to remove them. Also adding a term to make the forward amplitude real, we find:

$$\mathcal{A}(s) = -\frac{i}{4\sqrt{s}} \left[\psi \left(\frac{1}{4} + \frac{i}{2}\sqrt{s}\right) + \frac{2\zeta' \left(\frac{1}{2} + i\sqrt{s}\right)}{\zeta \left(\frac{1}{2} + i\sqrt{s}\right)} \right] + \frac{i\log\pi}{4\sqrt{s}} - \frac{1}{s + \frac{1}{4}}$$

• In terms of the Landau-Riemann xi functions,

$$\Xi(z) = \xi\left(\frac{1}{2} + iz\right)$$
$$\xi(z) = \frac{1}{2}z(z-1)\pi^{-z/2}\Gamma\left(\frac{z}{2}\right)\zeta(z)$$

• To cancel all the wrong poles, we compute their residues and add terms to remove them. Also adding a term to make the forward amplitude real, we find:

$$\mathcal{A}(s) = -\frac{i}{4\sqrt{s}} \left[\psi \left(\frac{1}{4} + \frac{i}{2}\sqrt{s}\right) + \frac{2\zeta' \left(\frac{1}{2} + i\sqrt{s}\right)}{\zeta \left(\frac{1}{2} + i\sqrt{s}\right)} \right] + \frac{i\log\pi}{4\sqrt{s}} - \frac{1}{s + \frac{1}{4}}$$

• In terms of the Landau-Riemann xi functions,

$$\Xi(z) = \xi\left(\frac{1}{2} + iz\right)$$
$$\xi(z) = \frac{1}{2}z(z-1)\pi^{-z/2}\Gamma\left(\frac{z}{2}\right)\zeta(z)$$

 $\mathcal{A}(s)$ can be written very compactly as:

$$\mathcal{A}(s) = -\frac{\mathrm{d}}{\mathrm{d}s} \log \Xi(\sqrt{s})$$
$$\mathcal{M}(s,t) = \mathcal{A}(s) + \mathcal{A}(u)$$

 ${\cal M}$ is the simplest possible amplitude corresponding to the Riemann zeta function and satisfying three physical properties:

 ${\cal M}$ is the simplest possible amplitude corresponding to the Riemann zeta function and satisfying three physical properties:

1. \mathcal{M} is analytic everywhere except poles corresponding to the nontrivial zeros of the Riemann zeta function, and these poles are real if the Riemann hypothesis holds.

 \mathcal{M} is the simplest possible amplitude corresponding to the Riemann zeta function and satisfying three physical properties:

- 1. \mathcal{M} is analytic everywhere except poles corresponding to the nontrivial zeros of the Riemann zeta function, and these poles are real if the Riemann hypothesis holds.
- 2. Each pole has positive residue as required by unitarity.

 ${\cal M}$ is the simplest possible amplitude corresponding to the Riemann zeta function and satisfying three physical properties:

- 1. \mathcal{M} is analytic everywhere except poles corresponding to the nontrivial zeros of the Riemann zeta function, and these poles are real if the Riemann hypothesis holds.
- 2. Each pole has positive residue as required by unitarity.
- 3. The forward amplitude satisfies

$$\lim_{s \to 0} \frac{\mathrm{d}^2}{\mathrm{d}s^2} \mathcal{M}(s,0) \neq 0$$

• Were the square roots necessary?

• Were the square roots necessary?

Yes: If we send $s \to s^2$ in $\mathcal{M}(s,0)$ to eliminate the square roots, then the forward amplitude scales with s^4 at small momentum.

This violates the s^2 scaling required by dispersion relations. Adams et al. [hep-th/0602178]

• Connection between low-momentum behavior and the zeros of zeta:

$$\frac{c_0}{2} = \lim_{s \to 0} \mathcal{A}(s) = -4 + \frac{\pi^2}{8} + G + \frac{\zeta''\left(\frac{1}{2}\right)}{2\zeta\left(\frac{1}{2}\right)} - \frac{1}{8}\left(\gamma + \frac{\pi}{2} + \log 8\pi\right)^2$$

Catalan's constant $G = \sum_{k=0}^{\infty} (-1)^k / (2k+1)^2$

• Connection between low-momentum behavior and the zeros of zeta:

$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^2} \simeq 4.6210 \times 10^{-2}$$

using the Hadamard product form of the zeta function (more on this later).

• Connection between low-momentum behavior and the zeros of zeta:

$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^2} \simeq 4.6210 \times 10^{-2}$$

using the Hadamard product form of the zeta function (more on this later).

• Poles corresponding to the nontrivial zeros: $\zeta(\frac{1}{2} \pm i\mu_n) = 0$

If the Riemann hypothesis holds, these poles are all at real, positive masses.

 $m_n = \mu_n$

The poles have the correct (positive) residue required by unitarity:

$$\oint_{s=\mu_n^2} i\mathcal{A}(s+i\epsilon) \mathrm{d}s > 0$$

• Connection between low-momentum behavior and the zeros of zeta:

$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^2} \simeq 4.6210 \times 10^{-2}$$

using the Hadamard product form of the zeta function (more on this later).

• Poles corresponding to the nontrivial zeros: $\zeta(\frac{1}{2} \pm i\mu_n) = 0$

If the Riemann hypothesis holds, these poles are all at real, positive masses.

 $m_n = \mu_n$

The poles have the correct (positive) residue required by unitarity. Specifically, if the zero $z_n = \frac{1}{2} \pm i\mu_n$ has order g_n , $\zeta(z) \sim (z - z_n)^{g_n}$, then:

$$\oint_{s=\mu_n^2} i\mathcal{A}(s+i\epsilon) \mathrm{d}s = 2\pi g_n$$

• Connection between low-momentum behavior and the zeros of zeta:

$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^2} \simeq 4.6210 \times 10^{-2}$$

using the Hadamard product form of the zeta function (more on this later).

• Poles corresponding to the nontrivial zeros: $\zeta(\frac{1}{2} \pm i\mu_n) = 0$

If the Riemann hypothesis holds, these poles are all at real, positive masses.

 $m_n = \mu_n$

The poles have the correct (positive) residue required by unitarity. Specifically, if the zero $z_n = \frac{1}{2} \pm i\mu_n$ has order g_n , $\zeta(z) \sim (z - z_n)^{g_n}$, then:

$$\oint_{s=\mu_n^2} i\mathcal{A}(s+i\epsilon) \mathrm{d}s = 2\pi g_n$$

All simple zeros \implies Universal coupling of massive states

• Connection between low-momentum behavior and the zeros of zeta:

$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^2} \simeq 4.6210 \times 10^{-2}$$

using the Hadamard product form of the zeta function (more on this later).

• Poles corresponding to the nontrivial zeros: $\zeta \left(\frac{1}{2} \pm i\mu_n\right) = 0$

If the Riemann hypothesis holds, these poles are all at real, positive masses. $m_n = \mu_n$

• Can parameterize any $g_n \neq 1$ by allowing degeneracies among the μ_n

• Locality: All poles are simple ones.

$$\mathcal{A}(s) \sim 1/(-s + \mu_n^2)$$

• Locality: All poles are simple ones.

$$\mathcal{A}(s) \sim 1/(-s + \mu_n^2)$$

• Higher-degree poles would correspond to kinetic terms with too many derivatives: a failure of locality. For example,

$$(\Box - m^2)^k \phi \longrightarrow \frac{1}{(-s + m^2)^k}$$

• Locality: All poles are simple ones.

$$\mathcal{A}(s) \sim 1/(-s + \mu_n^2)$$

• Higher-degree poles would correspond to kinetic terms with too many derivatives: a failure of locality. For example,

$$(\Box - m^2)^k \phi \longrightarrow \frac{1}{(-s + m^2)^k}$$

• Nonlocality in $\mathcal{A}(s) \sim 1/(-s + \mu_n^2)^k$ for k > 1 would correspond to an essential singularity in the Riemann zeta function,

$$\zeta(z) \sim e^{\frac{\alpha}{(z-z_n)^{k-1}}}$$

Locality in $\mathcal{A} \longleftrightarrow$ Meromorphicity in ζ

Analytic dispersion relations

Can any Lagrangian be a consistent EFT?

- Certain signs or magnitudes of couplings violate fundamental physics principles:
 - Unitarity
 - Causality
 - Analyticity
 - Thermodynamics

Can any Lagrangian be a consistent EFT?

- Certain signs or magnitudes of couplings violate fundamental physics principles:
 - Unitarity
 - Causality
 - Analyticity
 - Thermodynamics

"infrared consistency"

Can any Lagrangian be a consistent EFT?

- Certain signs or magnitudes of couplings violate fundamental physics principles:
 - Unitarity
 - Causality
 - Analyticity
 - Thermodynamics
- Examples:
 - Standard Model EFT
 - Flavor physics
 - Higher-curvature terms
 - Massive gravity
 - Einstein-Maxwell theory
 - Scalar theories
 - *a*-theorem

GR, Rodd [1908.09845] & (2022, forthcoming)

GR, Rodd [2004.02885, 2010.04723]

Bellazzini, Cheung, GR [1509.00851]; Cheung, GR [1608.02942];

Gruzinov, Kleban (2006)

Cheung, GR [1601.04068]

Cheung, **GR** [1407.7865]; Cheung, Liu, **GR** [1801.08546, 1903.09156];

Arkani-Hamed, Huang, Liu, GR [2109.13937]

Adams et al. (2006);

Chandrasekaran, **GR**, Shahbazi-Moghaddam [1804.03153]

Komargodski, Schwimmer (2011); Elvang et al. (2012)

Can any Lagrangian be a consistent EFT?

- Certain signs or magnitudes of couplings violate fundamental physics principles:
 - Unitarity
 - Causality
 - Analyticity
 - Thermodynamics
- Our $\mathcal{M}(s,t)$ built from the zeta function will by definition satisfy the requirements of analyticity and unitarity for scattering amplitudes.
- Question: What happens if we run $\mathcal{M}(s,t)$ through the mechanics of analytic dispersion relations?

Example theory

We'll first briefly review how infrared consistency bounds the coefficients of an EFT, based on analyticity, unitarity, and causality. Adams et al. [hep-th/0602178]

Example EFT: massless scalar with shift symmetry

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \frac{c}{M^4}(\partial\phi)^4$$

Example theory

We'll first briefly review how infrared consistency bounds the coefficients of an EFT, based on analyticity, unitarity, and causality. Adams et al. [hep-th/0602178]

Example EFT: massless scalar with shift symmetry

$$\mathcal{L} = -\frac{1}{2}(\partial\phi)^2 + \frac{c}{M^4}(\partial\phi)^4$$

Two-to-two scattering amplitude:

$$\mathcal{M}(s,t) = \frac{2c}{M^4}(s^2 + t^2 + u^2)$$

Forward amplitude (in state = out state):

$$\mathcal{M}(s,0) = \frac{4c}{M^4} s^2 \qquad \qquad s = -\frac{1}{2} t = -\frac{1}{2} t^2$$

$$s = -(p_1 + p_2)^2$$
$$t = -(p_1 + p_3)^2$$
$$u = -(p_1 + p_4)^2$$

Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the forward amplitude:

The Wilson coefficient of interest can be extracted via a contour integral of the forward amplitude:

$$\frac{4c}{M^4} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^3} \mathcal{M}(s,0)$$
$$= \frac{1}{2\pi i} \oint_{\mathcal{C}'} \frac{\mathrm{d}s}{s^3} \mathcal{M}(s,0)$$

[\]use analyticity to deform the contour

$$\frac{1}{4} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^3} \mathcal{M}(s,0)$$

$$= \frac{1}{2\pi i} \oint_{\mathcal{C}'} \frac{\mathrm{d}s}{s^3} \mathcal{M}(s,0)$$

$$= \frac{1}{2\pi i} \left(\int_{-\infty}^{0} + \int_{0}^{\infty} \right) \frac{\mathrm{d}s}{s^3} \mathrm{Disc} \, \mathcal{M}(s,0)$$

$$= \frac{1}{i\pi} \int_{0}^{\infty} \frac{\mathrm{d}s}{s^3} \mathrm{Disc} \, \mathcal{M}(s,0)$$
crossing symmetry: $\mathcal{M}(s,0) = \mathcal{M}(-s,0)$

$$\frac{4c}{M^4} = \frac{1}{i\pi} \int_0^\infty \frac{\mathrm{d}s}{s^3} \operatorname{Disc} \mathcal{M}(s,0)$$
$$= \frac{1}{i\pi} \int_0^\infty \frac{\mathrm{d}s}{s^3} \lim_{\epsilon \to 0} [\mathcal{M}(s+i\epsilon,0) - \mathcal{M}(s-i\epsilon,0)]$$
by definition

• Let's now apply the dispersion relation formalism to our zeta amplitude. Define a power series of the forward amplitude at small momentum:

$$\mathcal{M}(s,0) = \sum_{k=0}^{\infty} c_{2k} s^{2k}$$

• Let's now apply the dispersion relation formalism to our zeta amplitude. Define a power series of the forward amplitude at small momentum:

$$\mathcal{M}(s,0) = \sum_{k=0}^{\infty} c_{2k} s^{2k}$$

• Extract the Wilson coefficient with a contour integral,

$$c_{2k} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^{2k+1}} \mathcal{M}(s,0)$$
$$= \frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}s}{s^{2k}} \sigma(s) + c_{\infty}^{(2k)}$$

• Let's now apply the dispersion relation formalism to our zeta amplitude. Define a power series of the forward amplitude at small momentum:

$$\mathcal{M}(s,0) = \sum_{k=0}^{\infty} c_{2k} s^{2k}$$

• Extract the Wilson coefficient with a contour integral,

$$c_{2k} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{\mathrm{d}s}{s^{2k+1}} \mathcal{M}(s,0)$$
$$= \frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}s}{s^{2k}} \sigma(s) + c_{\infty}^{(2k)}$$

• Boundary term:

$$c_{\infty}^{(2k)} = \frac{1}{2\pi i} \oint_{|s|=\infty} \frac{\mathrm{d}s}{s^{2k+1}} \mathcal{M}(s,0)$$

Nonzero $c_{\infty}^{(2k)}$ would mean that $\Xi(z)$ grows at least as fast as $e^{\alpha z^{4k+2}}$ (i.e., growth order 4k+2), contradicting known growth order 1. Titchmarsh (1951) $\implies c_{\infty}^{(2k)} = 0$

• Let's now apply the dispersion relation formalism to our zeta amplitude. Define a power series of the forward amplitude at small momentum:

$$\mathcal{M}(s,0) = \sum_{k=0}^{\infty} c_{2k} s^{2k}$$

• The properties we have proven for $\mathcal{M}(s,t)$ give a beautiful relation between the Wilson coefficients and the nontrivial zeros:

e.g.,
$$c_0 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^{2}}$$
$$c_2 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^{2}}$$
Riemann hypothesis $\implies c_{2k} > 0$
$$c_4 = \sum_{n=1}^{\infty} \frac{2}{\mu_n^{10}}$$

For example, the s^2 coefficient gives us the remarkable identity:

$$c_{2} = \frac{1}{2} \lim_{s \to 0} \frac{d^{2}}{ds^{2}} \mathcal{M}(s, 0)$$

$$= -128 + \frac{1}{7680} \psi^{(5)} \left(\frac{1}{4}\right) - \zeta_{1}^{6} \left(\frac{1}{2}\right)$$

$$+ 3\zeta_{1}^{4} \left(\frac{1}{2}\right) \zeta_{2} \left(\frac{1}{2}\right) - \frac{9}{4} \zeta_{1}^{2} \left(\frac{1}{2}\right) \zeta_{2}^{2} \left(\frac{1}{2}\right)$$

$$+ \frac{1}{4} \zeta_{2}^{3} \left(\frac{1}{2}\right) - \zeta_{1}^{3} \left(\frac{1}{2}\right) \zeta_{3} \left(\frac{1}{2}\right)$$

$$+ \zeta_{1} \left(\frac{1}{2}\right) \zeta_{2} \left(\frac{1}{2}\right) \zeta_{3} \left(\frac{1}{2}\right) - \frac{1}{12} \zeta_{3}^{2} \left(\frac{1}{2}\right)$$

$$+ \frac{1}{4} \zeta_{1}^{2} \left(\frac{1}{2}\right) \zeta_{4} \left(\frac{1}{2}\right) - \frac{1}{8} \zeta_{2} \left(\frac{1}{2}\right) \zeta_{4} \left(\frac{1}{2}\right)$$

$$- \frac{1}{20} \zeta_{1} \left(\frac{1}{2}\right) \zeta_{5} \left(\frac{1}{2}\right) + \frac{1}{120} \zeta_{6} \left(\frac{1}{2}\right)$$

$$= \sum_{n=1}^{\infty} \frac{2}{\mu_{n}^{6}}$$
using the shorthand $\zeta_{n}(z) = \zeta^{(n)}(z)/\zeta(z)$

$$\zeta_{n}^{k}(z) = [\zeta_{n}(z)]^{k}$$

For example, the s^2 coefficient gives us the remarkable identity:

$$c_{2} = \frac{1}{2} \lim_{s \to 0} \frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}} \mathcal{M}(s,0)$$

= $-128 + \frac{1}{7680} \psi^{(5)}\left(\frac{1}{4}\right) - \zeta_{1}^{6}\left(\frac{1}{2}\right)$

Can prove (with great effort!) by computing analytic expressions for derivatives of $\zeta(z)$ at $z = \frac{1}{2}$ using polygamma identities and the product form of the zeta function,

$$\zeta(z) = \frac{1}{2(z-1)} (\pi e^{\gamma})^{z/2} \prod_{k=1}^{\infty} \left(1 + \frac{z}{2k}\right) e^{\frac{1}{z}/2k \left(\frac{1}{2}\right)} \prod_{\text{nontrivial zeros}} \left(1 - \frac{z}{z_n}\right)$$

which comes from the Hadamard expansion of the xi function,

$$\xi(z) = \xi(0)^{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \prod_{\substack{z_{n} \text{ nontrivial zeros}}}^{1} - \frac{1}{2} \begin{pmatrix} 1 \\ - \end{pmatrix} \frac{z_{1}}{z_{n}} \end{pmatrix}^{1}$$
$$- \frac{1}{2} \begin{pmatrix} z_{n} \\ - \end{pmatrix} \frac{z_{n}}{z_{n}} \begin{pmatrix} z_{n}$$

What is remarkable is that our amplitude construction allows for much simpler, physical derivations of such identities!

using the shorthand $\zeta_n(z) = \zeta^{(n)}(z)/\zeta(z)$ $\zeta_n^k(z) = [\zeta_n(z)]^k$

s

Numerical tests of $c_{4,6,8,10}$ confirm prediction to within relative error of 10^{-30} .

Other properties

What sort of theory is this?

Our amplitude *M*(*s*, *t*) describes a theory of two types of massless scalars,
 φ₁ and φ₂, exchanging a tower of massive states *X* in the *s* and *u* channels for the process:

$$\phi_1\phi_2 \longrightarrow \phi_1\phi_2$$

What sort of theory is this?

Our amplitude *M*(*s*, *t*) describes a theory of two types of massless scalars,
 φ₁ and φ₂, exchanging a tower of massive states *X* in the *s* and *u* channels for the process:

$$\phi_1\phi_2 \longrightarrow \phi_1\phi_2$$

• We alternatively could have defined $\mathcal{M}(s,t)$ as $\mathcal{A}(s) + \mathcal{A}(t) + \mathcal{A}(u)$ to have full Bose symmetry, in which case our amplitude would describe single-scalar scattering $\phi \phi \rightarrow \phi \phi$

What sort of theory is this?

Our amplitude *M*(*s*, *t*) describes a theory of two types of massless scalars,
 φ₁ and φ₂, exchanging a tower of massive states *X* in the *s* and *u* channels for the process:

$$\phi_1\phi_2 \longrightarrow \phi_1\phi_2$$

- We alternatively could have defined $\mathcal{M}(s,t)$ as $\mathcal{A}(s) + \mathcal{A}(t) + \mathcal{A}(u)$ to have full Bose symmetry, in which case our amplitude would describe single-scalar scattering $\phi \phi \rightarrow \phi \phi$
- The spectrum of X is given by $m_n^2 = \mu_n^2$

 Based on the properties of A(s), our Riemann zeta amplitude is on-shell constructible from the UV amplitudes φ₁φ₂ → X:

$$\mathcal{M}(s,t) = \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_2) \frac{1}{-s + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_4) + \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_4) \frac{1}{-u + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_2)$$

 Based on the properties of A(s), our Riemann zeta amplitude is on-shell constructible from the UV amplitudes φ₁φ₂ → X:

$$\mathcal{M}(s,t) = \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_2) \frac{1}{-s + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_4) + \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_4) \frac{1}{-u + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_2)$$

• Universal coupling: $\mathcal{M}_{\phi_1\phi_2\to X}(p_1,p_2) = \text{constant}$ for all X (= 1 in our units)

 Based on the properties of A(s), our Riemann zeta amplitude is on-shell constructible from the UV amplitudes φ₁φ₂ → X:

$$\mathcal{M}(s,t) = \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_2) \frac{1}{-s + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_4) + \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_4) \frac{1}{-u + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_2)$$

- Universal coupling: $\mathcal{M}_{\phi_1\phi_2 \to X}(p_1, p_2) = \text{constant}$ for all X (= 1 in our units)
- We thus have the elegant result:

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$

 Based on the properties of A(s), our Riemann zeta amplitude is on-shell constructible from the UV amplitudes φ₁φ₂ → X:

$$\mathcal{M}(s,t) = \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_2) \frac{1}{-s + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_4) + \sum_{X} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_1, p_4) \frac{1}{-u + \mu_n^2} \mathcal{M}_{\phi_1 \phi_2 \to X}(p_3, p_2)$$

- Universal coupling: $\mathcal{M}_{\phi_1\phi_2 \to X}(p_1, p_2) = \text{constant}$ for all X (= 1 in our units)
- We thus have the elegant result:

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$
$$\mathcal{M}(s,t) = \sum_{n} \left(\frac{1}{-s + \mu_n^2 - i\epsilon} + \frac{1}{-u + \mu_n^2 - i\epsilon}\right)$$

.

• Proof:

Let
$$\Delta(s) = \mathcal{A}(s) - \sum_{n} \frac{1}{-s + \mu_n^2}$$
, where $\mathcal{A}(s) = -\frac{\mathrm{d} \log \Xi(\sqrt{s})}{\mathrm{d}s}$

• Proof:

Let
$$\Delta(s) = \mathcal{A}(s) - \sum_{n} \frac{1}{-s + \mu_n^2}$$
, where $\mathcal{A}(s) = -\frac{\mathrm{d} \log \Xi(\sqrt{s})}{\mathrm{d}s}$.

We have previously shown that $\mathcal{A}(s)$ has zeros only at $s = \mu_n^2$ and (if we allow the possibility of degenerate μ_n) all of the residues are 1.

 $\implies \Delta(s)$ is entire.

• Proof:

Let
$$\Delta(s) = \mathcal{A}(s) - \sum_{n} \frac{1}{-s + \mu_n^2}$$
, where $\mathcal{A}(s) = -\frac{\mathrm{d} \log \Xi(\sqrt{s})}{\mathrm{d}s}$.

We have previously shown that $\mathcal{A}(s)$ has zeros only at $s = \mu_n^2$ and (if we allow the possibility of degenerate μ_n) all of the residues are 1.

 $\implies \Delta(s)$ is entire.

Expand $\Delta(s)$ in a Laurent series about $s = \infty$.

The definition of $\Delta(s)$ and the absence of a pole at infinity in $\mathcal{A}(s)$ imply:

 $\Delta(s)$ is bounded.

• Proof:

Let
$$\Delta(s) = \mathcal{A}(s) - \sum_{n} \frac{1}{-s + \mu_n^2}$$
, where $\mathcal{A}(s) = -\frac{\mathrm{d} \log \Xi(\sqrt{s})}{\mathrm{d}s}$.

We have previously shown that $\mathcal{A}(s)$ has zeros only at $s = \mu_n^2$ and (if we allow the possibility of degenerate μ_n) all of the residues are 1.

 $\implies \Delta(s)$ is entire.

Expand $\Delta(s)$ in a Laurent series about $s = \infty$. The definition of $\Delta(s)$ and the absence of a pole at infinity in $\mathcal{A}(s)$ imply:

 $\Delta(s)$ is bounded.

Liouville's theorem $\implies \Delta(s)$ is constant.

• Proof:

Let
$$\Delta(s) = \mathcal{A}(s) - \sum_{n} \frac{1}{-s + \mu_n^2}$$
, where $\mathcal{A}(s) = -\frac{\mathrm{d} \log \Xi(\sqrt{s})}{\mathrm{d}s}$.

We have previously shown that $\mathcal{A}(s)$ has zeros only at $s = \mu_n^2$ and (if we allow the possibility of degenerate μ_n) all of the residues are 1.

 $\implies \Delta(s)$ is entire.

Expand $\Delta(s)$ in a Laurent series about $s = \infty$. The definition of $\Delta(s)$ and the absence of a pole at infinity in $\mathcal{A}(s)$ imply:

 $\Delta(s)$ is bounded.

Liouville's theorem $\implies \Delta(s)$ is constant.

By our evaluation of c_0 , $\Delta(0) = 0 \implies \Delta(s)$ vanishes everywhere.

• Integrating our result

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$

gives the product form for the Riemann-Landau xi function:

$$\Xi(z) = \Xi(0) \prod_{n} \left(1 - \frac{z^2}{\mu_n^2} \right)$$

• Integrating our result

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$

gives the product form for the Riemann-Landau xi function:

$$\xi(z) = \xi(0) \prod_{z_n \text{ nontrivial zeros}} \left(1 - \frac{z}{z_n}\right) \qquad z_n = \frac{1}{2} \pm i\mu_n$$
$$\zeta(z) = \frac{2\xi(0)}{z(z-1)} \frac{\pi^{z/2}}{\Gamma\left(\frac{z}{2}\right)} \prod_{z_n} \left(1 - \frac{z}{z_n}\right)$$

• Integrating our result

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$

gives the product form for the Riemann-Landau xi function:

$$\xi(z) = \xi(0) \prod_{z_n \text{ nontrivial zeros}} \left(1 - \frac{z}{z_n}\right) \qquad z_n = \frac{1}{2} \pm i\mu_n$$

$$\zeta(z) = \frac{2\xi(0)}{z(z-1)} \frac{\pi^{z/2}}{\Gamma\left(\frac{z}{2}\right)} \prod_{z_n} \left(1 - \frac{z}{z_n}\right)$$

• Using the Weierstrass product $\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}$ along with $\zeta(0) = -\frac{1}{2}$, we have...

• Integrating our result

$$\mathcal{A}(s) = -\frac{\mathrm{d}\,\log\Xi(\sqrt{s})}{\mathrm{d}s} = \sum_{n} \frac{1}{-s + \mu_n^2}$$

gives the product form for the Riemann-Landau xi function:

$$\xi(z) = \xi(0) \prod_{z_n \text{ nontrivial zeros}} \left(1 - \frac{z}{z_n}\right) \qquad z_n = \frac{1}{2} \pm i\mu_n$$

$$\zeta(z) = \frac{2\xi(0)}{z(z-1)} \frac{\pi^{z/2}}{\Gamma\left(\frac{z}{2}\right)} \prod_{z_n} \left(1 - \frac{z}{z_n}\right)$$

$$z_n = \frac{1}{2} \pm i\mu_n$$

• The Hadamard product:

$$\zeta(z) = \frac{(\pi e^{\gamma})^{z/2}}{2(z-1)} \prod_{k=1}^{\infty} \left(1 + \frac{z}{2k}\right) e^{-z/2k} \prod_{z_n} \left(1 - \frac{z}{z_n}\right)$$

On-shell constructibility of amplitude $\leftrightarrow \rightarrow$ Hadamard product of zeta function

Reflection symmetry and CPT

 Functional equation ζ(z) = 2^zπ^{z-1} sin(πz/2)Γ(1 − z)ζ(1 − z) and Schwarz reflection ζ(z*) = [ζ(z)]* together imply that the nontrivial zeros enjoy a four-fold symmetry:

Reflection symmetry and CPT

Functional equation ζ(z) = 2^zπ^{z-1} sin(πz/2)Γ(1 − z)ζ(1 − z)
 and Schwarz reflection ζ(z*) = [ζ(z)]*
 together imply that the nontrivial zeros enjoy a two-fold symmetry (if RH, μ ∈ ℝ):

Reflection symmetry and CPT

• Functional equation $\zeta(z) = 2^z \pi^{z-1} \sin(\pi z/2) \Gamma(1-z) \zeta(1-z)$ and Schwarz reflection $\zeta(z^*) = [\zeta(z)]^*$ together imply that the nontrivial zeros enjoy a four-fold symmetry.

 \implies Im $\mathcal{M}(s,0)$ is nonzero only because of the Feynman $i\epsilon$ deformation in propagator,

$$\operatorname{Im}\mathcal{M}(s,0) = \sum_{\mu_n} \pi \delta(\pm s - \mu_n^2)$$
Reflection symmetry and CPT

• Functional equation $\zeta(z) = 2^z \pi^{z-1} \sin(\pi z/2) \Gamma(1-z) \zeta(1-z)$ and Schwarz reflection $\zeta(z^*) = [\zeta(z)]^*$ together imply that the nontrivial zeros enjoy a four-fold symmetry.

 \implies Im $\mathcal{M}(s,0)$ is nonzero only because of the Feynman $i\epsilon$ deformation in propagator,

$$\mathrm{Im}\mathcal{M}(s,0) = \sum_{\mu_n} \pi \delta(\pm s - \mu_n^2)$$

• Symmetry of zeros \longleftrightarrow Momentum conservation in optical theorem: $\sigma \neq 0$ only for on-shell X.

Reflection symmetry and CPT

• Functional equation $\zeta(z) = 2^z \pi^{z-1} \sin(\pi z/2) \Gamma(1-z) \zeta(1-z)$ and Schwarz reflection $\zeta(z^*) = [\zeta(z)]^*$ together imply that the nontrivial zeros enjoy a four-fold symmetry.

 \implies Im $\mathcal{M}(s,0)$ is nonzero only because of the Feynman $i\epsilon$ deformation in propagator,

$$\mathrm{Im}\mathcal{M}(s,0) = \sum_{\mu_n} \pi \delta(\pm s - \mu_n^2)$$

- Symmetry of zeros \longleftrightarrow Momentum conservation in optical theorem: $\sigma \neq 0$ only for on-shell X.
- $\mu_n = M iW$, violating RH, gives extra $\operatorname{Im} \mathcal{M}(s, 0) \propto W$ for $W \ll M$ Symmetry of zeros: come in pairs $\pm W \longleftrightarrow$ Growing/decaying modes (CPT)

Reflection symmetry and CPT

• Functional equation $\zeta(z) = 2^z \pi^{z-1} \sin(\pi z/2) \Gamma(1-z) \zeta(1-z)$ and Schwarz reflection $\zeta(z^*) = [\zeta(z)]^*$ together imply that the nontrivial zeros enjoy a four-fold symmetry.

 \implies Im $\mathcal{M}(s,0)$ is nonzero only because of the Feynman $i\epsilon$ deformation in propagator,

$$\mathrm{Im}\mathcal{M}(s,0) = \sum_{\mu_n} \pi \delta(\pm s - \mu_n^2)$$

- Symmetry of zeros \longleftrightarrow Momentum conservation in optical theorem: $\sigma \neq 0$ only for on-shell X.
- $\mu_n = M iW$, violating RH, gives extra $\operatorname{Im} \mathcal{M}(s, 0) \propto W$ for $W \ll M$ Symmetry of zeros: come in pairs $\pm W \longleftrightarrow$ Growing/decaying modes (CPT)
- Zero-counting: $N(T) = \left| \{ z | \zeta(z) = 0 \& 0 < \operatorname{Im}(z) \le T \} \right|$

$$=\frac{1}{\pi}\int_0^{\sqrt{1}}\sigma(s)\,\mathrm{d}s$$

Outlook

We have constructed an amplitude whose physical attributes correspond to the known or conjectured properties of the nontrivial zeros of zeta.

Outlook

We have constructed an amplitude whose physical attributes correspond to the known or conjectured properties of the nontrivial zeros of zeta.

• **Open question:** What dynamics gives rise to $\mathcal{M}(s, t)$?

Outlook

We have constructed an amplitude whose physical attributes correspond to the known or conjectured properties of the nontrivial zeros of zeta.

- Open question: What dynamics gives rise to $\mathcal{M}(s,t)$?
- Other future directions:
 - Different couplings or spin for massive states?
 - Zeta function universality
 - Dirichlet *L*-functions

Questions