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Why Studying Galaxy Dynamics?
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N " Data from SPARC

V. DRSS L (Lelli et al. 2016)
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Why Studying Galaxy Dynamics?

NGC 6946

200

ommes | EVidence of “missing mass”

ogﬁ‘;"‘”‘xii;ié?é**%{f

Iy HI 21 em * Dark matter halos — Cosmology

1150

T TPy 1 * Alternatives to particle dark matter
1 (e.g. MOND, modified gravity, etc.)

100 -

V- (km' s

Galaxy Formation & Evolution

__ a 5 0 15 e Dynamical scaling laws (e.g. Tully-Fisher)
B % o % (kpe) e Angular momentum < Galaxy Morphology
¥ By s e Data_from SPARC  Disk Stability <> Star Formation
o L N R (Lelli et al. 2016)

e (Gas Turbulence < Stellar Feedback

e Non-circular motions (bars, inflows, outflows)
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Outline:

|. Intro: Galaxy Rotation Curves
2. The SPARC project

3. Empirical Laws of Galactic Rotation
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1. Intro: Rotation Curves
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How do we measure rotation curves?

Distribution of baryons (gas & stars)

Near-infrared image
./ (distribution of stars)

(distribution of atomic hydrogen) . -
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How do we measure rotation curves?

Distribution of baryons (gas & stars) Gas Velocity along the Line of Sight
. ' AP e
Near-infrared image Blueshift: approaching
_/(distribution of stars) towards the observer

Redshift: receding
from the observer

HI map from 21-cm-radio data
(distribution of atomic hydrogen) .
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Deprojection from sky-plane to galaxy-plane
| For a thin disk with circular orbits:
Vies(X,y)=V_ +V (R)sin(i]cos(¢)
cos(9)=f(x,, v, P4)
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Deprojection from sky-plane to galaxy-plane

For a thin disk with circular orbits:

Vies(x,y)=V  #V , (R)sin{i]cos(¢)
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Rotation Curves become Flat at Large Radii
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Rotation Curves become Flat at Large Radii
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Flat rotation curves are only the beginning of the story...

There 1s much more to learn from the relation between
the shapes of rotation curves and the baryon distribution!
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Building a Newtonian Mass Model

Galaxy Luminosity Profile e Solve (numerically) Poisson's equation in cylindrical
(~stellar density vs radius)

coordinates for each component (1 = stars, gas):

V’®.(R,z)=4nGp.(R,z)

stars+gas

gas

_ 10 20 30
Van Albada+1985 Radius (kpe)
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Building a Newtonian Mass Model

Galaxy Luminosity Profile e Solve (numerically) Poisson's equation in cylindrical
(~stellar density vs radius)

coordinates for each component (1 = stars, gas):
V'®,(R,z)=41Gp,(R, z)
 Find expected circular velocity in disk mid-plane:

V(R,z=0) 0®,(R,z=0)

R OR

stars+gas

gas

_ 10 20 30
Van Albada+1985 Radius (kpc)
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Building a Newtonian Mass Model

Galaxy Luminosity Profile e Solve (numerically) Poisson's equation in cylindrical
(~stellar density vs radius)

coordinates for each component (1 = stars, gas):
V:®,(R,z)=41Gp,(R,z)
 Find expected circular velocity in disk mid-plane:

Vi(R,z=0)  0®,(R,z=0)

R OR
o i w2 - Sum the gravitational fields (g, = V.¥/R):
Vi(R)=Y V(R)+Y Vi(R)

_ 10 20 30
Van Albada+1985 Radius (kpe)
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Adding a Dark Matter Halo

e Assume spherical DM halo profile:
NGC 3198 Pon=P 15 po,r )

e Add 1t together with the baryons:
2 _ 2 2 v /2
Vb_YsVs+Yng+VDM< ’ )

20
Van Albada+1985 Radius (kpc)
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Adding a Dark Matter Halo

e Assume spherical DM halo profile:
NGC 3198 Pon=P 15 po,r )

e Add 1t together with the baryons:
2 _ 2 2 v /2
Vb_YsVs+Yng+VDM< ’ )

— * )
4"""'"
-
i

For spiral galaxies like the Milky Way,
baryons dominate in the inner parts
while DM is needed 1n the outer regions
— the sum of the two gives the flat part!

-

------------
.....................
-
----------
-
.....
-
-
-
-
-

Why are rotation curves flat? Unclear!

This 1s called “disk-halo conspiracy”

20 2 (van Albada & Sancisi 1986)
Van Albada+1985 Radius (kpc)
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2. The SPARC project
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Database for 175 Disk Galaxies (spirals & dlIrr)

g NGC 6946
C\) T T T ] \\
Observed |
Sag® ] ] L\ \a
OVM § j gll (Zlicm)§ § § i § % | /

Spitzer Photometry & Accurate Rotation Curves A

e HI rotation curves from the literature
(> 40 papers or PhD thesis over 40 years)

: V- (km 571

5 | 1I0 B 15 .
oo e Ha rotation curves for 30% of sample

(long-slit, IFU, and Fabry-Perot data)

e Spitzer Photometry at 3.6 um

Best tracer of the stellar mass distribution
Public data: astroweb.cwru.edu/SPARC

Lelli, McGaugh, Schombert (2016)
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Complex Stellar Pop. Models at 3.6 um

Changing the stellar evolution model: Changing the star-formation history:

{Illllll|I|I|II|||II|I|I‘III||I||||I|I|||II|]I]I|II||III||

baseline SFH —— = later formation
HB/BSs enhanced —— =rising SF

B
AGB suppressed = extended SF
= episodic SF

o

JI||||lII|IIII|IIII|III
lIl||[III|IIII|IIII|IIII

Jllllllllllllllllllllll

I|III|III|JII|III|III‘I III|II||IIllllllllllllllllJlIlll

2.4 2.6 2.8 3.0 3.2 34 1.8 2.0 22 24 2.6 2.8 3.0 3.2 3.4
V-3.6 Schombert+(2019, 2022) V-3.6
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Complex Stellar Pop. Models at 3.6 um

Changing the stellar evolution model: Changing the star-formation history:
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Broad Range of Galaxy Properties

o9 | High-mass HSB spiral
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High-Mass HSB Galaxy Low-Mass LSB Galaxy

UGC03546 (Q =1) | | _UGCA442 (Q = 1)
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Rotation Curves Overview
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Spitzer Photometry & Accurate Rotation Curves ‘.

. Basic Data & Structural Relations: Lelli+2016a, AJ

. Baryonic Tully-Fisher Relation (I): Lelli+2016b, ApJL
. Central Surface Density Relation: Lelli+2016¢, ApJL

. Radial Acceleration Relation (I): McGaugh+2016, PRL
Radial Acceleration Relation (II): Lelli+2017a, Ap]J

. The Cusp-vs-Core Problem: Katz+2017, MNRAS

. Testing Emergent Gravity: Lelli+2017b, MNRAS

. Radial Acceleration Relation (III): Li+2018, A&A
Maximum-Disk Models: Starkman+2018, MNRAS

10. Missing Baryons: Katz+2018, MNRAS

11. Scaling Relations for DM Halos: Li+2019, MNRAS
12. Halo Mass - Velocity Relations: Katz+2019, MNRAS

© 0O N O Uk W N e

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

Stellar M/L ratios (I): Schombert+2019, MNRAS
Residuals in BTFR: Desmond+2019, MNRAS
Tully-Fisher Relation (II): Lelli+2019, MNRAS

The Halo Mass Function: Li+2019, Ap]JL

Catalog of DM Halo Fits: Li+2020, Ap]JS

HO from Tully-Fisher Relation: Schombert+2020, AJ
Testing the SEP in MOND (I): Chae+2020

Testing the SEP in MOND (II): Chae+2021
Cautionary Tale in Bayesian Fits: Li+2021, A&A
Tully-Fisher Relation in the LG: McGaugh+2021, AJ
Adiabatic Halo Compression: Li+2022, Ap]

Stellar M/L ratios (II): Schombert+2022, AJ
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3. Empirical Laws of
Galactic Rotation

co Lelli (INAF - Arcetri



Dynamical Law: Correlation with small scatter

Baryonic quantity Dynamical quantity
(gas and stars)

(from gas kinematcs)
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Three Dynamical Laws
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1** Law - Baryonic Tully-Fisher Relation (BTFR)
Observables:

o V_=average velocity along the flat part of the

rotation curve (set by baryons + DM halo)
« M, = total baryonic mass (gas plus stars)

( M ® )

n
n
©
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=
c
o
>
-
(O
m

107 L

. Rotation Velocity (km/s)
Lelli+2019
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1** Law - Baryonic Tully-Fisher Relation (BTFR)

( M ® )
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. Rotation Velocity (km/s)
Lelli+2019

Observables:

o V_=average velocity along the flat part of the

rotation curve (set by baryons + DM halo)
« M, = total baryonic mass (gas plus stars)

Key Properties:
 Best-fit slope 1s ~4 within the errors
M,=N V;‘ N= 1 a,.,~10" m/s’
GN aBTFR

e Scatter 1s very small (consistent with obs. errors)
e No residual correlation (size, surface density, etc)
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1** Law - Baryonic Tully-Fisher Relation (BTFR)
In a ACDM cosmology:

M= mass within which p,_=200p__

20
1 1 X
M. = V
V100 GyH, "
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Lelli+2019
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1** Law - Baryonic Tully-Fisher Relation (BTFR)
In a ACDM cosmology:

M= mass within which p,_=200p__

1 1 X
M. = V
V100 GyH, "

Introduce baryonic quantities:
f,=M,IM,,,~Q,/Q,, (from CMB)

fv=V V=0 (1) (for realistic halos)
M, ocf, V?
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. Rotation Velocity (km/s)
Lelli+2019
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1** Law - Baryonic Tully-Fisher Relation (BTFR)
In a ACDM cosmology:

M= mass within which p,_=200p__

1 1 X
M. = V
V100 GyH, "

Introduce baryonic quantities:
f,=M,IM,,,~Q,/Q,, (from CMB)

fv=V V=0 (1) (for realistic halos)
107 , MbocfbV? f,ocV: Fine tuning!

. Rotation Velocity (km/s)
Lelli+2019
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Three Dynamical Laws
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2" Law — Central Density Relation (CDR)

2

f —dR Toomre (1963)

2 nG
2 (0) — surface densﬂy of stars
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2" Law — Central Density Relation (CDR)

Baryon dominated [, / 2
HSB spiral galaxies o
f —dR Toomre (1963)

Q:x | 2dyn(O)

o Al
L

f{)(b Q}/Q

O
DM dominated & | %3’
LSB dwarf galaxies | gi 'f

21 G
2 (0) — surface densﬂy of stars

Key Properties:
« Non-linear relation — X _critical density

2 (0)> 2 — baryons domination

2 (0)<2 — DM domination

e Scatter 1s small (consistent with errors)
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No Residual Correlations across the CDR

Galaxy Size

Newton’s shell theorem
does NOT apply in disks!

Number of Galaxies
Residuals (dex)

-1.0 -05 0.0 0.5 . ' 0.0 . . Zdyn(O) depends on the
Residuals (dex)

1.0 mass distribution at all R.

Stellar Mass Gas Fraction

o
U

We’d expect secondary
correlations with galaxy
mass or size, but none 1S

Residuals (dex)
S o
n o
Residuals (dex)

observed... problem!

ORrRrNWARAUIO N OWY

I
[
o
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Three Dynamical Laws

-
o
N

=
o
[

Each radius 1nside
different galaxies

.—I'q_'
n
&
~
>
o=
O
o
v
>
c
o
=
©
4
o
a'd

100 10!
Radius [kpc]

2" aw: R— 0
> —_—>

dyn, 0 bar, O

31 Law: YR

gobs < gbar

Federico Lelli (INAF - Arcetri) Galaxy Dynamics as tesbeds of Dark Matter and Galaxy Evolution



3rd [.aw — Radial Acceleration Relation (RAR)

2700 points from Observables:
153 disk galaxies

g, centripetal acceleration from RCs

g _— gravitational field from baryons

McGaugh+2016
Lelli+2017
Li, Lelli+2018
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3rd [.aw — Radial Acceleration Relation (RAR)

2700 points from Observables:
153 disk galaxies

g, centripetal acceleration from RCs

g — gravitational field from baryons

Key Properties:

o Acceleration scale a, AR~10‘10 m/s?

Qppp=1.2:10""m/s’ e Small scatter (consistent with obs. errors)
9 obs =V.-Gp ar Apar * No residual dependencies (radius, etc.)

s L MUl « Baryon distribution <> Rotation Curve
Lelli+2017

Li, Lelli+2018
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Very different galaxies on the same RAR

Bulge—Dominated Spiral (NGC7814)  Disk—Dominated Spiral (NGC6503)  Gas—Dominated Dwarf (NGC3741)
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Very different galaxies on the same RAR

Bulge—Dominated Spiral (NGC7814)  Disk—Dominated Spiral (NGC6503)  Gas—Dominated Dwarf (NGC3741)
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Very different galaxies on the same RAR

Bulge—Dominated Spiral (NGC7814)  Disk—Dominated Spiral (NGC6503)  Gas—Dominated Dwarf (NGC3741)
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Building up the RAR (watch video here)

NGC7814
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http://astroweb.cwru.edu/SPARC/Video.html



RAR from semi-empirical ACDM models

0.4

0.3}
0.2¢
0.1f

" QObserved
Relation

0.0 <

Residuals [dex]

|
(=}
—

-0.2}

I I 4_..03 I 1 L
-11 -10 9 —-13 —-12 -11 -10

log(gpar) [m/s?] Li, McGaugh+2022 log(gbar) [m/s?]

Basic model: Exponential disks + De Vaucouleurs Bulge + NFW halo
Basic physics: Gravity — NFW halo adiabatically contracts as baryons fall in
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RAR from ACDM numerical simulations

MBI : McGaugh Fit (Eq. 1) | Shape: too much DM at all radii

EAGLES (Ludlow+16)

MBI Full disk sample | Scatter: too high — stochasticity

SPARC sample (McGaugh+16)

|
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1 1 1
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Firjucial AMr model
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Three Laws — Three Acceleration Scales
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ABSTRACT

I use a modified form of the Newtonian dynamics (inertia and /or gravity) to describe the motion .
of bodies in the gravitational fields of galaxies, assuming that galaxies contain no hidden mass, with Orl1 MOND
the following main results. « e .
1. The Keplerian, circular velocity around a finite galaxy becomes independent of r at large radii, pl‘edICtIOIlS 1n 1 9 8 3 .
thus resulting in asymptotically flat velocity curves.
2. The asymptotic circular velocity (V) is determined only by the total mass of the galaxy (M): . )
V¢ = a,GM, where a, is an acceleration constant appearing in the modified dynamics. This relation Baryonlc TF Relation
1s consistent with the observed Tully-Fisher relation if one uses a luminosity parameter which is
proportional to the observable mass.
3. The discrepancy between the dynamically determined Oort density in the solar neighborhood
and the density of observed matter disappears.
4. The rotation curve of a galaxy can remain flat down to very small radii, as observed, only if the
galaxy’s average surface density 2 falls in some narrow range of values which agrees with the Fish
and Freeman laws. For smaller values of X, the velocity rises more slowly to the asymptotic value. Central Densjty Relation
5. The value of the acceleration constant, a,, determined in a few independent ways is approxi-
mately 2X 107 8(H, /50 km s~ ! Mpc™")2 cm s~ 2, which is of the order of CH,=5x10"%(H, /50
km s~ ! Mpc™!) cm s 2.
The main predictions are:
1. Rotation curves calculated on the basis of the observed mass distribution and the modified Radial Acceleration Relation
dynamics should agree with the observed velocity curves.
2. The V2 = a,GM relation should hold exactly.
3. An analog of the Oort discrepancy should exist in all galaxies and become more severe with
increasing r in a predictable way.
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ABSTRACT

I use a modified form of the Newtonian dynamics (inertia and /or gravity) to describe the motion .
of bodies in the gravitational fields of galaxies, assuming that galaxies contain no hidden mass, with COOI manga 1n 1983
the following main results.

1. The Keplerian, circular velocity around a finite galaxy becomes independent of r at large radii, MP COMIGS <
thus resulting in asymptotically flat velocity curves.

2. The asymptotic circular velocity (V) is determined only by the total mass of the galaxy (M):
V2 = a,GM, where a, is an acceleration constant appearing in the modified dynamics. This relation
1s consistent with the observed Tully-Fisher relation if one uses a luminosity parameter which is
proportional to the observable mass.

3. The discrepancy between the dynamically determined Oort density in the solar neighborhood
and the density of observed matter disappears.

4. The rotation curve of a galaxy can remain flat down to very small radii, as observed, only if the
galaxy’s average surface density 2 falls in some narrow range of values which agrees with the Fish
and Freeman laws. For smaller values of X, the velocity rises more slowly to the asymptotic value.

5. The value of the acceleration constant, a,, determined in a few independent ways is approxi-
mately 2X 107 8(H,/50km s~' Mpc™")? cm s~2, which is of the order of CH,=5X10"%(H, /50
km s~ ! Mpc™!) cm s 2.

The main predictions are:

1. Rotation curves calculated on the basis of the observed mass distribution and the modified
dynamics should agree with the observed velocity curves.

2. The V2 = a,GM relation should hold exactly.

3. An analog of the Oort discrepancy should exist in all galaxies and become more severe with
increasing r in a predictable way.
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Conclusions:

1. Tight baryon-dark matter coupling in galaxies
— Summarized by 3 empirical laws: BTFR, CDR, RAR
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Conclusions:

1. Tight baryon-dark matter coupling in galaxies
— Summarized by 3 empirical laws: BTFR, CDR, RAR

2. Each law points to distinct acceleration scales:

— Diflerent physical meanings but same numerical value
— New constant of Nature? New physics at low acc.?

3. Fine-tuning problems for galaxy formation in ACDM
4. Phenomenology predicted a-prior1 by Milgrom (1983)
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