Fukaya category of symplectic manifolds and microlocal sheaf theory

Doğancan Karabaş

10 November 2022

Doğancan Karabaş

Fukaya category and microlocal sheaf theory

10 November 2022 1 / 21

(Exact) symplectic manifold

Symplectic manifold (M, ω) : *M* is a smooth manifold, ω is a closed, nondegenerate 2-form on *M*.

- closed: $d\omega = 0$.
- nondegenerate: The following is an isomorphism:

$$TM \xrightarrow{\sim} T^*M$$

 $X \mapsto \iota_X \omega := \omega(X, \bullet)$

 \Rightarrow *M* is even dimensional.

Exact symplectic manifold (M, ω, λ) : λ is a 1-form on M such that

$$\omega = d\lambda.$$

 $\Rightarrow M$ is noncompact.

• Cotangent bundles are exact symplectic manifolds.

$$M := T^* N = \{(x_1, \dots, x_n, p_1, \dots, p_n)\}$$
$$\omega := \sum_{i=1}^n dx_i \wedge dp_i \qquad \lambda := -\sum_{i=1}^n p_i dx_i$$

- Orientable surfaces with the area form.
- \mathbb{CP}^n with Fubini-Study symplectic form.
- Complex submanifolds of \mathbb{C}^n .
- Smooth complex projective varieties.

• ...

Lagrangian L in (M, ω) : L is n-dimensional submanifold of M^{2n} such that

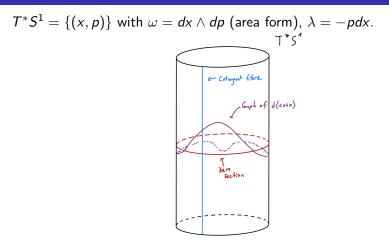
$$\omega|_L = 0.$$

Exact Lagrangian *L* in (M, ω, λ) :

$$\lambda|_L = df$$

for some smooth function $f: L \to \mathbb{R}$.

An example: cylinder



Every curve is a Lagrangian. Some exact Lagrangians are:

- Zero section $\{p = 0\}$.
- Cotangent fibres $\{x = x_0\}$ for any $x_0 \in S^1$.
- The graph of the differential of $f: S^1 \to \mathbb{R}$. Ex: $f(x) = \cos x$.

(Exact) symplectomorphism

Symplectomorphism *F* between (M_1, ω_1) and (M_2, ω_2) : A diffeomorphism

$$F: M_1 \to M_2$$

such that

$$F^*\omega_2 = \omega_1$$

Exact symplectomorphism F between $(M_1, \omega_1, \lambda_1)$ and $(M_2, \omega_2, \lambda_2)$:

$$F^*\lambda_2 = \lambda_1 + df$$

for some smooth function $f: M_1 \to \mathbb{R}$.

 \Rightarrow (Exact) symplectomorphisms preserves (exact) Lagrangians.

Hamiltonian

Hamiltonian on (M, ω) : A smooth function $H: M \to \mathbb{R}$.

Hamiltonian vector field X_H on M: Defined by

$$TM \xrightarrow{\sim} T^*M$$
$$X_H \mapsto dH = \iota_{X_H}\omega := \omega(X_H, \bullet)$$

Hamiltonian flow $\phi_H^t \colon \mathbb{R} \times M \to M$: The flow of X_H .

Hamiltonian symplectomorphism $\phi_H^1: M \to M$: Why is it an (exact) symplectomorphism?Cartan's magic formula:

$$\mathcal{L}_{X_{H}}\omega = (\iota_{X_{H}} \circ d + d \circ \iota_{X_{H}})(\omega) = \iota_{X_{H}} \circ d\omega + d \circ \iota_{X_{H}}\omega = d^{2}H = 0$$

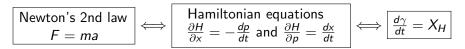
$$\mathcal{L}_{X_{H}}\lambda = (\iota_{X_{H}} \circ d + d \circ \iota_{X_{H}})(\lambda) = \iota_{X_{H}} \circ d\lambda + d \circ \iota_{X_{H}}\lambda = d(H + \iota_{X_{H}}\lambda)$$

Physical interpretation

Classical mechanics: For simplicity, assume *N* is 1-dimensional.

- M := T*N = {(x, p)} is the phase space: x ∈ N is position, p is momentum.
- H(x, p) = p²/2m + φ(x) is the total energy of a particle at x with momentum p, where φ(x) is the potential energy at x.
- Path of a particle between time t = 0 and t = 1:

$$egin{aligned} &\gamma\colon [0,1] o M \ & t\mapsto \gamma(t) = (x(t),p(t)) \end{aligned}$$



Conclusion: Hamiltonian vector field tells where the particle will go!

Define the symplectic action functional

$$egin{aligned} & \mathcal{D}:\,\Omega o\mathbb{R} \ & \gamma\mapsto\int_0^1-\gamma^*\lambda-\mathcal{H}(\gamma(t))dt \end{aligned}$$

on the space of paths of the form $\gamma \colon [0,1] \to M$ with some boundary conditions.

Theorem: Assume that the boundary conditions are given by $\gamma(0) \in L_0$ and $\gamma(1) \in L_1$ such that L_0 and L_1 are exact Lagrangians, then γ solves the Hamiltonian equations if and only if γ is a critical point of S. **Question:** Given a Hamiltonian *H*, find all paths of motion $\gamma(t) = (x(t), p(t))$ in the phase space such that $x(0) = x_0$ and $x(1) = x_1$.

An approach: Here, boundary conditions are $\gamma(0) \in \{x = x_0\}$ and $\gamma(1) \in \{x = x_1\}$ which are cotangent fibres, hence exact Lagrangians.

Solution: Minimise the symplectic action functional to find solutions.

Question: Given Lagrangian boundary conditions, is there a lower bound of solutions?

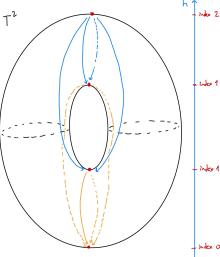
Equivalent question: Is there a lower bound for the number of critical points of the symplectic action functional *S*?

Morse theory: The total dimension of the homology gives a lower bound for the number of critical points of smooth functions on compact manifolds.

Problem: Ω is infinite-dimensional.

Morse theory

Example: Torus T^2 with height function $h: T^2 \to \mathbb{R}$.



Morse chain complex:

$$\mathbb{R}[2] \xrightarrow{1-1+1-1} (\mathbb{R} \oplus \mathbb{R})[1] \xrightarrow{1-1+1-1} \mathbb{R}[0]$$

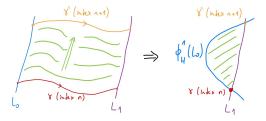
Its homology is the singular homology $H_*(M; \mathbb{R})$, which doesn't depend on h. Hence,

#crit points of $h \ge \dim H_*(M; \mathbb{R}) = 4$

for any smooth $h: T^2 \to \mathbb{R}$.

Floer theory

Floer: Morse theory for $S \colon \Omega \to \mathbb{R}$ on infinite dimensional space Ω .



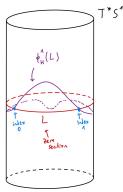
Critical points: Paths from L_0 to L_1 satisfying Hamiltonian equations. They are in fact the intersection points $\phi_H^1(L_0) \cap L_1$.

Flow lines: Pseudoholomorphic disks (for some almost complex structure J on M).

Floer cochain complex: $CF^*(L_0, L_1)$ for compact L_0, L_1 . Floer cohomology $HF^*(L_0, L_1)$ doesn't depend on H or J. Invariant of M, L_0, L_1 .

Some properties and implications

- #crit points of $S \ge \dim HF^*(L_0, L_1)$.
- $CF^*(L, L) = ?$ **Example:** $L \subset T^*S^1$ is a zero section, $H = \cos x \Rightarrow X_H = (\sin x) \frac{\partial}{\partial p}$.



Floer cochain complex $CF^*(L, L)$:

$$\mathbb{R}[0] \xrightarrow{1-1} \mathbb{R}[1]$$

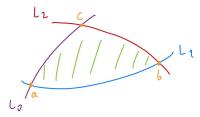
Then $HF^*(L, L) = H^*(L; \mathbb{R})$. This is true for any compact exact L.

• Implication: Nondisplacibility of compact exact Lagrangians.

Fukaya categories

Fuk(M) for an exact symplectic manifold M:

- Objects: Compact exact Lagrangians.
- Morphisms between L_0 and L_1 : $CF^*(L_0, L_1)$ (with differential).
- Composition: $CF^*(L_0, L_1) \otimes CF^*(L_1, L_2) \rightarrow CF^*(L_0, L_2).$



contributes $a \otimes b \mapsto c$.

Not associative: $(ab)c - a(bc) = d(\mu^3(a, b, c))$

 \Rightarrow Fuk(*M*) is an A-infinity category with operations μ^1 (differential), μ^2 (composition), μ^3, μ^4, \ldots It is an invariant of *M*.

Some properties and conjectures

- If we allow noncompact Lagrangians: wrapped Fukaya category Fuk(M) ⊂ WFuk(M). Hamiltonians should be "quadratic at infinity". WFuk(T*N) is generated by a cotangent fibre (Abouzaid).
- Homological mirror symmetry conjecture:

 $\operatorname{Fuk}(M) \simeq \operatorname{Coh}(X)$

for some complex variety X, where Coh(X) is coherent sheaves on X (Kontsevich).

Nearby Lagrangian conjecture: If N is a closed manifold, any closed exact Lagrangian in T*N is Hamiltonian isotopic to the zero section.
 Current progress: "simple-homotopic" (Abouzaid-Kragh using Fukaya categories).

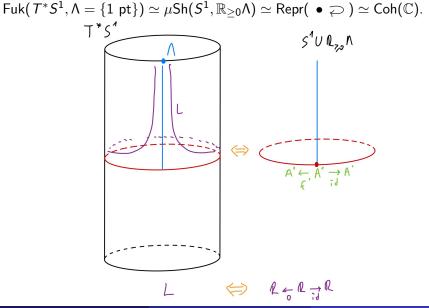
An example: $Fuk(T^*S^1) \simeq Loc(S^1) \simeq Repr(\bullet \supseteq inv) \simeq Coh(\mathbb{C}^*).$

Kashiwara-Schapira, Nadler-Zaslow, Ganatra-Pardon-Shende...

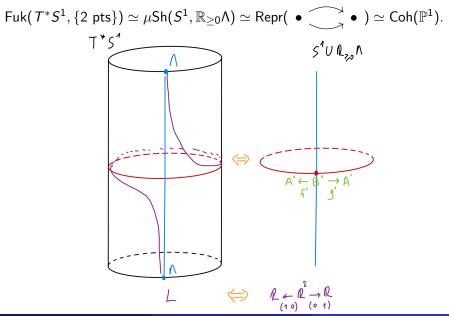
$$\operatorname{Fuk}(T^*N,\Lambda) \simeq \mu \operatorname{Sh}(N \cup \mathbb{R}_{\geq 0}\Lambda)$$

where $Fuk(T^*N, \Lambda)$ contains noncompact Lagrangians asymptotic to Λ , and $\mu Sh(K)$ is the dg category of microlocal sheaves on K.

An example



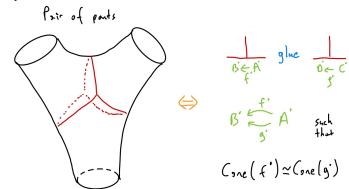
Another example



Liouville and Weinstein manifolds

For a more general class of exact symplectic manifolds (Liouville & Weinstein manifolds):Locally see them as cotangent bundles with stops and then glue.

An example:



Thank you!