IPMU colloquium

cesar.jesus-valls@ipmu.jp

César JESÚS-VALLS 24th Nov 2022

History 1/3

State-of-the-art 1/3

T2K & HK 1/3

History

Theoretical proposal

► 1920s: β decay (thought to be $n \rightarrow p + e^-$), but experiments observed non-monochromatic E!!! (Also spin-non conservation)

Theoretical proposal

- ► 1920s: β decay (thought to be $n \rightarrow p + e^-$), but experiments observed non-monochromatic E!!! (Also spin-non conservation)
- 1930: Pauli writes famous letter proposing a neutral particle (modern neutrino) with spin 1/2 involved in β decay, as a desperate solution.

Theoretical proposal

- ► 1920s: β decay (thought to be $n \rightarrow p + e^-$), but experiments observed non-monochromatic E!!! (Also spin-non conservation)
- 1930: Pauli writes famous letter proposing a neutral particle (modern neutrino) with spin 1/2 involved in β decay, as a desperate solution.
- ► 1933: Fermi presents one of the most influential theory papers ever, describing beta decay involving neutrinos.
 - > Gets rejected by Nature journal \rightarrow Moves to experimental physics.

Theoretical proposal

- ► 1920s: β decay (thought to be $n \rightarrow p + e^-$), but experiments observed non-monochromatic E!!! (Also spin-non conservation)
- > 1930: Pauli writes famous letter proposing a neutral particle (modern neutrino) with spin 1/2 involved in β decay, as a desperate solution.
- > 1933: Fermi presents one of the most influential theory papers ever, describing beta decay involving neutrinos.

> Gets rejected by Nature journal \rightarrow Moves to experimental physics.

► 1934: Bethe & Peierls calculate $\sigma < 10^{-44} \text{ cm}^2$ for $E_{\nu} \approx 2$ MeV and state: It is therefore absolutely impossible to observe processes of this kind with the neutrinos created in nuclear transformations.

events = $\sigma \times N \times \Phi \times t$

- ► 1 year $3 \cdot 10^7$ s
- \blacktriangleright 100 kg of water, N $\approx 5\cdot 10^{26}$
- ► The flux at the detector needs to be >10¹⁰ ν / (s·cm²).

Theoretical proposal

- ► 1920s: β decay (thought to be $n \rightarrow p + e^-$), but experiments observed non-monochromatic E!!! (Also spin-non conservation)
- > 1930: Pauli writes famous letter proposing a neutral particle (modern neutrino) with spin 1/2 involved in β decay, as a desperate solution.
- ► 1933: Fermi presents one of the most influential theory papers ever, describing beta decay involving neutrinos.

▶ Gets rejected by Nature journal \rightarrow Moves to experimental physics.

► 1934: Bethe & Peierls calculate $\sigma < 10^{-44} \text{ cm}^2$ for $E_{\nu} \approx 2$ MeV and state: It is therefore absolutely impossible to observe processes of this kind with the neutrinos created in nuclear transformations.

 $events = \sigma \times N \times \Phi \times t$

- ► 1 year $3 \cdot 10^7 s$
- \blacktriangleright 100 kg of water, N $\approx 5\cdot 10^{26}$
- ► The flux at the detector needs to be >10¹⁰ ν / (s·cm²).

It get's even worse:

- ► 1936: Muon is discovered.
- ► 1938: Muon is shown to decay.
- ▶ 1949: The outgoing electron in μ decay is not monochromatic! And therefore $\mu \rightarrow e + \nu + \nu$

Instense neutrino fluxes

► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ► The transition of Fermi to experimental physics starts another revolution.
 - ► Studies how to induce radioactivity by neutron bombardment.
 - ► Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ➤ The transition of Fermi to experimental physics starts another revolution.
 - ► Studies how to induce radioactivity by neutron bombardment.
 - ► Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

Discovery

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ➤ The transition of Fermi to experimental physics starts another revolution.
 - ► Studies how to induce radioactivity by neutron bombardment.
 - ► Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

Discovery

▶ 1954 Davies tries: $\bar{\nu}_e +_{17}^{37} \text{Cl} \rightarrow_{18}^{37} \text{Ar} + e^-$... without success ($\rightarrow \nu \neq \bar{\nu}$).

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ➤ The transition of Fermi to experimental physics starts another revolution.
 - ► Studies how to induce radioactivity by neutron bombardment.
 - ➤ Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

Discovery

- ▶ 1954 Davies tries: $\bar{\nu}_e + {}^{37}_{17} \text{Cl} \rightarrow {}^{37}_{18} \text{Ar} + e^- \dots$ without success ($\rightarrow \nu \neq \bar{\nu}$).
- > 1956 Cowan & Reines try: $\bar{\nu}_e + p \rightarrow n + e^+ \dots$ **DISCOVERY!!!** (Nobel Prize 1995). (200 kg water+Cd)

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ➤ The transition of Fermi to experimental physics starts another revolution.
 - ► Studies how to induce radioactivity by neutron bombardment.
 - ➤ Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

Discovery

- ▶ 1954 Davies tries: $\bar{\nu}_e + {}^{37}_{17} \text{Cl} \rightarrow {}^{37}_{18} \text{Ar} + e^- \dots$ without success ($\rightarrow \nu \neq \bar{\nu}$).
- > 1956 Cowan & Reines try: $\bar{\nu}_e + p \rightarrow n + e^+ \dots$ **DISCOVERY!!!** (Nobel Prize 1995). (200 kg water+Cd)
- > 1960 Davies tries $\nu_e + {}^{37}_{17} \text{Cl} \rightarrow {}^{37}_{18} \text{Ar} + e^- \dots \text{DETECTS SOLAR } \nu !!!$ (Nobel Prize 2002). (250T chlorine)

- ► 1939 Bethe shows that Sun's energy might have its origin in thermonuclear reactions. (Nobel Prize 1967)
- ➤ The transition of Fermi to experimental physics starts another revolution.
 - > Studies how to induce radioactivity by neutron bombardment.
 - ➤ Discovers how enhance neutron cross-section by using moderators (Nobel Prize 1938).
 - ► Uses both concepts above to create first ever nuclear reactor in 1942.

Discovery

- ▶ 1954 Davies tries: $\bar{\nu}_e + {}^{37}_{17} \text{Cl} \rightarrow {}^{37}_{18} \text{Ar} + e^- \dots$ without success ($\rightarrow \nu \neq \bar{\nu}$).
- > 1956 Cowan & Reines try: $\bar{\nu}_e + p \rightarrow n + e^+ \dots$ **DISCOVERY!!!** (Nobel Prize 1995). (200 kg water+Cd)
- > 1960 Davies tries $\nu_e + {}^{37}_{17} \text{Cl} \rightarrow {}^{37}_{18} \text{Ar} + e^- \dots \text{DETECTS SOLAR } \nu !!!$ (Nobel Prize 2002). (250T chlorine)

► However... the detected rate is significantly lower than predictions from Bahcall.

PMU

The early days of the SM

- ► 1956 Lee & Yang propose weak interactions violate parity. Demonstrated in 1957 by Wu. (Nobel Prize 1957)
- ➤ 1957 Feynman & Gell-Mann cast weak interactions in its modern V-A shape.
- ▶ 1962 Lederman, Schwartz and Steinberger discover that $\nu_e \neq \nu_\mu$ (Nobel Prize 1988).
- ► 1961 Glashow unifies electromagnetic & weak interactions. Salam + Weinberg add SSB (Nobel Prize 1979).

► The standard model is born (with 2 generations)!

PMU

The early days of the SM

- ► 1956 Lee & Yang propose weak interactions violate parity. Demonstrated in 1957 by Wu. (Nobel Prize 1957)
- ➤ 1957 Feynman & Gell-Mann cast weak interactions in its modern V-A shape.
- ▶ 1962 Lederman, Schwartz and Steinberger discover that $\nu_e \neq \nu_\mu$ (Nobel Prize 1988).
- ➤ 1961 Glashow unifies electromagnetic & weak interactions. Salam + Weinberg add SSB (Nobel Prize 1979).

► The standard model is born (with 2 generations)!

The SM grows up

- ► 1973 Kobayashi & Maskawa extend the number of quarks from 4 to 6 to explain observed CP violation.
- > 1974 τ lepton is discovered at SLAC \rightarrow people immediately assumes ν_{τ} exists.
- ► 1977 discovery of bottom quark, 1995 discovery of top quark.
- > 2000 discovery of ν_{τ} by DONUT collaboration.
- ► 1990s-2000s Aleph collaboration shows number of neutrinos with mass below W boson mass is 3.
- ► 2012 ATLAS + CMS discover the Higgs boson.

Neutrino oscillations & astrophysics

Theory

- ► 1950-60s Maki, Nakagawa, Sakata & 1967 Pontecorvo proposed neutrino flavor oscillations.
- ► 1978 Wolfenstein + 1985 Mikheyev & Smirnov describe 'matter effects', modern MSW effect.

Theory

- ► 1950-60s Maki, Nakagawa, Sakata & 1967 Pontecorvo proposed neutrino flavor oscillations.
- ➤ 1978 Wolfenstein + 1985 Mikheyev & Smirnov describe 'matter effects', modern MSW effect.

Birth of astrophysics & further evidence of exotic physics

- > 1985 KamiokaNDE is upgraded to study neutrinos: Kamiokande-II (shift towards modern neutrino physics).
- ► 1987 Kamiokande (12 events) & IMB (5 events) detect SN1987A. (Koshiba, Nobel Prize 2002).
- ► 1990 Kamiokande demonstrates flux of neutrinos comes from the Sun (Koshiba+Davis, Nobel Prize 2002).
- > 1990s Kamiokande finds a deficit in solar neutrinos **AND** in atmospheric neutrinos.
- ► 1990s GALLEX/GNO and SAGE confirms this deficits with lower detection thresholds.

Theory

- ► 1950-60s Maki, Nakagawa, Sakata & 1967 Pontecorvo proposed neutrino flavor oscillations.
- ► 1978 Wolfenstein + 1985 Mikheyev & Smirnov describe 'matter effects', modern MSW effect.

Birth of astrophysics & further evidence of exotic physics

- > 1985 KamiokaNDE is upgraded to study neutrinos: Kamiokande-II (shift towards modern neutrino physics).
- ► 1987 Kamiokande (12 events) & IMB (5 events) detect SN1987A. (Koshiba, Nobel Prize 2002).
- ► 1990 Kamiokande demonstrates flux of neutrinos comes from the Sun (Koshiba+Davis, Nobel Prize 2002).
- ► 1990s Kamiokande finds a deficit in solar neutrinos **AND** in atmospheric neutrinos.
- ► 1990s GALLEX/GNO and SAGE confirms this deficits with lower detection thresholds.

Discovery of oscillations

Theory

- ► 1950-60s Maki, Nakagawa, Sakata & 1967 Pontecorvo proposed neutrino flavor oscillations.
- ► 1978 Wolfenstein + 1985 Mikheyev & Smirnov describe 'matter effects', modern MSW effect.

Birth of astrophysics & further evidence of exotic physics

- > 1985 KamiokaNDE is upgraded to study neutrinos: Kamiokande-II (shift towards modern neutrino physics).
- ► 1987 Kamiokande (12 events) & IMB (5 events) detect SN1987A. (Koshiba, Nobel Prize 2002).
- ► 1990 Kamiokande demonstrates flux of neutrinos comes from the Sun (Koshiba+Davis, Nobel Prize 2002).
- ► 1990s Kamiokande finds a deficit in solar neutrinos **AND** in atmospheric neutrinos.
- ► 1990s GALLEX/GNO and SAGE confirms this deficits with lower detection thresholds.

Discovery of oscillations

> 1998 Super-Kamiokande reports evidence of oscillations in atmospheric neutrinos. (Kajita, Nobel Prize 2015)

Theory

- ► 1950-60s Maki, Nakagawa, Sakata & 1967 Pontecorvo proposed neutrino flavor oscillations.
- ► 1978 Wolfenstein + 1985 Mikheyev & Smirnov describe 'matter effects', modern MSW effect.

Birth of astrophysics & further evidence of exotic physics

- > 1985 KamiokaNDE is upgraded to study neutrinos: Kamiokande-II (shift towards modern neutrino physics).
- ► 1987 Kamiokande (12 events) & IMB (5 events) detect SN1987A. (Koshiba, Nobel Prize 2002).
- ► 1990 Kamiokande demonstrates flux of neutrinos comes from the Sun (Koshiba+Davis, Nobel Prize 2002).
- > 1990s Kamiokande finds a deficit in solar neutrinos **AND** in atmospheric neutrinos.
- ► 1990s GALLEX/GNO and SAGE confirms this deficits with lower detection thresholds.

Discovery of oscillations

- > 1998 Super-Kamiokande reports evidence of oscillations in atmospheric neutrinos. (Kajita, Nobel Prize 2015)
- > 2002 SNO demonstrates solar neutrino deficit is due to MSW effect. (McDonald, Nobel Prize, 2015)

- ► Neutrinos have mass... (3 d.o.f)... but it is difficult to accommodate in SM. (Dirac Majorana)
- > Neutrinos mix (4 d.o.f.) \rightarrow effectively violate lepton number conservation.
- ➤ The SM shifts from a theory with 19 d.o.f to 26 d.o.f ! + possible extensions.

- ► Neutrinos have mass... (3 d.o.f)... but it is difficult to accommodate in SM. (Dirac Majorana)
- > Neutrinos mix (4 d.o.f.) \rightarrow effectively violate lepton number conservation.
- ➤ The SM shifts from a theory with 19 d.o.f to 26 d.o.f ! + possible extensions.

Many experiments are built since 2000s to fill the voids of knowledge

- ► Neutrinos have mass... (3 d.o.f)... but it is difficult to accommodate in SM. (Dirac Majorana)
- > Neutrinos mix (4 d.o.f.) \rightarrow effectively violate lepton number conservation.
- ➤ The SM shifts from a theory with 19 d.o.f to 26 d.o.f ! + possible extensions.

Proliferation of data quantity, quality & diversity over years

- ► Neutrinos have mass... (3 d.o.f)... but it is difficult to accommodate in SM. (Dirac Majorana)
- > Neutrinos mix (4 d.o.f.) \rightarrow effectively violate lepton number conservation.
- ➤ The SM shifts from a theory with 19 d.o.f to 26 d.o.f ! + possible extensions.

State-of-the-art

Modern ν physics phenomenology

PMU

Neutrinos interact as weak states $(\nu_{\rm e}, \nu_{\mu}, \nu_{\tau})$, but propagate as mass states (ν_1, ν_2, ν_3) .

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
$$c_{ij} = \cos \theta_{ij} \ s_{ij} = \sin \theta_{ij}$$

Modern ν physics phenomenology

Neutrinos interact as weak states $(\nu_e, \nu_\mu, \nu_\tau)$, but propagate as mass states (ν_1, ν_2, ν_3) .

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
$$c_{ij} = \cos \theta_{ij} \ s_{ij} = \sin \theta_{ij}$$

Flavor eigenstates evolve in time cyclically, with a frequency that depends on E.

$$P(\bar{\nu}_{\alpha}^{\,\circ} \rightarrow {}^{(\bar{\nu}_{\beta}^{\,\circ})}) = \delta_{\alpha\beta} - 4 \sum_{ij} \sin^2 \frac{\Delta m_{ij}^2 L}{4E_{\nu}} + 2 \sum_{\nu} \mathscr{B}_{ij} \sin \frac{\Delta m_{ij}^2 L}{2E_{\nu}}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2 \qquad (P \text{ conserving} \quad \nu \text{ or } \bar{\nu} \quad (P \text{ violating} \quad$$

L/E (km/GeV)

• K A V L I

IPMU

Modern ν physics phenomenology

Neutrinos interact as weak states $(\nu_{\rm e}, \nu_{\mu}, \nu_{\tau})$, but propagate as mass states (ν_1, ν_2, ν_3) .

Different experiments have different typical L/E, allowing to explore different sets of parameters

KAVLI

IPMU

Modern ν mass experiments

Neutrino oscillations inform us about the relative mass differences: $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$, but not about absolute value. We need one extra constrain.

Modern ν mass experiments

Neutrino oscillations inform us about the relative mass differences: $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$, but not about absolute value. We need one extra constrain.

Direct mass searches (KATRIN)

Modern ν mass experiments

PMU

Neutrino oscillations inform us about the relative mass differences: $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$, but not about absolute value. We need one extra constrain.

1 · 10⁰ ³H ß-decay 8·10 ⁻¹ ³He Intensity (count rate, arbitrary units) 6·10 ⁻¹ $^{3}\mathrm{H} \rightarrow ^{3}\mathrm{He}^{+} + e^{-} + \bar{\nu}_{e}$ 4 · 10 ⁻⁸ 3·10 ⁻⁸ m _v = 1.0 eV — m _v = 0.3 eV — m _v = 0.0 eV — 4 · 10 ⁻¹ 2·10 ⁻⁸ ΔE = 1.0 eV 1 · 10 ⁻⁸ 2·10⁻¹ 0.10^{0} 18.598 18.599 18.600 $0 \cdot 10^{0}$ 2 12 14 18 0 4 6 8 16 10 Energy [keV]

Direct mass searches (KATRIN)

Cosmological Probes

Neutrino energy density affects history of the Universe, leaving numerous imprints:

- ► CMB
- ► distribution of galaxy clusters
- ► Lyman-alpha forest.

Modern ν Knowledge

Mass scale

Direct mass search

$$\sum_{i} |U_{ei}|^2 m_i^2 < 0.8 \text{ eV} (90\%\text{C.L})$$

Cosmology

 $\sum m_{\nu} < 0.111 \text{ eV} (90\% \text{C.L})$ Would imply $m_{least} < 0.05 \text{eV}.$

Modern ν Knowledge

Mass scale

Direct mass search

$$\sum_{i} |U_{ei}|^2 m_i^2 < 0.8 \text{ eV} (90\%\text{C.L})$$

Cosmology $\sum m_{\nu} < 0.111 \text{ eV} (90\% \text{C.L})$ Would imply $m_{least} < 0.05 \text{eV}.$

Mixing

Oscillations

$ heta_{12}:4.6\%[14\%],$	$ heta_{13}: 2.9\% [9.0\%],$	$ heta_{23}: 5.1\% [27\%],$
$\Delta m^2_{21}: 5.5\% [16\%],$	$ \Delta m^2_{3\ell} : 2.2\%[6.7\%],$	$\delta_{CP}: 39\% [100\%]$.

Modern ν Knowledge

Mass scale

Direct mass search

$$\sum_{i} |U_{ei}|^2 m_i^2 < 0.8 \text{ eV} (90\%\text{C.L})$$

Cosmology $\sum m_{\nu} < 0.111 \text{ eV} (90\% \text{C.L})$ Would imply $m_{least} < 0.05 \text{eV}.$

Mixing

Oscillations

$ heta_{12}: 4.6\% [14\%],$	$ heta_{13}: 2.9\% [9.0\%],$	$ heta_{23}: 5.1\% [27\%],$
$\Delta m^2_{21}: 5.5\% [16\%],$	$ \Delta m^2_{3\ell} : 2.2\%[6.7\%],$	$\delta_{CP}: 39\% [100\%]$.

What we don't know?

- ► Neutrino mass scale.
- ► Neutrino mass ordering.

7 d.o.f, still 4 unknowns.

► CP violation.

► θ_{23} octant.

Why do we care, I

The origin of neutrino masses

• Why are masses so small?

Dirac mass terms are allowed, but imply 3 right handed neutrinos, not explain mass smallness.

Why do we care, I

The origin of neutrino masses

Dirac mass terms are allowed, but imply 3 right handed neutrinos, not explain mass smallness.

• Are neutrinos Majorana particles?

Why do we care, I

The origin of neutrino masses

Dirac mass terms are allowed, but imply 3 right handed neutrinos, not explain mass smallness.

• Are neutrinos Majorana particles?

What is the mass ordering? • If IO: why??? v_e ν_{μ} v_{τ} $\sin^2\theta_{23}$ $\sin^2 \theta_{12}$ 3 $\sin^2\theta_{13}$ Δm_{sol}^2 Δm_{atm}^2 $\sin^2\theta_{12}$ Δm_{atm}^2 Δm^2_{sol} $\sin^2\theta_{23}$ $\sin^2\theta_{13}$

NORMAL

INVERTED

Flavor patterns

GUTs: 3 generations... pairs of quarks, pairs of leptons... leptoquarks?

► Wait, what is this???

The 'democratic' PMNS pattern contrasts with the 'hierarchical' structure of the CKM matrix. The value of θ_{23} is very close to 45deg. Important for model building.

By determining PMNS with precision, we can uncover BSM physics: similar to modern LHC searches.

Why do we care, III

Cosmology

- Still not clear why we have such a large matter-antimatter imbalance.
- ► Leptogenesis? \rightarrow requires $\delta_{CP} \neq \{0,\pi\}$
- ➤ Measuring ν masses from HEP & cosmology would bring major insight.

Why do we care, III

Cosmology

- Still not clear why we have such a large matter-antimatter imbalance.
- ► Leptogenesis? \rightarrow requires $\delta_{CP} \neq \{0,\pi\}$
- ➤ Measuring ν masses from HEP & cosmology would bring major insight.

BONUS: $C\nu B$ would allow us to look directly into the very early Universe

Let's do directly detect them!!!

Wait... $E_{\nu} \sim 100 \ \mu \text{eV}...$

Nothing exists that is remotely similar to what is needed to attempt this.

Let's do some measurement

Leading sensitivity to $\Delta m_{23}^2, \theta_{23}, \delta_{CP}$.

THE MIRROR Crack'd

Oscillation probability Neutrino flux $N_i^{exp}(E_{\nu}) = P(\nu_{\alpha} \to \nu_{\beta}) \times \sigma_i(E_{\nu}) \times \Phi_{\nu}(E_{\nu}) \times \epsilon_i(E_{\nu})$

Expected event rate

Interaction cross-section Detector efficiency

K A V L I PMU

0

2

4

6

8

 E_{v} [GeV/c]

10

PMU

0.04

0 10⁻¹

1

Neutrino Energy (GeV)

Massive effort in T2K

K A V L I PMU

T2K cross-section publications (>20 articles in \approx 10 years)

6 $ u_{\mu}$ or $\bar{ u}_{\mu}$ CC inclusive	3 ν_e or $\bar{\nu}_e$ CC inclusive	12 $ u_{\mu}$ or $ar{ u}$	$ $	4 $ u_{\mu}$ or $ar{ u}_{\mu}$ CC1 $m{\pi}$
PRD arXiv: 1302.4908	PRL arXiv: 1407.7389	PRD arXiv: 1602.03652	PRD arXiv: 1411.6264	PRD arXiv: 1605.07964
PRD arXiv: 1801.05148	PRD arXiv: 150308815	PRD arXiv: 1708 . 06771	PRD arXiv: 1403.3140	PRL arXiv: 1604.04406
PTEP arXiv: 1904.09611	IHEP arXiv: 2002.11986	PRD arXiv: 1908.10249	PRD arXiv: 1910.09439	PRD arXiv: 1909.03936
PRD arXiv: 1407.4256		PRD arXiv: 2002.09323	PRD arXiv: 1802.05078	PRD arXiv: 1704.07467
PRD arXiv: 1509.06940		PRD arXiv: 2004.05434	PRD arXiv: 2102.03346	
PRD arXiv: 1706.04257		PRD arXiv: 1503.07452	PTEP arXiv: 2004.13989	

Massive effort in T2K

PMU

T2K cross-section publications (>20 articles in \approx 10 years)

6 $ u_{\mu}$ or $\bar{\nu}_{\mu}$ CC inclusive	3 ν_e or $\bar{\nu}_e$ CC inclusive	12 $ u_{\mu}$ or $ar{ u}$	$_{\mu}$ CC0π	4 $ u_{\mu}$ or $ar{ u}_{\mu}$ CC1 $f \pi$
PRD arXiv: 1302.4908	PRL arXiv: 1407.7389	PRD arXiv: 1602.03652	PRD arXiv: 1411.6264	PRD arXiv: 1605.07964
PRD arXiv: 1801.05148	PRD arXiv: 1503 . 08815	PRD arXiv: 1708 . 06771	PRD arXiv: 1403.3140	PRL arXiv: 1604.04406
PTEP arXiv: 1904.09611	IHEP arXiv: 2002.11986	PRD arXiv: 1908.10249	PRD arXiv: 1910.09439	PRD arXiv: 1909.03936
PRD arXiv: 1407.4256	511151 until 2002.11700	PRD arXiv: 2002.09323	PRD arXiv: 1802.05078	PRD arXiv: 1704.07467
PRD arXiv: 1509.06940		PRD arXiv: 2004.05434	PRD arXiv: 2102.03346	
PRD arXiv: 1706.04257		PRD arXiv: 1503.07452	PTEP arXiv: 2004.13989	

My work:

1 ν_{μ} NC1 π^+ , first cross-section measurement in history. In preparation.

Beam upgrade: TDR (2019): e-Print: 1908.05141

T2K Projected POT (Protons-On-Target)

Beam upgrade: TDR (2019): e-Print: 19

e-Print: 1908.05141

T2K Projected POT (Protons-On-Target)

ND280 upgrade:

TDR (2019):

e-Print: 1901.03750

Beam upgrade: TDR (2019):

e-Print: 1908.05141

T2K Projected POT (Protons-On-Target)

ND280 upgrade:

TDR (2019):

e-Print: 1901.03750

My work:

- > Develop software & hardware to make possible this upgrade.
- ► Large project with >100 collaborators.
- ► First data taking in 2023.

Beam upgrade: TDR (2019):

e-Print: 1908.05141

New 1.5° off-axis: First Physics Run 2019

ND280 upgrade:

TDR (2019):

e-Print: 1901.03750

My work:

- > Develop software & hardware to make possible this upgrade.
- ► Large project with >100 collaborators.
- ► First data taking in 2023.

Beam upgrade: TDR (2019):

e-Print: 1908.05141

New 1.5° off-axis: **First Physics Run 2019**

ND280 upgrade:

TDR (2019):

e-Print: 1901.03750

My work:

- > Develop software & hardware to make possible this upgrade.
- ► Large project with >100 collaborators.
- ► First data taking in 2023.

My work:

- ► Integration of W-BM detector in multi ND T2K oscillation analysis.
- ► Understanding what is needed for HK NDs.

Hyper Kamiokande (accelerator program)

Hyper-Kamiokande 295km

SK × 9

IWCD ~1 km 4° off-axis

NDs @280

WAGASC

KAVLI

PM

Chasing δ_{CP}

Chasing θ_{23}

22

Hyper Kamiokande (much more!)

Solar neutrinos

Survival probability up-turn Solar/reactor tension hep neutrinos

Core-collapse SNv: constrain SN profile models Diffuse SuperNova v background

Oscillation affected by matter effects Sensitive to MO

Hyper Kamiokande (much more!)

PMU

Solar neutrinos

Survival probability up-turn Solar/reactor tension hep neutrinos

Oscillation affected by matter effects Sensitive to MO

Core-collapse SNv: constrain SN profile models Diffuse SuperNova v background

My work:

 \blacktriangleright Recently suggested that CCSN could be used to uncover νMO

► Over 90 years of study of neutrinos: much has been learnt, much still to be discovered.

► Over 90 years of study of neutrinos: much has been learnt, much still to be discovered.

Start of precision neutrino physics

The unknown, awaiting for us to uncover it!

