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Superconductors
SUPERCONDUCTORS = materials with spontaneously broken U(1) local symmetry.

Described by the Euclidean Abelian Higgs model in d=3:

Approaches: 

1) Lattice field theory in d=3.

2) Large N expansion in d=3.

3) ε-expansion in d=4-ε.

EFT for the complex order parameter Φ of the superconducting phase transition.

Temperature T, Gauge coupling e, Quartic coupling λ.



Phases and RG flow

Type II superconductors: second-order phase transition described by the conformal

field theory (CFT) defined at the fixed point ”C” of the renormalization group flow.

We study this CFT in d=4-ε, i.e. we take T=Tc, λ=λc*(ε), e=ec*(ε). 



Critical exponents
The exponents usually considered for the superconducting phase transition are:

ν v’                               α

Correlation length ξ London penetration depth Λ Specific heat C

Related to the scaling dimension of the mass operator:

However, there is another important critical exponent η related to the scaling of

the two-point function of the order parameter: 

We want to define a gauge-invariant non-local order parameter.

However the choice is not unique.

However, this correlator is not gauge-invariant and vanishes due to the

Elitzur’s theorem (S. Elitzur 1975; no SSB of local symmetries).



Non-local order parameter
SCHWINGER TYPE

DIRAC TYPE

where

From GD I can define a non-local order parameter ΦNL as

ΦNL reduces to Φ in the Landau gauge . (that is in the

Landau gauge.)

Physical meaning: creation operator of a charged particle dressed with a 

coherent state of photons describing its Coulomb field.

Insertion of a Wilson line on the shortest path connecting xi to xf.



• CFT (QFT) simplifies in certain limits when a small/large parameter exists. 

• Our large parameter(s): conserved charge(s) of the symmetry group of the CFT:

Initially developed for global symmetries. 

Here applied to gauge symmetries.

. 

LARGE-CHARGE EXPANSION FOR CFT OBSERVABLES 

(e.g. critical exponents)

The large-charge expansion
We want to study the issue of defining a gauge-invariant order parameter

(and compute the associated critical exponent) from a new perspective.

[S. Hellerman, D. Orlando, S. Reffert, M. Watanabe (2015)]



Conventional Feynman diagram expansion (in the number of loops):

Tree-level diagrams dominates

Large-N (number of colors) expansion in gauge theories

Planar diagrams dominates

Large-Nf (number of flavors) expansion

Bubble diagrams dominates

Large-charge expansion

Fixed ” ’t 

Hooft-like

coupling ”

Diagrammatics



Quantum physics “classicalizes” in the presence of large

quantum numbers.

QUANTUM ground state energy:       CLASSICAL ground state energy:

Hydrogen atom with infinite mass of the proton at fixed magnetic 

quantum number m:

.

LARGE-CHARGE EXPANSION = 

SEMICLASSICAL EXPANSION

Quantum VS classical



The eigenvalues of the dilation charge (the scaling dimensions) become the 

energy spectrum on the unit r cylinder (state-operator correspondence)

We compute the scaling dimension of operators with total charge Q and the 

minimal scaling dimension. 

i.e. we compute the ground state energy on the cylinder.

Map to the cylinder

.

LARGE-CHARGE EXPANSION = FINITE DENSITY QFT



Selecting the order parameter
The approach automatically selects the scaling dimension ΔQ of the

lowest-lying operator with U(1) charge Q.

The Q=1 case corresponds to the scaling dimension of the non-local

order parameter, i.e. the associated critical exponent.

OUR STRATEGY: we compare our results for ΔQ with perturbative

computations of the critical exponent associated with the various

proposals (e.g. Schwinger, Dirac, …) for the order parameter and

look for an agreement.

NB: For Q>1, ΔQ defines a set of crossover (critical) exponents

measuring the stability of the system (e.g. a superconductor) against

anisotropic perturbations (e.g. their crystal structure).



Computation

Conformal

coupling

Charge-fixing

Every Δk resums an infinite series of Feynman diagrams.

To get the ground state energy on the cylinder we consider the matrix 

element of the evolution operator between arbitrary charge-Q states.

Q counts loops. 
Computing the path integral semiclassically, we have 



Given by the effective action evaluated on the classical solution of the EOM

Leading order: ∆−1

This classical result resums an infinite number of Feynman diagrams!

Q counts the number of external legs. 

λ counts the number of quartic vertices.



At NLO we have to compute a quadratic (Gaussian) path integral.

∆0 is given by the fluctuation determinant around the classical trajectory,

i.e. by a sum of zero-point energies:

Next-to-leading order: ∆0

labels the eigenvalues of the momentum which have degeneracy     . 

are the dispersion relations of the spectrum.



Comparing to diagrammatics

Red terms: Δ-1

Blue terms: Δ0

By expanding the Δk‘s in the limit of small ‘t Hooft-like couplings (λQ, eQ)

we obtain the conventional perturbative expansion. We independently

computed the scaling dimension of Φ at the three-loop level and found an

agreement for Q=1 in the Landau gauge.

Therefore, our computation selects the non-local order parameter

of the Dirac type as the relevant order parameter for

superconductors and generalizes the construction to arbitrary Q,

i.e. ΔQ is the scaling dimension of the non-local operators ΦNL
Q.



Conclusions

We showed that the large-charge expansion can be applied also to

gauge theories where the relevant gauge-invariant observables are

in general non-local.

We explicitly showed that the non-local operators ΦNL
Q are the

lowest-lying operators with charge Q well-defined at criticality. In

particular, this signals that ΦNL is the relevant order parameter for

superconductors.

As a byproduct, we provided novel results for the associated

scaling dimensions (crossover critical exponents) ΔQ .









The operator ΦQ carries U(1) charge Q.

We bring the field insertions into the exponent, obtaining

For large Q the path integral is dominated by the extrema of

Semiclassical expansion

We can evaluate the integral via a saddle-point expansion
1/Q counts loops and is our expansion parameter.


