Affine Grassmannians in non-archimedean geometry and deformation theory

Kazuhiro Ito

Kavli IPMU, The University of Tokyo

December 15, 2022

Outline

- Introduction
- 2 Affine Grassmannian in non-archimedean geomerty
- 3 Deformation theory

Affine Grassmannian

- G: connected reductive group over \mathbb{C} (or over a field k)
- The quotient

$$\mathrm{Gr}_G(\mathbb{C}) := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$$

is an infinite dimensional algebraic variety over \mathbb{C} , which is called the affine Grassmannian of G.

$$\begin{array}{l} \mathbb{C}[[t]] := \{ \sum_{n \geq 0} a_n t^n \, | \, a_n \in \mathbb{C} \} \\ \mathbb{C}((t)) := \{ \sum_{n \in \mathbb{Z}} a_n t^n \, | \, a_n \in \mathbb{C}, \, a_n = 0 \, (\text{small enough } n) \}. \end{array}$$

Example: $G = GL_n$

$$\operatorname{Gr}_{G}(\mathbb{C})\stackrel{\sim}{\to} \{V\subset \mathbb{C}((t))^{n}\,|\,V \text{ is a } \mathbb{C}[[t]]\text{-lattice}\}$$

defined by $g \in \mathrm{GL}_n(\mathbb{C}((t))) \mapsto g(\Lambda_{\mathrm{std}}) \subset \mathbb{C}((t))^n$, where $\Lambda_{\mathrm{std}} := \mathbb{C}[[t]]^n \subset \mathbb{C}((t))^n$ is the standard lattice.

Affine Grassmannians play important roles in several fields of mathematics (and mathematical physics).

- (1) Langlands duality, geometric Satake equivalence, geometric Langlands correspondence (if k is a finite field).
- (2) (Representation theory of affine Kac-Moody algebras.)

 $G \leadsto \widehat{G}$: Langlands dual group over $\mathbb C$

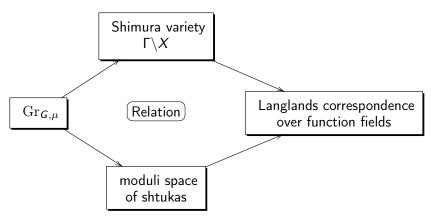
Geometric Satake equivalence (Mirković-Vilonen '07)

- $\operatorname{Rep}_{\mathbb{C}}(\widehat{G})$: category of finite dim representations of \widehat{G} .
- $Sat(Gr_G)$: category of "equivariant perverse sheaves" on Gr_G , called the Satake category.

There exists an equivalence of (symmetric monoidal) categories:

$$\operatorname{Sat}(\operatorname{Gr}_{G}) \stackrel{\sim}{\to} \operatorname{Rep}_{\mathbb{C}}(\widehat{G}).$$

- (3) Closed subvarieties in Gr_G are important:
 - For example, Schubert cells $\mathrm{Gr}_{\mathcal{G}} = \bigsqcup_{\mu} \mathrm{Gr}_{\mathcal{G},\mu}$. Here $\mu \colon \mathbb{C}^{\times} \to \mathcal{G}$ are the dominant cocharacters.
 - $\operatorname{Gr}_{G,\mu} \leadsto \operatorname{IC}_{\mu} \in \operatorname{Sat}(\operatorname{Gr}_G)$: simple objects



Remark

- (Recall $Gr_G(\mathbb{C}) = G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$.)
- X: Riemann surface (resp. a curve over a field k). Then the ring $\widehat{\mathcal{O}}_{X,x}$ of formal Taylor series around a point $x \in X$ can be identified with $\mathbb{C}[[t]]$ (resp. k[[t]]).
 - $\Rightarrow \operatorname{Gr}_G$ is related to X.
 - $\Rightarrow \operatorname{Gr}_{\mathcal{G}}$ is related to $\pi_1(X)$.

Let p be a prime number. If k is the finite field

$$k = \mathbb{Z}/p\mathbb{Z} := \{0, 1, 2, \dots, p-1\}$$

and X is a curve over k, then $\pi_1(X)$ is related to the Galois group of the function field of X (the field of meromorphic functions).

Table of Contents

- Introduction
- 2 Affine Grassmannian in non-archimedean geomerty
- 3 Deformation theory

Today

- $k = \mathbb{Q}_p$: the field of *p*-adic numbers.
- non-archimedean geometry = "analytic geometry over \mathbb{Q}_p "
- G: reductive group over \mathbb{Q}_p

<u>Note</u>: \mathbb{Q}_p has the metric such that $p^n \to 0$ when $n \to \infty$.

Remark

In the non-archimedean setting,

$$G(\mathbb{Q}_p((t)))/G(\mathbb{Q}_p[[t]])$$

is not very suitable for applications, such as the local Langlands correspondence for G over \mathbb{Q}_p .

<u>Problem</u>: In the local Langlands correspondence, we are interested in the Galois group of \mathbb{Q}_p , rather than $\pi_1(X)$ for a curve X over \mathbb{Q}_p .

Affine Grassmannian in non-archimedean geometry

We should consider a reductive group G over \mathbb{Z}_p and

$$\mathrm{Gr}_{\mathsf{G}} := \mathsf{G}(\mathbb{Q}_p)/\mathsf{G}(\mathbb{Z}_p)$$

where $\mathbb{Z}_p \subset \mathbb{Q}_p$ is the ring of *p*-adic integers.

Example: $G = GL_n$

$$\operatorname{Gr}_G \xrightarrow{\sim} \{ V \subset \mathbb{Q}_p^n \mid V \text{ is a } \mathbb{Z}_p\text{-lattice} \}$$

defined by $g \in GL_n(\mathbb{Q}_p) \mapsto g(\Lambda_{\operatorname{std}}) \subset \mathbb{Q}_p^n$, where $\Lambda_{\operatorname{std}} := \mathbb{Z}_p^n \subset \mathbb{Q}_p^n$ is the standard lattice.

Remark

 Gr_G has a natural geometric structure which can be described by using perfect algebras (explained later).

Geometric Satake equivalence (Zhu '17, Fargues-Scholze '21)

- $\operatorname{Rep}_{\mathbb{C}}(\widehat{G})$: category of finite dim representations of \widehat{G} .
- $Sat(Gr_G)$: category of "equivariant perverse sheaves" on Gr_G .

There exists an equivalence of (symmetric monoidal) categories:

$$\operatorname{Sat}(\operatorname{Gr}_G) \xrightarrow{\sim} \operatorname{Rep}_{\mathbb{C}}(\widehat{G}).$$

This theorem plays an important role in the geometrization of the local Langlands correspondence (Fargues, Fargues–Scholze).

Schubert cell

We also have Schubert cells $\operatorname{Gr}_G = \bigsqcup_{\mu} \operatorname{Gr}_{G,\mu}$ in this setting. Schubert cells $\operatorname{Gr}_{G,\mu}$ are related to moduli spaces of "non-archimedean" shtukas.

- Assume that $\mu \colon \mathbb{G}_m \to G$ is minuscule (i.e. the weights of the adjoint action of \mathbb{G}_m of the Lie algebra $\mathrm{Lie} G$ are contained in $\{-1,0,1\}$).
- $\operatorname{Gr}_{G,\mu}$ is related to the non-archimedean analogue of Shimura variety, called (integral) local Shimura variety $\mathcal{M}_{G,\mu}$.

Theorem (I.)

Let $x \in \mathcal{M}_{G,\mu}$ be a point. We can attach a point $y \in Gr_{G,\mu}$ to x. Then the tangent space of $\mathcal{M}_{G,\mu}$ at x is isomorphic to the tangent space of $Gr_{G,\mu}$ at y.

Key: Establish a "new" deformation theory for non-archimedean shtukas.

Table of Contents

- Introduction
- 2 Affine Grassmannian in non-archimedean geomerty
- 3 Deformation theory

Perfect algebra

- R: ring such that p = 0 in R (e.g. $R = \mathbb{Z}/p\mathbb{Z}$).
- $\varphi \colon R \to R$, $x \mapsto x^p$ defines a ring homomorphism, called the Frobenius.
- We say that R is perfect if φ is bijective (e.g. $\mathbb{Z}/p\mathbb{Z}$ is perfect).

The ring W(R)

To a perfect algebra R, we can associate a ring

$$W(R)$$
,

called the ring of Witt vectors of R, in which p is a non-zero divisor (i.e. $W(R) \hookrightarrow W(R)[1/p]$).

Example

$$W(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}_p$$
 and $W(\mathbb{Z}/p\mathbb{Z})[1/p] = \mathbb{Q}_p$

$\operatorname{Gr}_G(R)$

We define

$$\operatorname{Gr}_{G}(R) := G(W(R)[1/p])/G(W(R)).$$

This enables us to consider Gr_G as a moduli space, defined over the category of perfect algebras.

On the other hand:

"Classical" deformation theory

Comparison of

- varieties (algebras, modules, etc) over $R[\epsilon]/\epsilon^2$ and
- varieties over R.

<u>Problem</u>: $R[\epsilon]/\epsilon^2$ is not perfect $(\epsilon \mapsto \epsilon^p = 0)$.

Idea

Establish a new deformation theory in the category of "prisms", introduced by Bhatt-Scholze.

Properties

- (1) The category of prisms contains
 - perfect algebras R, and
 - important class of $R[\epsilon]/\epsilon^2$.
- (2) We can define Gr_G for prisms.

Introduction Affine Grassmannian Deformation theory

Thank you very much for your attention!