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Affine Grassmannian
G : connected reductive group over C (or over a field k)
The quotient

GrG (C) := G (C((t)))/G (C[[t]])

is an infinite dimensional algebraic variety over C, which is
called the affine Grassmannian of G .

C[[t]] := {
∑

n≥0 ant
n | an ∈ C}

C((t)) := {
∑

n∈Z ant
n | an ∈ C, an = 0 (small enough n)}.

Example: G = GLn

GrG (C)
∼→ {V ⊂ C((t))n |V is a C[[t]]-lattice}

defined by g ∈ GLn(C((t))) 7→ g(Λstd) ⊂ C((t))n, where
Λstd := C[[t]]n ⊂ C((t))n is the standard lattice.
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Affine Grassmannians play important roles in several fields of
mathematics (and mathematical physics).

(1) Langlands duality, geometric Satake equivalence, geometric
Langlands correspondence (if k is a finite field).

(2) (Representation theory of affine Kac-Moody algebras.)

G ⇝ Ĝ : Langlands dual group over C

Geometric Satake equivalence (Mirković–Vilonen ’07)

RepC(Ĝ ): category of finite dim representations of Ĝ .
Sat(GrG ): category of “equivariant perverse sheaves” on GrG ,
called the Satake category.

There exists an equivalence of (symmetric monoidal) categories:

Sat(GrG )
∼→ RepC(Ĝ ).
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(3) Closed subvarieties in GrG are important:

For example, Schubert cells GrG =
⊔

µ GrG ,µ .

Here µ : C× → G are the dominant cocharacters.
GrG ,µ ⇝ ICµ ∈ Sat(GrG ): simple objects

Shimura variety
Γ\X

((

GrG ,µ

%%
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�� ��Relation Langlands correspondence
over function fields

moduli space
of shtukas
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Remark
(Recall GrG (C) = G (C((t)))/G (C[[t]]).)
X : Riemann surface (resp. a curve over a field k).
Then the ring ÔX ,x of formal Taylor series around a point
x ∈ X can be identified with C[[t]] (resp. k[[t]]).
⇒ GrG is related to X .
⇒ GrG is related to π1(X ).

Let p be a prime number. If k is the finite field

k = Z/pZ := {0, 1, 2, . . . , p − 1}

and X is a curve over k , then π1(X ) is related to the Galois group
of the function field of X (the field of meromorphic functions).
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Today
k = Qp: the field of p-adic numbers.
non-archimedean geometry = “analytic geometry over Qp”
G : reductive group over Qp

Note: Qp has the metric such that pn → 0 when n → ∞.

Remark
In the non-archimedean setting,

G (Qp((t)))/G (Qp[[t]])

is not very suitable for applications, such as the local Langlands
correspondence for G over Qp.

Problem: In the local Langlands correspondence, we are interested
in the Galois group of Qp, rather than π1(X ) for a curve X over Qp.
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Affine Grassmannian in non-archimedean geometry
We should consider a reductive group G over Zp and

GrG := G (Qp)/G (Zp)

where Zp ⊂ Qp is the ring of p-adic integers.

Example: G = GLn

GrG
∼→ {V ⊂ Qn

p |V is a Zp-lattice}

defined by g ∈ GLn(Qp) 7→ g(Λstd) ⊂ Qn
p, where Λstd := Zn

p ⊂ Qn
p

is the standard lattice.

Remark
GrG has a natural geometric structure which can be described by
using perfect algebras (explained later).
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Geometric Satake equivalence (Zhu ’17, Fargues–Scholze ’21)

RepC(Ĝ ): category of finite dim representations of Ĝ .
Sat(GrG ): category of “equivariant perverse sheaves” on GrG .

There exists an equivalence of (symmetric monoidal) categories:

Sat(GrG )
∼→ RepC(Ĝ ).

This theorem plays an important role in the geometrization of the
local Langlands correspondence (Fargues, Fargues–Scholze).

Schubert cell
We also have Schubert cells GrG =

⊔
µ GrG ,µ in this setting.

Schubert cells GrG ,µ are related to moduli spaces of
“non-archimedean” shtukas.
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Assume that µ : Gm → G is minuscule (i.e. the weights of the
adjoint action of Gm of the Lie algebra LieG are contained in
{−1, 0, 1}).
GrG ,µ is related to the non-archimedean analogue of Shimura
variety, called (integral) local Shimura variety MG ,µ.

Theorem (I.)

Let x ∈ MG ,µ be a point. We can attach a point y ∈ GrG ,µ to x .
Then the tangent space of MG ,µ at x is isomorphic to the tangent
space of GrG ,µ at y .

Key: Establish a “new” deformation theory for non-archimedean
shtukas.
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Perfect algebra

R : ring such that p = 0 in R (e.g. R = Z/pZ).
φ : R → R , x 7→ xp defines a ring homomorphism, called the
Frobenius.
We say that R is perfect if φ is bijective (e.g. Z/pZ is perfect).

The ring W (R)

To a perfect algebra R , we can associate a ring

W (R),

called the ring of Witt vectors of R , in which p is a non-zero divisor
(i.e. W (R) ↪→ W (R)[1/p]).

Example

W (Z/pZ) = Zp and W (Z/pZ)[1/p] = Qp
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GrG (R)
We define

GrG (R) := G (W (R)[1/p])/G (W (R)).

This enables us to consider GrG as a moduli space, defined over
the category of perfect algebras.

On the other hand:

“Classical” deformation theory
Comparison of

varieties (algebras, modules, etc) over R[ϵ]/ϵ2 and
varieties over R .

Problem: R[ϵ]/ϵ2 is not perfect (ϵ 7→ ϵp = 0).
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Idea
Establish a new deformation theory in the category of “prisms”,
introduced by Bhatt–Scholze.

Properties

(1) The category of prisms contains
perfect algebras R, and
important class of R[ϵ]/ϵ2.

(2) We can define GrG for prisms.
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Thank you very much for your attention!

Kazuhiro Ito Affine Grassmannians and deformation theory


	Introduction
	Affine Grassmannian in non-archimedean geomerty
	Deformation theory

