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Outline

Mirror symmetry

Scattering diagramsCluster algebras

[Gross-Hacking-Keel-Kontsevich] the linkage between scattering
diagrams, broken lines, theta functions↔ cluster algebras
developed by Fomin-Zelevinsky
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Outline

Mirror symmetry

Scattering diagramsCluster algebras

Cluster varieties

[C-Magee-Najera Chavez] used the tropical structures of the
scattering diagrams to give compactification of the cluster varieties

[Bossinger-C-Magee-Najera Chavez] Apply the tropical properties to
study Newton–Okounkov bodies.
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Cluster algebras

Cluster algebras [Fomin Zelevinsky]
A seed s consists of a set of cluster variables and exchange data
(bij).

Start with initial seed

mutation µA
k ⇝ new seed with replacing the variable Ak to the new

variable A′k by
AkA′k =

∏
bij>0

Abijj +
∏
bij<0

A−bijj .

The collection of the cluster variables⇝ A cluster algebra

Principal coefficients (or X-variables)

Similar procedure only changing the mutation map µX
k .

⇝ X cluster algebra

3
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Cluster varieties

What are cluster varieties?

seed s : set of n variables⇝ torus Gn
m

Mutation µ : Change of variables⇝ birational maps between Gn
m

Think: µ defines gluing between tori

N◦ ⇝ TN◦ M⇝ TM
A =

∪
TN◦/µA X =

∪
TM/µX

⇝ A and X cluster varieties

4



4/25

Cluster varieties

What are cluster varieties?

seed s : set of n variables⇝ torus Gn
m

Mutation µ : Change of variables⇝ birational maps between Gn
m

Think: µ defines gluing between tori

N◦ ⇝ TN◦ M⇝ TM
A =

∪
TN◦/µA X =

∪
TM/µX

⇝ A and X cluster varieties

4



4/25

Cluster varieties

What are cluster varieties?

seed s : set of n variables⇝ torus Gn
m

Mutation µ : Change of variables⇝ birational maps between Gn
m

Think: µ defines gluing between tori

N◦ ⇝ TN◦ M⇝ TM
A =

∪
TN◦/µA X =

∪
TM/µX

⇝ A and X cluster varieties

4



5/25

Compactification (go back to toric geometry)

Note that cluster varieties are not compact, e.g. C∗.

To compactify it:
C∗ ⊂ C ⊂ CP1.
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Projective toric varieties

Motivating example: CP2

Homogeneous coordinate ring of CP2 is the graded ring C[z0, z1, z2].

The grading can be described by a convex polytope.

z0

z2

z1 z20

z0z2

z22

z1z2

z21z0z1
z30

z20z2

z0z22

z32

z20z1

z0z1z2

z1z22

z21z2

z0z21
z31
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Projective toric varieties

z1 z2
z0 k

7



7/25

Projective toric varieties

z1 z2
z0 k
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Projective toric varieties

z1 z2
z0 k

Polytope construction:
Convex lattice polytope ∆ in Rn

⇝ a graded ring (graded by k)

S∆ = 〈zm〉m∈k∆.

⇝ projective toric geometry P∆ = Proj(S∆). 8
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Scattering diagrams

Scattering diagrams can be used to describe cluster varieties.

Fix a lattice N ∼= Zn, M = HomZ(N,Z). NR = N⊗ R, MR = M⊗ R.

Cluster scattering diagram D = collection of walls with finiteness and
consistent condition

Wall : (d, fd)

• d ⊆ MR support of wall - convex rational polyhedral cone of
codim 1, contained in n⊥, n ∈ N.

• fd = 1+
∑
ckzkv, where v ∈ n⊥.

Example: A2 (Note that z(m1,m2) = Am1
1 A

m2
2 .)

1+ z(−1,0) = 1+ A−11

1+ z(0,1) = 1+ A2

1+ z(−1,1) = 1+ A−11 A2

9
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Crossing the walls

Path-ordered product (wall crossing transformation):

Consider a path γ passing a wall d, we define a map

pγ : zm 7→ zmf±⟨n0,m⟩
d ,

where n0 is the primitive normal of the wall d.

γ

1+ z(−1,0) = 1+ A−11

1+ z(0,1) = 1+ A2

1+ z(−1,1) = 1+ A−11 A2

z(−1,0) 7→ z(−1,0)(1+ z(0,1)) = 1+ A2
A1

.
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Associate each maximal cone of the scattering diagrams with (C∗)n

1+ z(−1,0)

1+ z(0,1)

1+ z(−1,1)

(C∗)2(C∗)2

(C∗)2

(C∗)2

(C∗)2

fd ⇝ wall crossing⇝ gluing the (C∗)2’s.

⇒ A-cluster variety of type A2
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Theta functions

Motivating example: functions on (C∗)2 :

1+ c1za11 z
b1
2 + c2za21 z

b2
2 + · · · ∈

⊕
m1,m2∈Z

Czm1
1 z

m2
2 .

• To each point m ∈ M◦ \ {0}, associate a theta function ϑm
• Theta function ϑm is defined from a collection of broken lines
with initial slope m and endpoint Q

Example: initial slope (−1, 0) (← go opposite direction!!):

1+ z(0,1)

1+ z(−1,0)

1+ z(−1,1)

z(−1,0)

z(−1,0)

z(−1,0)

z (−1,1)

12
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1+ z(0,1)

1+ z(−1,0)

1+ z(−1,1)

z(−1,0)

z(−1,0)

z(−1,0)

z (−1,1)

ϑQ,(−1,0) = z(−1,0) + z(−1,1).
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Vector space generated by theta functions as an algebra

Motivating example: H0((C∗)2,O) =
⊕

m1,m2∈Z2 Cz
m1
1 z

m2
2 .

[Gross-Hacking-Keel-Konsevich]

ϑp · ϑq =
∑
r∈L

αrpqϑr,

where L = M◦ or N, αrpq structure constant.

⋆ gives algebra structure to the vector space generated by theta
functions.

αrpq are expressed in terms of broken lines:

αrpq :=
∑

c(γ(1)) c(γ(2)),

where summing over pairs of broken lines (γ(1), γ(2)) such that
I(γ(1)) = p, I(γ(2)) = q, γ(1)(0) = γ(2)(0) = r, F(γ(1)) + F(γ(2)) = r

14
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Example:
ϑ(−1,0) · ϑ(2,1) = ϑ(1,1) + ϑ(1,2).

15
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Positive polytope

ϑp · ϑq =
∑
r∈L

αrpqϑr,

Definition
A closed subset S ⊆ LR is positive if
for every a,b ∈ Z≥0, p ∈ aS(Z), q ∈ bS(Z), and r ∈ L with αrpq 6= 0,

⇒ r ∈ (a+ b)S.

Notation: L = M◦ or N, dS(Z) is the cone of S at the ‘d’th-level.

Toric Cluster
fan scattering diagram

toric monomials theta functions
convex polytope positive polytope

line

16
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Broken line convex

Definition (C-Magee-Nájera Chávez)
A closed subset S is called broken line convex if for any x, y ∈ S(Q),
every broken line segment connecting x and y is entirely contained
in S.

Theorem (C-Magee-Nájera Chávez)
S is positive⇔ S is broken line convex.

Idea: The structure constant αrpq in GHKK were expressed as two
broken lines with initial slope p and q.

⋆ [C-Magee-Nájera Chávez] construct the correspondence between
those two broken lines and broken line segments with (scaling of)
the endpoints p,q and r.

18



18/25

Broken line convex

Definition (C-Magee-Nájera Chávez)
A closed subset S is called broken line convex if for any x, y ∈ S(Q),
every broken line segment connecting x and y is entirely contained
in S.

Theorem (C-Magee-Nájera Chávez)
S is positive⇔ S is broken line convex.

Idea: The structure constant αrpq in GHKK were expressed as two
broken lines with initial slope p and q.

⋆ [C-Magee-Nájera Chávez] construct the correspondence between
those two broken lines and broken line segments with (scaling of)
the endpoints p,q and r.

18



18/25

Broken line convex

Definition (C-Magee-Nájera Chávez)
A closed subset S is called broken line convex if for any x, y ∈ S(Q),
every broken line segment connecting x and y is entirely contained
in S.

Theorem (C-Magee-Nájera Chávez)
S is positive⇔ S is broken line convex.

Idea: The structure constant αrpq in GHKK were expressed as two
broken lines with initial slope p and q.

⋆ [C-Magee-Nájera Chávez] construct the correspondence between
those two broken lines and broken line segments with (scaling of)
the endpoints p,q and r.

18



18/25

Broken line convex

Definition (C-Magee-Nájera Chávez)
A closed subset S is called broken line convex if for any x, y ∈ S(Q),
every broken line segment connecting x and y is entirely contained
in S.

Theorem (C-Magee-Nájera Chávez)
S is positive⇔ S is broken line convex.

Idea: The structure constant αrpq in GHKK were expressed as two
broken lines with initial slope p and q.

⋆ [C-Magee-Nájera Chávez] construct the correspondence between
those two broken lines and broken line segments with (scaling of)
the endpoints p,q and r.

18



19/25

Compactification

Result:

⇝ get graded ring R

⇝ get compactification ProjR

Example: Type A2

[Gross-Hacking-Keel-Kontsevich ]del Pezzo surface of degree 5

19
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Compactification

Type B2:

[C-Magee] del Pezzo surface of
degree 6

Type G2 (
0, 32

)
non-integral point coming from
bending of broken line!

20
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Any evidence?
Why we care?

21
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Grassmannian

Grassmannian Gr(k,n) is the space that parameterizes all
k-dimensional subspaces of the n-dimensional vector space Cn.

[Scott] Coordinate rings of (affine) Grassmannians carry cluster
structure.

[Rietsch-Williams] Newton Okounkov bodies of Grassmannians
Grk(Cn) are rational polytopes.

The NO bodies are positive polytopes.

22
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[Scott] Coordinate rings of (affine) Grassmannians carry cluster
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Gr3(C6)

Non-integral example from NO body calculation: Gr3(C6).

[Bossinger-C-Magee-Nájera Chávez] Get the non-integral point from
broken line convexity!

Figure 1: Part of the scattering diagram of Gr3(C6).
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Non-integral example from NO body calculation: Gr3(C6).

[Bossinger-C-Magee-Nájera Chávez] Get the non-integral point from
broken line convexity!

Figure 1: Part of the scattering diagram of Gr3(C6).
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Intrinsic NO body

Idea behind the example Gr3(C6) holds in general context

[Bossinger-C-Magee-Nájera Chávez] defines Intrinsic
Newton-Okounkov body by considering broken line convex
polytopes instead of convex polytopes.

→ ‘usual’ Newton-Okounkov body without taking closure.
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Idea behind the example Gr3(C6) holds in general context

[Bossinger-C-Magee-Nájera Chávez] defines Intrinsic
Newton-Okounkov body by considering broken line convex
polytopes instead of convex polytopes.

→ ‘usual’ Newton-Okounkov body without taking closure.
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Thank you!
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