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| Mirror symmetryl

| Cluster algebras |<—>| Scattering diagrams |

[Gross-Hacking-Keel-Kontsevich] the linkage between scattering
diagrams, broken lines, theta functions <« cluster algebras
developed by Fomin-Zelevinsky




| Mirror symmetryl

Cluster algebras |<—>| Scattering diagrams |

| Cluster varieties

[C-Magee-Najera Chavez] used the tropical structures of the
scattering diagrams to give compactification of the cluster varieties

[Bossinger-C-Magee-Najera Chavez] Apply the tropical properties to
study Newton-Okounkov bodies.
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A seed s consists of a set of cluster variables and exchange data

(by).
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Cluster algebras

Cluster algebras [Fomin Zelevinsky]
A seed s consists of a set of cluster variables and exchange data

(by).
Start with initial seed
mutation ,uk““ ~ new seed with replacing the variable A, to the new

variable A, by
! b/' _DA'
At =TT A"+ TT A"
b;>0 b;<0

The collection of the cluster variables ~ A cluster algebra

Principal coefficients (or X-variables)
Similar procedure only changing the mutation map ;Y.

~ X cluster algebra
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Cluster varieties

What are cluster varieties?
seed s : set of n variables ~~ torus G},
Mutation u : Change of variables ~~ birational maps between G},

Think: 4 defines gluing between tori

N® ~> Tpo M ~~ Ty
A:UTNO//LA X:UTM/;LX

~ A and X cluster varieties
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Compactification (go back to toric geometry)

Note that cluster varieties are not compact, e.g. C*.

To compactify it:
C*cCcCP.
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Projective toric varieties

Motivating example: CP?
Homogeneous coordinate ring of CP? is the graded ring C[zo, 21, 25

The grading can be described by a convex polytope.
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Projective toric varieties

Polytope construction:
Convex lattice polytope A in R”

~ a graded ring (graded by k)

Sa = (Z")mekn-

~~ projective toric geometry Pa = Proj(Sa). .
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Scattering diagrams

Scattering diagrams can be used to describe cluster varieties.
Fix a lattice N =2 Z", M = Homz(N,Z). Ng = N®@ R, Mg = M@ R.

Cluster scattering diagram © = collection of walls with finiteness and
consistent condition

Wall : (2,f,)

- 0 C Mg support of wall - convex rational polyhedral cone of
codim 1, contained in n+, n € N.
< fg =143 2", where v e nt.

Example: A; (Note that z(mm2) = AT AT )
14200 =144,

14210 =14 A7

14+ 200 =14 A7, 9
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Consider a path ~ passing a wall 9, we define a map
P, S meai(”o,fm

where ng is the primitive normal of the wall .
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Crossing the walls

Path-ordered product (wall crossing transformation):

Consider a path ~ passing a wall 9, we define a map
py 2" meaﬂno’m)v

where ng is the primitive normal of the wall .

14200 =14 A

N,

142000 =1 4 A7

1+ 2000 =14 A7'A,

T+A

2710 oy 5101 4 A0y = A
1
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Associate each maximal cone of the scattering diagrams with (C*)"

142000
(cy (cy
14210
((C*)Z ((C* )2
(cy
14 2(=%0

fo ~ wall crossing ~ gluing the (C*)?'s.

= A-cluster variety of type A,

1
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Theta functions

Motivating example: functions on ((C"‘)2 :

14 a2 4 2%z e @ cAA

my,my€EZ

- To each point m € M° \ {0}, associate a theta function ¥,
- Theta function ¥, is defined from a collection of broken lines
with initial slope m and endpoint Q

Example: initial slope (—1,0) (+ go opposite direction!!):

14200
A=1.0)
N

“y

A=10) A=10)

14200




A=10)

er\Z/

2(=1.0) 2(=10)
14210

14210

1907(_170) = Z(_1’O) + Z(_1’1).
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Vector space generated by theta functions as an algebra

Motivating example: H((C*)?, 0) = @, m ez C21"'2"
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Motivating example: H((C*)?, 0) = @, m ez C21"'2"

[Gross-Hacking-Keel-Konsevich]

Ip - ¥g = Z apq¥r,
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where L = M° or N, agq structure constant.

14



Vector space generated by theta functions as an algebra

Motivating example: H((C*)?, 0) = @, m ez C21"'2"
[Gross-Hacking-Keel-Konsevich]
Ip - ¥g = Z apq¥r,
rel
where L = M° or N, agq structure constant.

* gives algebra structure to the vector space generated by theta
functions.

apg are expressed in terms of broken lines:

ahy = 3 c(yM) (),

where summing over pairs of broken lines (v(,4(?)) such that
I(v™M) = p, 1(7®) = g,7V(0) = ¥D(0) = r, F(YV) + F(yD) = r

14



Example:

19(,170) . ’19(271) = 19(171) + ’19(172).




Positive polytope

Vp Y = Z agqﬁ,,

rel

Definition

A closed subset S C Ly is positive if

for every a,b € Z>o, p € aS(Z), g € bS(Z), and r € L with aj, # 0,
=re(a+b)S.

Notation: L = M° or N, dS(Z) is the cone of S at the ‘d’th-level.
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Positive polytope

Vp Y = Z agqﬁ,,

rel

Definition

A closed subset S C Ly is positive if

for every a,b € Z>o, p € aS(Z), g € bS(Z), and r € L with aj, # 0,
=re(a+b)S.

Notation: L = M° or N, dS(Z) is the cone of S at the ‘d’th-level.

Toric Cluster
fan scattering diagram
toric monomials theta functions
convex polytope | positive polytope
line broken line
convex broken line convex "
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Broken line convex

Definition (C-Magee-Najera Chavez)
A closed subset S is called broken line convex if for any x,y € S(Q),
every broken line segment connecting x and y is entirely contained

inS.
Theorem (C-Magee-Najera Chavez)
S is positive < S is broken line convex.

Idea: The structure constant aj,, in GHKK were expressed as two
broken lines with initial slope p and q.

* [C-Magee-Najera Chavez] construct the correspondence between
those two broken lines and broken line segments with (scaling of)

the endpoints p,qg and r.
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Result:
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Compactification

Result:
~ get graded ring R

~ get compactification ProjR

y

Example: Type A,

[Gross-Hacking-Keel-Kontsevich ]del Pezzo surface of degree 5
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Compactification

Type Bj:

[C-Magee] del Pezzo surface of
degree 6
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Compactification

Type Bj:

[C-Magee] del Pezzo surface of
degree 6

Type G,
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Compactification

Type Bj:

Type G,

[C-Magee] del Pezzo surface of
degree 6

non-integral point coming from
bending of broken line!

20



Any evidence?
Why we care?



Grassmannian

Grassmannian Gr(k, n) is the space that parameterizes all
k-dimensional subspaces of the n-dimensional vector space C".

[Scott] Coordinate rings of (affine) Grassmannians carry cluster
structure.
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Grassmannian

Grassmannian Gr(k, n) is the space that parameterizes all
k-dimensional subspaces of the n-dimensional vector space C".

[Scott] Coordinate rings of (affine) Grassmannians carry cluster
structure.

[Rietsch-Williams] Newton Okounkov bodies of Grassmannians

Grp(C") are rational polytopes.
The NO bodies are positive polytopes.

22



41'3 ((C6)

Non-integral example from NO body calculation: Gr3(C5).

[Bossinger-C-Magee-Najera Chavez] Get the non-integral point from
broken line convexity!
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41'3 ((C6)

Non-integral example from NO body calculation: Gr3(C5).

[Bossinger-C-Magee-Najera Chavez] Get the non-integral point from
broken line convexity!

'/(1)124)

0,1 + %8

v (I):sr,(;)

Figure 1: Part of the scattering diagram of Gr3(C®).

V(f)_ 113111131
2 - 27727727272a272 N



Intrinsic NO body

Idea behind the example Gr3(C®) holds in general context
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Intrinsic NO body

Idea behind the example Gr3(C®) holds in general context

[Bossinger-C-Magee-Najera Chavez] defines Intrinsic
Newton-Okounkov body by considering broken line convex
polytopes instead of convex polytopes.

— ‘usual’ Newton-Okounkov body without taking closure.
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Thank you!

25



