Compactifications and Dualities for Cluster varieties

Man Wai, Mandy, Cheung 22 Dec 2022

IPMU

[Gross-Hacking-Keel-Kontsevich] the linkage between scattering diagrams, broken lines, theta functions ↔ cluster algebras developed by Fomin-Zelevinsky

Outline

[C-Magee-Najera Chavez] used the tropical structures of the scattering diagrams to give compactification of the cluster varieties

[Bossinger-C-Magee-Najera Chavez] Apply the tropical properties to study Newton–Okounkov bodies.

Cluster algebras

Cluster algebras [Fomin Zelevinsky]

A seed **s** consists of a set of cluster variables and exchange data (b_{ij}) .

Start with initial seed

mutation $\mu_k^A \rightsquigarrow$ new seed with replacing the variable A_k to the new variable A'_k by

$$A_k A'_k = \prod_{b_{ij}>0} A_j^{b_{ij}} + \prod_{b_{ij}<0} A_j^{-b_{ij}}.$$

Cluster algebras [Fomin Zelevinsky]

A seed **s** consists of a set of cluster variables and exchange data (b_{ij}) .

Start with initial seed

mutation $\mu_k^A \rightsquigarrow$ new seed with replacing the variable A_k to the new variable A'_k by

$$A_k A'_k = \prod_{b_{ij}>0} A_j^{b_{ij}} + \prod_{b_{ij}<0} A_j^{-b_{ij}}.$$

The collection of the cluster variables $\rightsquigarrow \mathcal{A}$ cluster algebra

Cluster algebras [Fomin Zelevinsky]

A seed **s** consists of a set of cluster variables and exchange data (b_{ij}) .

Start with initial seed

mutation $\mu_k^A \rightsquigarrow$ new seed with replacing the variable A_k to the new variable A'_k by

$$A_k A'_k = \prod_{b_{ij}>0} A_j^{b_{ij}} + \prod_{b_{ij}<0} A_j^{-b_{ij}}.$$

The collection of the cluster variables $\rightsquigarrow \mathcal{A}$ cluster algebra

Principal coefficients (or X-variables)

Similar procedure only changing the mutation map $\mu_k^{\mathcal{X}}$.

 $\rightsquigarrow \mathcal{X} \text{ cluster algebra}$

What are cluster varieties?

seed **s** : set of *n* variables \rightsquigarrow torus \mathbb{G}_m^n

Mutation μ : Change of variables \rightsquigarrow birational maps between \mathbb{G}_m^n

What are cluster varieties?

seed **s** : set of *n* variables \rightsquigarrow torus \mathbb{G}_m^n

Mutation μ : Change of variables \rightsquigarrow birational maps between \mathbb{G}_m^n

Think: μ defines gluing between tori

What are cluster varieties?

seed **s** : set of *n* variables \rightsquigarrow torus \mathbb{G}_m^n

Mutation μ : Change of variables \rightsquigarrow birational maps between \mathbb{G}_m^n Think: μ defines gluing between tori

$$N^{\circ} \rightsquigarrow T_{N^{\circ}} \qquad \qquad M \rightsquigarrow T_{M}$$
$$\mathcal{A} = \bigcup T_{N^{\circ}} / \mu^{\mathcal{A}} \qquad \qquad \mathcal{X} = \bigcup T_{M} / \mu^{\mathcal{X}}$$

 $\rightsquigarrow \mathcal{A} \text{ and } \mathcal{X} \text{ cluster varieties}$

Compactification (go back to toric geometry)

Note that cluster varieties are not compact, e.g. $\mathbb{C}^\ast.$

Compactification (go back to toric geometry)

Note that cluster varieties are not compact, e.g. \mathbb{C}^* . To compactify it:

$\mathbb{C}^*\subset\mathbb{C}\subset\mathbb{CP}^1.$

5

Homogeneous coordinate ring of \mathbb{CP}^2 is the graded ring $\mathbb{C}[z_0, z_1, z_2]$.

```
Homogeneous coordinate ring of \mathbb{CP}^2 is the graded ring \mathbb{C}[z_0, z_1, z_2].
```

The grading can be described by a convex polytope.

```
Homogeneous coordinate ring of \mathbb{CP}^2 is the graded ring \mathbb{C}[z_0, z_1, z_2].
```

The grading can be described by a convex polytope.

Homogeneous coordinate ring of \mathbb{CP}^2 is the graded ring $\mathbb{C}[z_0, z_1, z_2]$.

The grading can be described by a convex polytope.

Homogeneous coordinate ring of \mathbb{CP}^2 is the graded ring $\mathbb{C}[z_0, z_1, z_2]$. The grading can be described by a convex polytope.

Projective toric varieties

Projective toric varieties

Projective toric varieties

Polytope construction:

Convex lattice polytope Δ in \mathbb{R}^n

 \rightsquigarrow a graded ring (graded by k)

$$S_{\Delta} = \langle z^m \rangle_{m \in k \Delta}$$

 \rightsquigarrow projective toric geometry $\mathbb{P}_{\Delta} = \operatorname{Proj}(S_{\Delta})$.

Scattering diagrams can be used to describe cluster varieties.

Scattering diagrams can be used to describe cluster varieties.

Fix a lattice $N \cong \mathbb{Z}^n$, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. $N_{\mathbb{R}} = N \otimes \mathbb{R}$, $M_{\mathbb{R}} = M \otimes \mathbb{R}$.

Scattering diagrams can be used to describe cluster varieties.

Fix a lattice $N \cong \mathbb{Z}^n$, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. $N_{\mathbb{R}} = N \otimes \mathbb{R}$, $M_{\mathbb{R}} = M \otimes \mathbb{R}$.

Cluster scattering diagram \mathfrak{D} = collection of walls with finiteness and consistent condition

Scattering diagrams can be used to describe cluster varieties.

Fix a lattice $N \cong \mathbb{Z}^n$, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. $N_{\mathbb{R}} = N \otimes \mathbb{R}$, $M_{\mathbb{R}} = M \otimes \mathbb{R}$.

Cluster scattering diagram \mathfrak{D} = collection of walls with finiteness and consistent condition

Wall : $(\mathfrak{d}, f_{\mathfrak{d}})$

• $\mathfrak{d} \subseteq M_{\mathbb{R}}$ support of wall - convex rational polyhedral cone of codim 1, contained in n^{\perp} , $n \in N$.

• $f_d = 1 + \sum c_k z^{kv}$, where $v \in n^{\perp}$.

Scattering diagrams can be used to describe cluster varieties.

Fix a lattice $N \cong \mathbb{Z}^n$, $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$. $N_{\mathbb{R}} = N \otimes \mathbb{R}$, $M_{\mathbb{R}} = M \otimes \mathbb{R}$.

Cluster scattering diagram \mathfrak{D} = collection of walls with finiteness and consistent condition

Wall : $(\mathfrak{d}, f_{\mathfrak{d}})$

• $\mathfrak{d} \subseteq M_{\mathbb{R}}$ support of wall - convex rational polyhedral cone of codim 1, contained in n^{\perp} , $n \in N$.

•
$$f_d = 1 + \sum c_k z^{kv}$$
, where $v \in n^{\perp}$.

Example: A_2 (Note that $z^{(m_1,m_2)} = A_1^{m_1}A_2^{m_2}$.)

$$1 + z^{(0,1)} = 1 + A_2$$

$$1 + z^{(-1,0)} = 1 + A_1^{-1}$$

$$1 + z^{(-1,1)} = 1 + A_1^{-1}A_2$$
9

Path-ordered product (wall crossing transformation): Consider a path γ passing a wall \mathfrak{d} , we define a map

Path-ordered product (wall crossing transformation): Consider a path γ passing a wall \mathfrak{d} , we define a map

$$\mathfrak{p}_{\gamma}: Z^m \mapsto Z^m f_{\mathfrak{d}}^{\pm \langle n_0, m \rangle},$$

where n_0 is the primitive normal of the wall \mathfrak{d} .

Path-ordered product (wall crossing transformation): Consider a path γ passing a wall \mathfrak{d} , we define a map

$$\mathfrak{p}_{\gamma}: Z^m \mapsto Z^m f_{\mathfrak{d}}^{\pm \langle n_0, m \rangle},$$

where n_0 is the primitive normal of the wall \mathfrak{d} .

Path-ordered product (wall crossing transformation): Consider a path γ passing a wall \mathfrak{d} , we define a map

$$\mathfrak{p}_{\gamma}: Z^m \mapsto Z^m f_{\mathfrak{d}}^{\pm \langle n_0, m \rangle},$$

where n_0 is the primitive normal of the wall \mathfrak{d} .

$$z^{(-1,0)} \mapsto z^{(-1,0)}(1+z^{(0,1)}) = \frac{1+A_2}{A_1}.$$
 10

Associate each maximal cone of the scattering diagrams with $(\mathbb{C}^*)^n$

Associate each maximal cone of the scattering diagrams with $(\mathbb{C}^*)^n$

 $f_{\mathfrak{d}} \rightsquigarrow$ wall crossing \rightsquigarrow gluing the $(\mathbb{C}^*)^2$'s. $\Rightarrow \mathcal{A}$ -cluster variety of type A_2

Motivating example: functions on $(\mathbb{C}^*)^2$:

$$1 + c_1 z_1^{a_1} z_2^{b_1} + c_2 z_1^{a_2} z_2^{b_2} + \dots \in \bigoplus_{m_1, m_2 \in \mathbb{Z}} \mathbb{C} z_1^{m_1} z_2^{m_2}.$$

Motivating example: functions on $(\mathbb{C}^*)^2$: $1 + c_1 z_1^{a_1} z_2^{b_1} + c_2 z_1^{a_2} z_2^{b_2} + \cdots \in \bigoplus_{m_1, m_2 \in \mathbb{Z}} \mathbb{C} z_1^{m_1} z_2^{m_2}.$

• To each point $m \in M^{\circ} \setminus \{0\}$, associate a **theta function** ϑ_m

Motivating example: functions on $(\mathbb{C}^*)^2$: $1 + c_1 z_1^{a_1} z_2^{b_1} + c_2 z_1^{a_2} z_2^{b_2} + \cdots \in \bigoplus_{m_1, m_2 \in \mathbb{Z}} \mathbb{C} z_1^{m_1} z_2^{m_2}.$

- To each point $m \in M^{\circ} \setminus \{0\}$, associate a **theta function** ϑ_m
- Theta function ϑ_m is defined from a collection of **broken lines** with initial slope *m* and endpoint *Q*

Motivating example: functions on $(\mathbb{C}^*)^2$: $1 + c_1 z_1^{a_1} z_2^{b_1} + c_2 z_1^{a_2} z_2^{b_2} + \cdots \in \bigoplus_{m_1, m_2 \in \mathbb{Z}} \mathbb{C} z_1^{m_1} z_2^{m_2}.$

- To each point $m \in M^{\circ} \setminus \{0\}$, associate a **theta function** ϑ_m
- Theta function ϑ_m is defined from a collection of **broken lines** with initial slope *m* and endpoint *Q*

Example: initial slope (-1, 0) (\leftarrow go opposite direction!!):

Motivating example: functions on $(\mathbb{C}^*)^2$: $1 + c_1 z_1^{a_1} z_2^{b_1} + c_2 z_1^{a_2} z_2^{b_2} + \cdots \in \bigoplus_{m_1, m_2 \in \mathbb{Z}} \mathbb{C} z_1^{m_1} z_2^{m_2}.$

- To each point $m \in M^{\circ} \setminus \{0\}$, associate a **theta function** ϑ_m
- Theta function ϑ_m is defined from a collection of **broken lines** with initial slope *m* and endpoint *Q*

Example: initial slope (-1, 0) (\leftarrow go opposite direction!!):

Vector space generated by theta functions as an algebra

Motivating example: $H^0((\mathbb{C}^*)^2, \mathcal{O}) = \bigoplus_{m_1, m_2 \in \mathbb{Z}^2} \mathbb{C} z_1^{m_1} z_2^{m_2}$.

Vector space generated by theta functions as an algebra

Motivating example: $H^0((\mathbb{C}^*)^2, \mathcal{O}) = \bigoplus_{m_1, m_2 \in \mathbb{Z}^2} \mathbb{C} z_1^{m_1} z_2^{m_2}$.

[Gross-Hacking-Keel-Konsevich]

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in L} \alpha_{pq}^r \vartheta_r,$$

where $L = M^{\circ}$ or N, α_{pq}^{r} structure constant.

Vector space generated by theta functions as an algebra

Motivating example: $H^0((\mathbb{C}^*)^2, \mathcal{O}) = \bigoplus_{m_1, m_2 \in \mathbb{Z}^2} \mathbb{C} Z_1^{m_1} Z_2^{m_2}$.

[Gross-Hacking-Keel-Konsevich]

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in L} \alpha_{pq}^r \vartheta_r,$$

where $L = M^{\circ}$ or N, α_{pq}^{r} structure constant.

* gives **algebra structure** to the vector space generated by theta functions.

 α_{pq}^{r} are expressed in terms of broken lines:

$$\alpha_{pq}^{r} := \sum C(\gamma^{(1)}) C(\gamma^{(2)}),$$

where summing over pairs of broken lines $(\gamma^{(1)}, \gamma^{(2)})$ such that $l(\gamma^{(1)}) = p, \ l(\gamma^{(2)}) = q, \gamma^{(1)}(0) = \gamma^{(2)}(0) = r, F(\gamma^{(1)}) + F(\gamma^{(2)}) = r$

Example:

$$\vartheta_{(-1,0)} \cdot \vartheta_{(2,1)} = \vartheta_{(1,1)} + \vartheta_{(1,2)}.$$

15/25

15

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in L} \alpha_{pq}^r \vartheta_r,$$

Definition

A closed subset $S \subseteq L_{\mathbb{R}}$ is *positive* if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in aS(\mathbb{Z})$, $q \in bS(\mathbb{Z})$, and $r \in L$ with $\alpha_{pq}^r \neq 0$, $\Rightarrow r \in (a + b)S$. Notation: $L = M^\circ$ or $N, dS(\mathbb{Z})$ is the cone of S at the 'd'th-level.

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in L} \alpha_{pq}^r \vartheta_r,$$

Definition

A closed subset $S \subseteq L_{\mathbb{R}}$ is *positive* if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in aS(\mathbb{Z})$, $q \in bS(\mathbb{Z})$, and $r \in L$ with $\alpha_{pq}^r \neq 0$, $\Rightarrow r \in (a + b)S$.

Notation: $L = M^{\circ}$ or N, $dS(\mathbb{Z})$ is the cone of S at the 'd'th-level.

Toric	Cluster
fan	scattering diagram
toric monomials	theta functions
convex polytope	positive polytope
line	

$$\vartheta_p \cdot \vartheta_q = \sum_{r \in L} \alpha_{pq}^r \vartheta_r,$$

Definition

A closed subset $S \subseteq L_{\mathbb{R}}$ is *positive* if for every $a, b \in \mathbb{Z}_{\geq 0}$, $p \in aS(\mathbb{Z})$, $q \in bS(\mathbb{Z})$, and $r \in L$ with $\alpha_{pq}^r \neq 0$, $\Rightarrow r \in (a + b)S$.

Notation: $L = M^{\circ}$ or N, $dS(\mathbb{Z})$ is the cone of S at the 'd'th-level.

Toric	Cluster
fan	scattering diagram
toric monomials	theta functions
convex polytope	positive polytope
line	broken line
convex	broken line convex

A closed subset S is called *broken line convex* if for any $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

A closed subset S is called *broken line convex* if for any $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (C-Magee-Nájera Chávez)

S is positive \Leftrightarrow S is broken line convex.

A closed subset S is called *broken line convex* if for any $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (C-Magee-Nájera Chávez)

S is positive \Leftrightarrow S is broken line convex.

Idea: The structure constant α_{pq}^r in GHKK were expressed as two broken lines with initial slope *p* and *q*.

A closed subset S is called *broken line convex* if for any $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (C-Magee-Nájera Chávez)

S is positive \Leftrightarrow S is broken line convex.

Idea: The structure constant α_{pq}^r in GHKK were expressed as two broken lines with initial slope *p* and *q*.

 \star [C-Magee-Nájera Chávez] construct the correspondence between those two broken lines and broken line segments with (scaling of) the endpoints p, q and r.

Result:

 \rightsquigarrow get graded ring R

Result:

- \rightsquigarrow get graded ring R
- \rightsquigarrow get compactification $\operatorname{Proj} R$

Result:

- \rightsquigarrow get graded ring R
- \rightsquigarrow get compactification $\mathrm{Proj}R$

Example: Type A₂

[Gross-Hacking-Keel-Kontsevich]del Pezzo surface of degree 5

Type B₂:

[C-Magee] del Pezzo surface of degree 6

Type B₂:

[C-Magee] del Pezzo surface of degree 6

Type G_2

Type B₂:

[C-Magee] del Pezzo surface of degree 6

Type G_2

non-integral point coming from bending of broken line!

Any evidence? Why we care?

Grassmannian Gr(k, n) is the space that parameterizes all *k*-dimensional subspaces of the *n*-dimensional vector space \mathbb{C}^n . [Scott] Coordinate rings of (affine) Grassmannians carry cluster structure. Grassmannian Gr(k, n) is the space that parameterizes all *k*-dimensional subspaces of the *n*-dimensional vector space \mathbb{C}^n . [Scott] Coordinate rings of (affine) Grassmannians carry cluster structure.

[Rietsch-Williams] Newton Okounkov bodies of Grassmannians $\operatorname{Gr}_k(\mathbb{C}^n)$ are rational polytopes.

Grassmannian Gr(k, n) is the space that parameterizes all *k*-dimensional subspaces of the *n*-dimensional vector space \mathbb{C}^n . [Scott] Coordinate rings of (affine) Grassmannians carry cluster structure.

[Rietsch-Williams] Newton Okounkov bodies of Grassmannians $\operatorname{Gr}_k(\mathbb{C}^n)$ are rational polytopes.

The NO bodies are positive polytopes.

Non-integral example from NO body calculation: $Gr_3(\mathbb{C}^6)$.

[Bossinger-C-Magee-Nájera Chávez] Get the non-integral point from broken line convexity!

 $\operatorname{Gr}_3(\mathbb{C}^6)$

Non-integral example from NO body calculation: $Gr_3(\mathbb{C}^6)$.

[Bossinger-C-Magee-Nájera Chávez] Get the non-integral point from broken line convexity!

Figure 1: Part of the scattering diagram of $Gr_3(\mathbb{C}^6)$.

$$\frac{\nu(f)}{2} = \left(\frac{1}{2}, 1, \frac{3}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right)$$
^{23/25}
^{23/25}
^{23/25}

Idea behind the example $\operatorname{Gr}_3(\mathbb{C}^6)$ holds in general context

Idea behind the example $\operatorname{Gr}_3(\mathbb{C}^6)$ holds in general context

[Bossinger-C-Magee-Nájera Chávez] defines Intrinsic Newton-Okounkov body by considering **broken line convex polytopes** instead of convex polytopes.

 \rightarrow 'usual' Newton-Okounkov body without taking closure.

Thank you!