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Strings and the Real World
I One of the most important tasks of string theorists today is to make

contact with particle physics.
I In particular in view of the LHC we have to try our best to explain

signatures beyond the Standard model.
I Up to now there does not exist even one explicit construction that

realizes the Standard Model (or one of the obvious extensions like
the MSSM or simple GUTs) from a compactification of string theory.

I Many different approaches:
I Heterotic compactifications (orbifolds, bundle constructions)

[Nilles et al.; Ovrut et al.; Lukas et al.]

I Gepner models
[Gepner; Schellekens et al.]

I Type II Intersecting Brane Models
[Berkooz, Douglas, Leigh; Ibañez, Uranga et al.; Blumenhagen, Lüst et al.; Cvetic et al.]

I F-theory
[Vafa et al.]



The Landscape
I Up to now there is quite some evidence that (even after moduli

stabilisation) string theory can lead to a huge1 amount of vacua.
[Susskind; Schellekens; Busso, Polchinski; Douglas et. al.]

I Information about the structure and actual content (of theories) of
this landscape has been obtained only in particular cases (easy to
calculate).

[Dĳkstra, Huiszoon, Schellekens; Blumenhagen et. al.; Dienes, Lennek; Douglas, Taylor; Honecker, FG]

I New techniques to analyse the large amount of vacua are needed, in
particular a statistical approach has been advocated.

[Denef, Douglas]

1A popular number is 10500, but the actual number is not even known to be
finite (although there are arguments for that).



The Landscape
I String theory is unique...

in 10 dimensions.
I Going from 10 to 4 dimensions

introduces a lot of possibilities,
due to “sizes” and “shapes” of the
six-dimensional compact space.
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Questions
I Does the Landscape include the Standard Model?
I How does this Landscape look like? Which types of low energy

effective theories are typical, which are rare?
I Are there common features and/or correlations between the

properties of the low energy models?
I How can we make predictions for particle physics experiments?

Strategies
I Compute as many solutions as possible of low energy theories and

look for common patterns.
I Look for correlations between properties of the low energy theories.

This could even lead to predictions.
I Compare results of analyses at different “corners” of the landscape.
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Intersecting Brane Models
I Type IIA string theory
I Use intersecting D6-branes to

generate gauge groups and matter
content.

I Branes fill space-time and wrap three–cycles in the internal compact
space.

I Compactification on R3,1 ×M to N = 1 supersymmetric solutions
in four dimensions.

I M here toroidal orbifold T6/G with G = Z2×Z2, G = Z6, G = Z′6.
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Standard model embedding
U (3)a ×U (2)b/Sp(2)b ×U (1)c ×U (1)d

U (3)a = SU (3)QCD ×U (1)a
U (2)b = SU (2)w ×U (1)b
U (1)Y : appropriate (massless) combination QY =

∑
xi Qi
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Methods to do statistics
Obtain statistical results about 4d properties in large sets of models by

I complete computation of all possible solutions (impossible) or
I choosing subsets in parameterspace, preferably completely at

random. Due to computational complexity a random choice is not
always possible.

Caveat
The choice of subsets (bias) could influence the result. These unwanted
correlations have to be avoided.
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Rank of the gauge group (visible+hidden sector)
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Frequency distribution of the total rank r of all models.
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Gauge group factors
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Number of generations
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Exotic matter vs. Higgs multiplets
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IBMs, part II
I Type IIA string theory on an orbifold background

R3,1 × T6/(ΩR×G), G being a discrete group.

I Orientifold projection R leads to O6-planes, wrapping 3-cycles ΠO6,
RR charged.

I Introduce stacks of Ni D6-branes wrapping cycles Πi to cancel RR
tadpoles.

I Matter arises at intersections of Πi ,Π′i ,ΠO6.



Constraints
I Supersymmetry

 Branes have to wrap calibrated cycles.
I Tadpole cancellation∑

i
Ni(Πi + Π′i) = L ΠO6.

I K-theory ∑
i

NiΠi ◦ΠSp(2) ≡ 0 mod 2.

Spectrum
I Closed strings: N = 1 sugra, axion-dilaton, h−1,1 Kähler + h2,1

compl.str. moduli, h+
1,1 vector multiplets

I Open strings: U (N ) / SO(2N ) / Sp(2N ) gauge groups + charged
matter
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Three-cycles
I Fractional cycles on T6/Z2N : at Z2 fixed points on T4. Continuous

displacement and Wilson line on the remaining T2 is described by
chiral adjoints.

Πfrac = 1
2

(Πtorus + Πexc)

I Rigid cycles on T6/(Z2N × Z2M ): no displacement, only discrete
Wilson lines, no adjoints.

Πrigid = 1
4

(Πtorus + Πexc)



Intersection numbers
The torus part of intersection numbers between two branes on T6/Z2N
can be split into contributions from orientifold images:

Πa
torus ◦Πb

torus = 2
N−1∑
k=0

I a(θkb).

The Z2 invariant intersections of the exceptional branes are given by

Πa
exc ◦Πb

exc = 2
N−1∑
k=0

I a(θkb)
Z2

.

This allows to write down the full spectrum, including non-chiral matter.



Geometry of T 6/Z′6
I Orbifold action θ : z i → e2πivi z i with vi = {1/6, 1/3,−1/2}.
I Two shapes of tori compatible with R:



3-cycles

Π = 1
2

(Πtorus + Πexc) .

I 4-dim. basis of torus-cycles:

ρ1 =
5∑

k=0
θkπ135, ρ2 =

5∑
k=0

θkπ235, ρ3 =
5∑

k=0
θkπ136, ρ4 =

5∑
k=0

θkπ236,

which allows to expand

Πtorus = Pρ1 + Qρ2 + Uρ3 + Vρ4.



3-cycles

Π = 1
2

(Πtorus + Πexc) .

I 8-dim. basis of exceptional cycles combined from two-cycles
wrapping θ3 fixed-points on T1 × T3 and 1-cycles on T2:

δj =
2∑

k=0
θk(e4j ⊗ π3), δ̃j =

2∑
k=2

θk(e4j ⊗ π4),

so a generic exceptional cycle is given by

Πexc =
4∑

j=1

(
djδj + ej δ̃j

)
.



Tadpole conditions
I The conditions for torus and exceptional cyles factorise.
I The O6 planes contribute only to the torus part, which is geometry

dependend. For ABa e.g.∑
a

Na (Pa + Qa) = 8,
∑

a
Na (Ua −Va) = 24.

I All branes contribute ≥ 0  finiteness of solutions.
I Exceptional part amounts to algebraic equations for da and ea

coefficients of all exceptional branes.



Supersymmetry conditions
I Toroidal part

R1√
3R2

(P −Q)− (U + V ) = 0, (P + Q)− R2√
3R1

(V −U ) > 0.

I Exceptional part gives restriction on Z2 eigenvalues and Wilson lines
on T1 × T3.

K-theory conditions
can be shown to be always fullfilled for supersymmetric branes – no
additional constraints – as in Z6 case.
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Spectrum

Chiral matter spectrum

(Antia) 1
2 (Iaa′ + IaO6)

(Syma) 1
2 (Iaa′ − IaO6)

(Na,Nb) Iab
(Na,Nb) Iab′

Full matter spectrum

(Adja) 1 + 1
4
∑N−1

k=1

∣∣∣Ia(θka) + I Z2
a(θka)

∣∣∣
(Antia) 1

4
∑N−1

k=0

∣∣∣Ia(θka′) + I Z2
a(θka′) + I ΩRθ−k

a + I ΩRθ−k+N

a

∣∣∣
(Syma) 1

4
∑N−1

k=0

∣∣∣Ia(θka′) + I Z2
a(θka′) − I ΩRθ−k

a − I ΩRθ−k+N

a

∣∣∣
(Na,Nb) 1
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General statistics
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I Number of solutions to constraining equations depends on torus
shapes (first two tori on horizontal axis, third torus color-coded:
blue/red = a/b).

I Inclusion of exceptional cycles increases the number solutions
exponentially – as in Z6 case.

I AA / BA and AB / BB are equivalent.
I O(1023) inequivalent (?) solutions.



Total rank
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I Distribution shows same behaviour for torus cycles as Z2× Z2 – can
be fitted to a Gaussian with maximum at ≈

∑
Li/2.

I Exceptional cycles enhance large ranks – due to the fact that large
rank ∼ large number of branes – exponential enhancement.



Single gauge group factors
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I Distribution scales for bulk models ∼ (L + 1−N ) L4

N2 - as found for
Z2×Z2 by Douglas,Taylor.

I Inclusion of exceptional cycles gives ∼ nL+1−N
e

L4

N2 - exponential
fall-off.



Standard models
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I Blue/red bars: massive/massless hypercharge.



Standard models

I Comparison with Z6: two- and three-generation models with
massless hypercharge exist.

I Fundamentally different spectra.



Complex structure dependence
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Chiral exotics
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I Absolute number of chiral exotics

ξ =
∑
v,h

∣∣∣χvh − χv′h
∣∣∣ .

I O(107) three generation models without chiral exotics.



Higgs families
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I This gives an upper limit on Higgs families, it could also be
non-chiral lepton pairs (can be differentiated by B-L charge, if
U (1)B−L is massless).

I Correlation between number of exotics and number of Higgs.
I Example with 9 (Hu + Hd).



Gauge couplings
The coupling ga for a gauge group factor Ga at µ < Mstring is given by

8π2

g2
a(µ)

= 8π2

g2
a,string

+ ba

2
ln
(M 2

string

µ2

)
+ ∆a

2
.

Contributions:
I Tree level (κa = 1 for SU (N ), 2 for SO/Sp(2N ))

1
αa,string

= 4π
g2

a,string
= MPlanck

2
√

2κaMstring

Va√
V6

,

At the orbifold point the volumes of the exceptional cycles are zero,
so only toroidal contribution: Va = c La

1 · La
2 · La

3 .



Running
Due to massless string modes charged under Ga = SU (Na) is encoded in
the beta function coefficient ba with

bSU(Na) = −Na
(
3− ϕAdja

)
+
∑
b 6=a

Nb

2

(
ϕab + ϕab′

)
+ Na − 2

2
ϕAntia + Na + 2

2
ϕSyma .

Threshold corrections
I ∆a due to charged massive string modes.
I Can be computed using the background field method: Computation

of one-loop vacuum energy of a string quantized in magnetic
background B. The thresholds can then be obtained from B2-term
in expansion.

I Is expected to be small, explicit calculation: work in progress...
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Gauge couplings

I Tree level coupling ratios αs/αw independent of scales.
I Very few different cases occur, always αs 6= αw.



Hidden sector
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0 61,440
1 1 147,456

3 442,368
2 2,1 2,433,024
3 1,1,1 4,055,040

I Models without hidden sector exist with 18 or 21 Higgs families.
I All of them have a massless B − L, chiral spectra look identical - are

these really independent models?



Example

Geometric setup of example model with MSSM spectrum.



Example
Chiral matter
[C ] = 3×

[
(3,2)(0,0)

1/6,1/3 +
(
3,1

)(1,0)
1/3,−1/3 +

(
3,1

)(−1,0)
−2/3,−1/3 + (1,1)(1,1)

1,1 + (1,1)(−1,1)
0,1

+ 2× (1,2)(0,−1)
−1/2,−1 + (1,2)(0,1)

1/2,1 + 6×
(
1,2

)(−1,0)
−1/2,0 + 6×

(
1,2

)(1,0)
1/2,0 + 3×

(
1,1A

)(0,0)
0,0

]
≡ 3×

[
QL + dR + uR + eR + νR + 2× L + L

]
+ 18×

[
Hd + Hu

]
+ 9× S ,

Non-chiral matter
[V ] = 2× (8,1)(0,0)

0,0 + 10× (1,3)(0,0)
0,0 + 26× (1,1)(0,0)

0,0 +
[

(3,2)(0,0)
1/6,1/3

+ 3×
(
3,1

)(0,1)
1/3,2/3 + 3×

(
3,1

)(0,−1)
−2/3,−4/3 + (3− x + 1m)× (1,1)(2,0)

1,0 + (1 + 2m)× (3A,1)(0,0)
1/3,2/3

+ (9 + 1m)× (1,3S)(0,0)
0,0 + 2m ×

(
1,2

)(−1,0)
−1/2,0 + 2m ×

(
1,2

)(1,0)
1/2,0 + 2m × (1,2)(0,−1)

−1/2,−1

+ 1m × (1,2)(0,1)
1/2,1 + 1m × (1,1A)(0,0)

0,0 + 1m × (1,1)(1,−1)
0,−1 + 1m × (1,1)(1,1)

1,1 + c.c.
]
.

Remarks
I Massless U (1)Y and U (1)B−L = 1

3 U (1)a + U (1)d .
I "m" reps. become massive after brane displacement.
I Since U (1)b aquires a mass absorbing a neutral closed string field,

(Hu + Hd), (L + L̄) and S are vector-like.
I µ-term perturbatively forbidden, as well as ν2

R and L2H 2
u .
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I µ-term perturbatively forbidden, as well as ν2

R and L2H 2
u .



Example
Chiral matter
[C ] = 3×

[
(3,2)(0,0)

1/6,1/3 +
(
3,1

)(1,0)
1/3,−1/3 +

(
3,1

)(−1,0)
−2/3,−1/3 + (1,1)(1,1)

1,1 + (1,1)(−1,1)
0,1

+ 2× (1,2)(0,−1)
−1/2,−1 + (1,2)(0,1)

1/2,1 + 6×
(
1,2

)(−1,0)
−1/2,0 + 6×

(
1,2

)(1,0)
1/2,0 + 3×

(
1,1A

)(0,0)
0,0

]
≡ 3×

[
QL + dR + uR + eR + νR + 2× L + L

]
+ 18×

[
Hd + Hu

]
+ 9× S ,

Non-chiral matter
[V ] = 2× (8,1)(0,0)

0,0 + 10× (1,3)(0,0)
0,0 + 26× (1,1)(0,0)

0,0 +
[

(3,2)(0,0)
1/6,1/3

+ 3×
(
3,1

)(0,1)
1/3,2/3 + 3×

(
3,1

)(0,−1)
−2/3,−4/3 + (3− x + 1m)× (1,1)(2,0)

1,0 + (1 + 2m)× (3A,1)(0,0)
1/3,2/3

+ (9 + 1m)× (1,3S)(0,0)
0,0 + 2m ×

(
1,2

)(−1,0)
−1/2,0 + 2m ×

(
1,2

)(1,0)
1/2,0 + 2m × (1,2)(0,−1)

−1/2,−1

+ 1m × (1,2)(0,1)
1/2,1 + 1m × (1,1A)(0,0)

0,0 + 1m × (1,1)(1,−1)
0,−1 + 1m × (1,1)(1,1)

1,1 + c.c.
]
.

Remarks
I Massless U (1)Y and U (1)B−L = 1

3 U (1)a + U (1)d .
I "m" reps. become massive after brane displacement.
I Since U (1)b aquires a mass absorbing a neutral closed string field,

(Hu + Hd), (L + L̄) and S are vector-like.
I µ-term perturbatively forbidden, as well as ν2

R and L2H 2
u .



Observables for correlations
Number of bifundamental representations

∆± := #(Na,Nb)±#(Na,Nb)

and number of (Anti-)Symmetric representations χSym/Anti for different
constructions.

Choice of samples
Different strategies to obtain statistical results are used:

I T6/Z2×Z2 (O(1010) models): explicit cutoff in the parameter
space.

I T6/Z6 (O(1028)) and T6/Z′6 (O(1023) models): random samples
of different sizes.

I Gepner models: subset of models containing a realisation of the
standard model without tadpole cancellation (biased subset). [Dĳkstra]
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∆+ vs ∆−
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Correlation between number of bifundamental matter representations on.
Top left to down right: T6/Z2×Z2 , T6/Z6 , T6/Z′6 , Gepner models.



χSym vs. χAnti
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Conclusions
I Within this (very limited) study an explicit realisation of just the

MSSM is very unlikely.
I Including a hidden sector (interesting for susy breaking) allows for

MSSM constructions, however all with large number of Higgs
multiplets.

I Many unsolved issues: Complete moduli stabilization, SUSY
breaking, Yukawa couplings, ...

I Statistically three generations are less likely than one - exponential
falloff in the number of generations that has also been observed in
other constructions..

I Correlations in the matter content and couplings do occur, but how
generic these are is unclear - better comparison to other
constructions is needed.
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