The Landscape of Intersecting Brane Models

INTEF

ALL OF THE PARTY O

Florian Gmeiner Nikhef, Amsterdam

IPMU, Apr 21, 2009

Based on work in collaboration with Gabriele Honecker:

- Mapping an Island in the Landscape, JHEP 09 (2007) 128 [0708.2285].
- ► Millions of Standard Models on Z[']₆?, JHEP 07 (2008) 052 [0806.3039].
- Complete Threshold Corrections for Intersecting Fractional D6-Branes, [0905.xxxx].

Outline

Introduction

Overview Intersecting Brane Models Statistics

Details

More on IBMs T^6/\mathbb{Z}'_6 Spectrum Statistics of T^6/\mathbb{Z}'_6 Explicit Example Correlations

Conclusions

Strings and the Real World

- One of the most important tasks of string theorists today is to make contact with particle physics.
- In particular in view of the LHC we have to try our best to explain signatures beyond the Standard model.
- Up to now there does not exist even one explicit construction that realizes the Standard Model (or one of the obvious extensions like the MSSM or simple GUTs) from a compactification of string theory.
- Many different approaches:
 - Heterotic compactifications (orbifolds, bundle constructions)

[Nilles et al.; Ovrut et al.; Lukas et al.]

Gepner models

[Gepner; Schellekens et al.]

Type II Intersecting Brane Models

[Berkooz, Douglas, Leigh; Ibañez, Uranga et al.; Blumenhagen, Lüst et al.; Cvetic et al.]

F-theory

[Vafa et al.]

- Up to now there is quite some evidence that (even after moduli stabilisation) string theory can lead to a huge¹ amount of vacua. [Susskind: Schelekens: Busso, Polchinski; Douglas et. al.]
- Information about the structure and actual content (of theories) of this landscape has been obtained only in particular cases (easy to calculate).

[Dijkstra, Huiszoon, Schellekens; Blumenhagen et. al.; Dienes, Lennek; Douglas, Taylor; Honecker, FG]

New techniques to analyse the large amount of vacua are needed, in particular a statistical approach has been advocated.

[Denef, Douglas]

 $^{^1{\}rm A}$ popular number is $10^{500},$ but the actual number is not even known to be finite (although there are arguments for that).

String theory is unique...

in 10 dimensions.

Going from 10 to 4 dimensions introduces a lot of possibilities, due to "sizes" and "shapes" of the six-dimensional compact space.

 String theory is unique... in 10 dimensions.

 Going from 10 to 4 dimensions introduces a lot of possibilities, due to "sizes" and "shapes" of the six-dimensional compact space.

- String theory is unique... in 10 dimensions.
- Going from 10 to 4 dimensions introduces a lot of possibilities, due to "sizes" and "shapes" of the six-dimensional compact space.

Questions

- Does the Landscape include the Standard Model?
- ► How does this Landscape look like? Which types of low energy effective theories are typical, which are rare?
- Are there common features and/or correlations between the properties of the low energy models?
- ▶ How can we make predictions for particle physics experiments?

Strategies

- Compute as many solutions as possible of low energy theories and look for common patterns.
- Look for correlations between properties of the low energy theories. This could even lead to predictions.
- Compare results of analyses at different "corners" of the landscape.

Questions

- Does the Landscape include the Standard Model?
- ► How does this Landscape look like? Which types of low energy effective theories are typical, which are rare?
- Are there common features and/or correlations between the properties of the low energy models?
- ▶ How can we make predictions for particle physics experiments?

Strategies

- Compute as many solutions as possible of low energy theories and look for common patterns.
- Look for correlations between properties of the low energy theories. This could even lead to predictions.
- Compare results of analyses at different "corners" of the landscape.

Intersecting Brane Models

- Type IIA string theory
- Use intersecting D6-branes to generate gauge groups and matter content.

- Branes fill space-time and wrap three-cycles in the internal compact space.
- ▶ Compactification on ℝ^{3,1} × M to N = 1 supersymmetric solutions in four dimensions.
- M here toroidal orbifold T^6/G with $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, $G = \mathbb{Z}_6$, $G = \mathbb{Z}'_6$.

Intersecting Brane Models

- Type IIA string theory
- Use intersecting D6-branes to generate gauge groups and matter content.

- Branes fill space-time and wrap three-cycles in the internal compact space.
- ▶ Compactification on $\mathbb{R}^{3,1} \times M$ to $\mathcal{N} = 1$ supersymmetric solutions in four dimensions.
- *M* here toroidal orbifold T^6/G with $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, $G = \mathbb{Z}_6$, $G = \mathbb{Z}'_6$.

Standard model embedding

$$\begin{split} &U(3)_a \times U(2)_b / Sp(2)_b \times U(1)_c \times U(1)_d \\ &U(3)_a = SU(3)_{QCD} \times U(1)_a \\ &U(2)_b = SU(2)_w \times U(1)_b \\ &U(1)_Y \text{: appropriate (massless) combination } Q_Y = \sum x_i \ Q_i \end{split}$$

Standard model embedding

$$\begin{split} &U(3)_a \times U(2)_b / Sp(2)_b \times U(1)_c \times U(1)_d \\ &U(3)_a = SU(3)_{QCD} \times U(1)_a \\ &U(2)_b = SU(2)_w \times U(1)_b \\ &U(1)_Y \text{: appropriate (massless) combination } Q_Y = \sum x_i \ Q_i \end{split}$$

Standard model embedding

$$\begin{split} &U(3)_a \times U(2)_b / Sp(2)_b \times U(1)_c \times U(1)_d \\ &U(3)_a = SU(3)_{QCD} \times U(1)_a \\ &U(2)_b = SU(2)_w \times U(1)_b \\ &U(1)_Y \text{: appropriate (massless) combination } Q_Y = \sum x_i \ Q_i \end{split}$$

Methods to do statistics

Obtain statistical results about 4d properties in large sets of models by

- complete computation of all possible solutions (impossible) or
- choosing subsets in parameterspace, preferably completely at random. Due to computational complexity a random choice is not always possible.

Caveat

The choice of subsets (bias) could influence the result. These unwanted correlations have to be avoided.

Methods to do statistics

Obtain statistical results about 4d properties in large sets of models by

- complete computation of all possible solutions (impossible) or
- choosing subsets in parameterspace, preferably completely at random. Due to computational complexity a random choice is not always possible.

Caveat

The choice of subsets (bias) could influence the result. These unwanted correlations have to be avoided.

Rank of the gauge group (visible+hidden sector)

Frequency distribution of the total rank r of all models.

Rank of the gauge group (visible+hidden sector)

Frequency distribution of the total rank r of all models.

Gauge group factors

Frequency distribution of the rank of gauge group factors.

Gauge group factors

Frequency distribution of the rank of gauge group factors.

Number of generations

Frequency distribution of standard models with g generations.

Exotic matter vs. Higgs multiplets

Correlation between exotic matter and Higgs multiplets.

to be continued...

IBMs, part II

• Type IIA string theory on an orbifold background $\mathbb{R}^{3,1} \times T^6/(\Omega \mathcal{R} \times G)$, G being a discrete group.

- ► Orientifold projection *R* leads to *O*6-planes, wrapping 3-cycles Π_{*O*6}, RR charged.
- ► Introduce stacks of N_i D6-branes wrapping cycles Π_i to cancel RR tadpoles.
- Matter arises at intersections of Π_i, Π'_i, Π_{O6} .

Constraints

Supersymmetry

 \rightsquigarrow Branes have to wrap calibrated cycles.

Tadpole cancellation

$$\sum_i N_i (\Pi_i + \Pi'_i) = L \Pi_{O6}.$$

K-theory

$$\sum_{i} N_{i} \Pi_{i} \circ \Pi_{Sp(2)} \equiv 0 \mod 2.$$

Spectrum

- ► Closed strings: N = 1 sugra, axion-dilaton, h⁻_{1,1} Kähler + h_{2,1} compl.str. moduli, h⁺_{1,1} vector multiplets
- ▶ Open strings: U(N) / SO(2N) / Sp(2N) gauge groups + charged matter

Constraints

Supersymmetry

 \rightsquigarrow Branes have to wrap calibrated cycles.

Tadpole cancellation

$$\sum_{i} N_i (\Pi_i + \Pi'_i) = L \, \Pi_{O6}.$$

K-theory

$$\sum_{i} N_{i} \Pi_{i} \circ \Pi_{Sp(2)} \equiv 0 \mod 2.$$

Spectrum

- ▶ Closed strings: $\mathcal{N} = 1$ sugra, axion-dilaton, $h_{1,1}^-$ Kähler + $h_{2,1}$ compl.str. moduli, $h_{1,1}^+$ vector multiplets
- ▶ Open strings: U(N) / SO(2N) / Sp(2N) gauge groups + charged matter

Three-cycles

▶ Fractional cycles on T^6/\mathbb{Z}_{2N} : at \mathbb{Z}_2 fixed points on T^4 . Continuous displacement and Wilson line on the remaining T^2 is described by chiral adjoints.

$$\Pi_{frac} = \frac{1}{2} \left(\Pi_{torus} + \Pi_{exc} \right)$$

► Rigid cycles on T⁶/(Z_{2N} × Z_{2M}): no displacement, only discrete Wilson lines, no adjoints.

$$\Pi_{rigid} = \frac{1}{4} \left(\Pi_{torus} + \Pi_{exc} \right)$$

Intersection numbers

The torus part of intersection numbers between two branes on T^6/\mathbb{Z}_{2N} can be split into contributions from orientifold images:

$$\Pi^a_{torus} \circ \Pi^b_{torus} = 2 \sum_{k=0}^{N-1} I^{a(\theta^k b)}.$$

The \mathbb{Z}_2 invariant intersections of the exceptional branes are given by

$$\Pi^a_{exc} \circ \Pi^b_{exc} = 2 \sum_{k=0}^{N-1} I^{a(\theta^k b)}_{\mathbb{Z}_2}$$

This allows to write down the full spectrum, including non-chiral matter.

Geometry of T^6/\mathbb{Z}_6'

• Orbifold action $\theta: z^i \to e^{2\pi i v_i} z^i$ with $v_i = \{1/6, 1/3, -1/2\}$.

• Two shapes of tori compatible with \mathcal{R} :

3-cycles

$$\Pi = \frac{1}{2} \left(\Pi_{torus} + \Pi_{exc} \right).$$

▶ 4-dim. basis of torus-cycles:

$$\rho_1 = \sum_{k=0}^5 \theta^k \pi_{135}, \ \rho_2 = \sum_{k=0}^5 \theta^k \pi_{235}, \ \rho_3 = \sum_{k=0}^5 \theta^k \pi_{136}, \ \rho_4 = \sum_{k=0}^5 \theta^k \pi_{236},$$

which allows to expand

$$\Pi_{torus} = P\rho_1 + Q\rho_2 + U\rho_3 + V\rho_4.$$

3-cycles

$$\Pi = \frac{1}{2} \left(\Pi_{torus} + \Pi_{exc} \right).$$

8-dim. basis of exceptional cycles combined from two-cycles wrapping θ³ fixed-points on T₁ × T₃ and 1-cycles on T₂:

$$\delta_j = \sum_{k=0}^2 \theta^k (e_{4j} \otimes \pi_3), \quad \tilde{\delta}_j = \sum_{k=2}^2 \theta^k (e_{4j} \otimes \pi_4),$$

so a generic exceptional cycle is given by

$$\Pi_{exc} = \sum_{j=1}^{4} \left(d_j \delta_j + e_j \tilde{\delta}_j \right).$$

Tadpole conditions

- The conditions for torus and exceptional cyles factorise.
- ► The O6 planes contribute only to the torus part, which is geometry dependend. For ABa e.g.

$$\sum_{a} N_a \left(P_a + Q_a \right) = 8, \quad \sum_{a} N_a \left(U_a - V_a \right) = 24.$$

- All branes contribute $\geq 0 \rightsquigarrow$ finiteness of solutions.
- ► Exceptional part amounts to algebraic equations for *d_a* and *e_a* coefficients of all exceptional branes.

Supersymmetry conditions

Toroidal part

$$\frac{R_1}{\sqrt{3}R_2}(P-Q) - (U+V) = 0, \quad (P+Q) - \frac{R_2}{\sqrt{3}R_1}(V-U) > 0.$$

► Exceptional part gives restriction on Z₂ eigenvalues and Wilson lines on T₁ × T₃.

K-theory conditions

can be shown to be always fullfilled for supersymmetric branes – no additional constraints – as in \mathbb{Z}_6 case.

Supersymmetry conditions

Toroidal part

$$\frac{R_1}{\sqrt{3}R_2}(P-Q) - (U+V) = 0, \quad (P+Q) - \frac{R_2}{\sqrt{3}R_1}(V-U) > 0.$$

► Exceptional part gives restriction on Z₂ eigenvalues and Wilson lines on T₁ × T₃.

K-theory conditions

can be shown to be always fullfilled for supersymmetric branes – no additional constraints – as in \mathbb{Z}_6 case.

Spectrum

Chiral matter spectrum

$$\begin{array}{c|c} (\mathbf{Anti}_a) & \frac{1}{2}(I_{aa'}+I_{aO6}) \\ (\mathbf{Sym}_a) & \frac{1}{2}(I_{aa'}-I_{aO6}) \\ (\mathbf{N}_a, \overline{\mathbf{N}}_b) & I_{ab} \\ (\mathbf{N}_a, \overline{\mathbf{N}}_b) & I_{ab'} \end{array}$$

Full matter spectrum

Spectrum

Chiral matter spectrum

$$\begin{array}{c|c} (\mathbf{Anti}_a) & \frac{1}{2}(I_{aa'}+I_{aO6}) \\ (\mathbf{Sym}_a) & \frac{1}{2}(I_{aa'}-I_{aO6}) \\ (\mathbf{N}_a, \overline{\mathbf{N}}_b) & I_{ab} \\ (\mathbf{N}_a, \overline{\mathbf{N}}_b) & I_{ab'} \end{array}$$

Full matter spectrum

General statistics

- Number of solutions to constraining equations depends on torus shapes (first two tori on horizontal axis, third torus color-coded: blue/red = a/b).
- ► Inclusion of exceptional cycles increases the number solutions exponentially – as in Z₆ case.
- \blacktriangleright AA / BA and AB / BB are equivalent.
- $\mathcal{O}(10^{23})$ inequivalent (?) solutions.

Total rank

- Distribution shows same behaviour for torus cycles as Z₂ × Z₂ − can be fitted to a Gaussian with maximum at ≈ ∑L_i/2.
- ► Exceptional cycles enhance large ranks due to the fact that large rank ~ large number of branes – exponential enhancement.

Single gauge group factors

- ▶ Distribution scales for bulk models $\sim (L + 1 N) \frac{L^4}{N^2}$ as found for $\mathbb{Z}_2 \times \mathbb{Z}_2$ by Douglas,Taylor.
- \blacktriangleright Inclusion of exceptional cycles gives $\sim n_e^{L+1-N} \frac{L^4}{N^2}$ exponential fall-off.

Standard models

Blue/red bars: massive/massless hypercharge.

Standard models

- ▶ Comparison with Z₆: two- and three-generation models with massless hypercharge exist.
- Fundamentally different spectra.

Complex structure dependence

- Complex structure paramter: $\rho = \frac{\sqrt{3}R_2}{2R_1}$.
- One/two/three generation models = blue/red/yellow.

Chiral exotics

Absolute number of chiral exotics

$$\xi = \sum_{v,h} \left| \chi^{vh} - \chi^{v'h} \right|.$$

 $\blacktriangleright~\mathcal{O}(10^7)$ three generation models without chiral exotics.

Higgs families

- ► This gives an upper limit on Higgs families, it could also be non-chiral lepton pairs (can be differentiated by B-L charge, if U(1)_{B-L} is massless).
- Correlation between number of exotics and number of Higgs.
- Example with 9 $(H_u + H_d)$.

Gauge couplings

The coupling g_a for a gauge group factor G_a at $\mu < M_{string}$ is given by

$$\frac{8\pi^2}{g_a^2(\mu)} = \frac{8\pi^2}{g_{a,\text{string}}^2} + \frac{b_a}{2}\ln\left(\frac{M_{\text{string}}^2}{\mu^2}\right) + \frac{\Delta_a}{2}.$$

Contributions:

• Tree level ($\kappa_a = 1$ for SU(N), 2 for SO/Sp(2N))

$$\frac{1}{\alpha_{a,\text{string}}} = \frac{4\pi}{g_{a,\text{string}}^2} = \frac{M_{\text{Planck}}}{2\sqrt{2}\kappa_a M_{\text{string}}} \frac{V_a}{\sqrt{V_6}},$$

At the orbifold point the volumes of the exceptional cycles are zero, so only toroidal contribution: $V_a = c L_1^a \cdot L_2^a \cdot L_3^a$.

Running

Due to massless string modes charged under $G_a = SU(N_a)$ is encoded in the beta function coefficient b_a with

$$\begin{split} b_{SU(N_a)} &= -N_a \left(3 - \varphi^{\mathbf{Adj}_a} \right) + \sum_{b \neq a} \frac{N_b}{2} \left(\varphi^{ab} + \varphi^{ab'} \right) \\ &+ \frac{N_a - 2}{2} \varphi^{\mathbf{Anti}_a} + \frac{N_a + 2}{2} \varphi^{\mathbf{Sym}_a}. \end{split}$$

Threshold corrections

- Δ_a due to charged massive string modes.
- ▶ Can be computed using the background field method: Computation of one-loop vacuum energy of a string quantized in magnetic background *B*. The thresholds can then be obtained from *B*²-term in expansion.
- ▶ Is expected to be small, explicit calculation: work in progress...

Running

Due to massless string modes charged under $G_a=SU(N_a)$ is encoded in the beta function coefficient b_a with

$$egin{aligned} b_{SU(N_a)} &= -N_a \left(3 - arphi^{\mathbf{Adj}_a}
ight) + \sum_{b
eq a} rac{N_b}{2} \left(arphi^{ab} + arphi^{ab'}
ight) \ &+ rac{N_a - 2}{2} \, arphi^{\mathbf{Anti}_a} + rac{N_a + 2}{2} \, arphi^{\mathbf{Sym}_a}. \end{aligned}$$

Threshold corrections

- Δ_a due to charged massive string modes.
- ► Can be computed using the background field method: Computation of one-loop vacuum energy of a string quantized in magnetic background *B*. The thresholds can then be obtained from *B*²-term in expansion.
- ▶ Is expected to be small, explicit calculation: work in progress...

Gauge couplings

- \blacktriangleright Tree level coupling ratios α_s/α_w independent of scales.
- Very few different cases occur, always $\alpha_s \neq \alpha_w$.

Hidden sector

\mathbf{S}	$\{N_i\}$	# models
0		61,440
1	1	147,456
	3	442,368
2	2,1	2,433,024
3	1,1,1	4,055,040

- Models without hidden sector exist with 18 or 21 Higgs families.
- ► All of them have a massless B L, chiral spectra look identical are these really independent models?

 $U(I)_{\gamma} = \frac{1}{6} U(I)_{k} + \frac{1}{2} (U(I)_{k} + U(U)_{k})$

Geometric setup of example model with MSSM spectrum.

Chiral matter $\begin{bmatrix} C \end{bmatrix} = 3 \times \begin{bmatrix} (\mathbf{3}, \mathbf{2})_{\mathbf{1/6}, \mathbf{1/3}}^{(0,0)} + (\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1/3}, -\mathbf{1/3}}^{(-1,0)} + (\overline{\mathbf{3}}, \mathbf{1})_{-\mathbf{2/3}, -\mathbf{1/3}}^{(-1,0)} + (\mathbf{1}, \mathbf{1})_{\mathbf{1,1}}^{(1,1)} + (\mathbf{1}, \mathbf{1})_{\mathbf{0,1}}^{(-1,1)} \\ + 2 \times (\mathbf{1}, \mathbf{2})_{-\mathbf{1/2}, -\mathbf{1}}^{(0,-1)} + (\mathbf{1}, \mathbf{2})_{\mathbf{1/2}, \mathbf{1}}^{(0,1)} + 6 \times (\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1/2}, \mathbf{0}}^{(-1,0)} + 6 \times (\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1/2}, \mathbf{0}}^{(1,0)} + 3 \times (\mathbf{1}, \mathbf{1}_{\overline{A}})_{\mathbf{0}, \mathbf{0}}^{(0,0)} \end{bmatrix} \\ \equiv 3 \times \begin{bmatrix} Q_L + d_R + u_R + e_R + \nu_R + 2 \times L + \overline{L} \end{bmatrix} + 18 \times \begin{bmatrix} H_d + H_u \end{bmatrix} + 9 \times S, \end{bmatrix}$

Non-chiral matter

$$\begin{split} [V] &= 2 \times (8,1)_{0,0}^{(0,0)} + 10 \times (1,3)_{0,0}^{(0,0)} + 26 \times (1,1)_{0,0}^{(0,0)} + \left\lfloor (3,2)_{1/6,1/3}^{(2,0)} \right. \\ &+ 3 \times \left(\overline{3},1\right)_{1/3,2/3}^{(0,1)} + 3 \times \left(\overline{3},1\right)_{-2/3,-4/3}^{(0,-1)} + (3-x+1_m) \times (1,1)_{1,0}^{(2,0)} + (1+2_m) \times \left(\overline{3}_A,1\right)_{1/3,2/3}^{(0,0)} \\ &+ (9+1_m) \times (1,3_S)_{0,0}^{(0,0)} + 2_m \times (1,\overline{2})_{-1/2,0}^{(-1,0)} + 2_m \times (1,\overline{2})_{1/2,0}^{(1,0)} + 2_m \times (1,2)_{-1/2,-1}^{(0,-1)} \\ &+ 1_m \times (1,2)_{1/2,1}^{(0,1)} + 1_m \times (1,1_A)_{0,0}^{(0,0)} + 1_m \times (1,1)_{0,-1}^{(1,-1)} + 1_m \times (1,1)_{1,1}^{(1,1)} + c.c. \right]. \end{split}$$

Remarks

- Massless $U(1)_Y$ and $U(1)_{B-L} = \frac{1}{3}U(1)_a + U(1)_d$.
- ▶ "*m*" reps. become massive after brane displacement.
- Since $U(1)_b$ aquires a mass absorbing a neutral closed string field, $(H_u + H_d)$, $(L + \bar{L})$ and S are vector-like.
- μ -term perturbatively forbidden, as well as ν_R^2 and $L^2 H_u^2$.

Chiral matter $[C] = 3 \times \left[(3,2)_{1/6,1/3}^{(0,0)} + (\overline{3},1)_{1/3,-1/3}^{(1,0)} + (\overline{3},1)_{-2/3,-1/3}^{(-1,0)} + (1,1)_{1,1}^{(1,1)} + (1,1)_{0,1}^{(-1,1)} + 2 \times (1,2)_{-1/2,-1}^{(0,-1)} + (1,2)_{1/2,1}^{(0,1)} + 6 \times (1,\overline{2})_{-1/2,0}^{(-1,0)} + 6 \times (1,\overline{2})_{1/2,0}^{(1,0)} + 3 \times (1,1_{\overline{A}})_{0,0}^{(0,0)} \right]$ $\equiv 3 \times \left[Q_L + d_R + u_R + e_R + \nu_R + 2 \times L + \overline{L} \right] + 18 \times \left[H_d + H_u \right] + 9 \times S,$

Non-chiral matter

$$[V] = 2 \times (\mathbf{8}, \mathbf{1})_{0,0}^{(0,0)} + 10 \times (\mathbf{1}, \mathbf{3})_{0,0}^{(0,0)} + 26 \times (\mathbf{1}, \mathbf{1})_{0,0}^{(0,0)} + \left[(\mathbf{3}, \mathbf{2})_{\mathbf{1/6},\mathbf{1/3}}^{(0,0)} + 3 \times (\mathbf{\overline{3}}, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,1)} + 3 \times (\mathbf{\overline{3}}, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,-1)} + 3 \times (\mathbf{\overline{3}}, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,-1)} + (3 - x + 1_m) \times (\mathbf{1}, \mathbf{1})_{\mathbf{1,0}}^{(2,0)} + (1 + 2_m) \times (\mathbf{\overline{3}}_A, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,0)} + (9 + 1_m) \times (\mathbf{1}, \mathbf{3}_S)_{\mathbf{0,0}}^{(0,0)} + 2_m \times (\mathbf{1}, \mathbf{\overline{2}})_{-\mathbf{1/2},\mathbf{0}}^{(-1,0)} + 2_m \times (\mathbf{1}, \mathbf{\overline{2}})_{\mathbf{1/2},\mathbf{0}}^{(1,0)} + 2_m \times (\mathbf{1}, \mathbf{2})_{-\mathbf{1/2},-1}^{(1,0)} + 1_m \times (\mathbf{1}, \mathbf{1}_A)_{\mathbf{0,0}}^{(0,0)} + 1_m \times (\mathbf{1}, \mathbf{1})_{\mathbf{0,-1}}^{(1,-1)} + 1_m \times (\mathbf{1}, \mathbf{1})_{\mathbf{1,1}}^{(1,1)} + c.c. \right].$$

Remarks

- Massless $U(1)_Y$ and $U(1)_{B-L} = \frac{1}{3}U(1)_a + U(1)_d$
- \blacktriangleright "*m*" reps. become massive after brane displacement.
- Since $U(1)_b$ aquires a mass absorbing a neutral closed string field, $(H_u + H_d)$, $(L + \bar{L})$ and S are vector-like.
- μ -term perturbatively forbidden, as well as ν_R^2 and $L^2 H_u^2$.

. .

Chiral matter $[C] = 3 \times \left[(3,2)_{1/6,1/3}^{(0,0)} + (\overline{3},1)_{1/3,-1/3}^{(1,0)} + (\overline{3},1)_{-2/3,-1/3}^{(-1,0)} + (1,1)_{1,1}^{(1,1)} + (1,1)_{0,1}^{(-1,1)} + 2 \times (1,2)_{-1/2,-1}^{(0,-1)} + (1,2)_{1/2,1}^{(0,1)} + 6 \times (1,\overline{2})_{-1/2,0}^{(-1,0)} + 6 \times (1,\overline{2})_{1/2,0}^{(1,0)} + 3 \times (1,1_{\overline{A}})_{0,0}^{(0,0)} \right]$ $\equiv 3 \times \left[Q_L + d_R + u_R + e_R + \nu_R + 2 \times L + \overline{L} \right] + 18 \times \left[H_d + H_u \right] + 9 \times S,$

Non-chiral matter

$$[V] = 2 \times (\mathbf{8}, \mathbf{1})_{\mathbf{0},\mathbf{0}}^{(0,0)} + 10 \times (\mathbf{1}, \mathbf{3})_{\mathbf{0},\mathbf{0}}^{(0,0)} + 26 \times (\mathbf{1}, \mathbf{1})_{\mathbf{0},\mathbf{0}}^{(0,0)} + \left[(\mathbf{3}, \mathbf{2})_{\mathbf{1/6},\mathbf{1/3}}^{(0,0)} + 3 \times (\mathbf{\overline{3}}, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,1)} + 3 \times (\mathbf{\overline{3}}, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,-1)} + (3 - x + 1_m) \times (\mathbf{1}, \mathbf{1})_{\mathbf{1},\mathbf{0}}^{(2,0)} + (1 + 2_m) \times (\mathbf{\overline{3}}_A, \mathbf{1})_{\mathbf{1/3},\mathbf{2/3}}^{(0,0)} + (9 + 1_m) \times (\mathbf{1}, \mathbf{3}_S)_{\mathbf{0},\mathbf{0}}^{(0,0)} + 2_m \times (\mathbf{1}, \mathbf{\overline{2}})_{-\mathbf{1/2},\mathbf{0}}^{(-1,0)} + 2_m \times (\mathbf{1}, \mathbf{\overline{2}})_{\mathbf{1/2},\mathbf{0}}^{(1,0)} + 2_m \times (\mathbf{1}, \mathbf{2})_{-\mathbf{1/2},-1}^{(0,-1)} + 1_m \times (\mathbf{1}, \mathbf{2})_{\mathbf{1/2},\mathbf{1}}^{(0,0)} + 1_m \times (\mathbf{1}, \mathbf{1}_A)_{\mathbf{0},\mathbf{0}}^{(0,0)} + 1_m \times (\mathbf{1}, \mathbf{1})_{\mathbf{0},-1}^{(1,-1)} + 1_m \times (\mathbf{1}, \mathbf{1})_{\mathbf{1},\mathbf{1}}^{(1,1)} + c.c. \right].$$

Remarks

- Massless $U(1)_Y$ and $U(1)_{B-L} = \frac{1}{3}U(1)_a + U(1)_d$.
- ▶ "*m*" reps. become massive after brane displacement.
- ▶ Since $U(1)_b$ aquires a mass absorbing a neutral closed string field, $(H_u + H_d)$, $(L + \bar{L})$ and S are vector-like.
- μ -term perturbatively forbidden, as well as ν_R^2 and $L^2 H_u^2$.

Observables for correlations

Number of bifundamental representations

 $\Delta^{\pm} := \#(\mathbf{N}_a, \overline{\mathbf{N}}_b) \pm \#(\mathbf{N}_a, \mathbf{N}_b)$

and number of (Anti-)Symmetric representations $\chi^{Sym/Anti}$ for different constructions.

Choice of samples

Different strategies to obtain statistical results are used:

- ► $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ ($\mathcal{O}(10^{10})$ models): explicit cutoff in the parameter space.
- ▶ $T^6/\mathbb{Z}_6(\mathcal{O}(10^{28}))$ and $T^6/\mathbb{Z}'_6(\mathcal{O}(10^{23}))$ models): random samples of different sizes.
- Gepner models: subset of models containing a realisation of the standard model without tadpole cancellation (biased subset). [Dijkstra]

Observables for correlations

Number of bifundamental representations

$$\Delta^{\pm} := \#(\mathbf{N}_a, \overline{\mathbf{N}}_b) \pm \#(\mathbf{N}_a, \mathbf{N}_b)$$

and number of (Anti-)Symmetric representations $\chi^{Sym/Anti}$ for different constructions.

Choice of samples

Different strategies to obtain statistical results are used:

- ► $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ ($\mathcal{O}(10^{10})$ models): explicit cutoff in the parameter space.
- ▶ $T^6/\mathbb{Z}_6(\mathcal{O}(10^{28}))$ and $T^6/\mathbb{Z}'_6(\mathcal{O}(10^{23}))$ models): random samples of different sizes.
- Gepner models: subset of models containing a realisation of the standard model without tadpole cancellation (biased subset). [Dijkstra]

 $\Delta^+ ~{\rm vs}~ \Delta^-$

Correlation between number of bifundamental matter representations on. Top left to down right: $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$, T^6/\mathbb{Z}_6 , T^6/\mathbb{Z}_6' , Gepner models.

 χ^{Sym} vs. χ^{Anti}

Correlation between number of symmetric and antisymmetric representations. Top left to down right: $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$, T^6/\mathbb{Z}_6 , T^6/\mathbb{Z}_6' , Gepner models.

Conclusions

- Within this (very limited) study an explicit realisation of just the MSSM is very unlikely.
- Including a hidden sector (interesting for susy breaking) allows for MSSM constructions, however all with large number of Higgs multiplets.
- Many unsolved issues: Complete moduli stabilization, SUSY breaking, Yukawa couplings, ...
- Statistically three generations are less likely than one exponential falloff in the number of generations that has also been observed in other constructions..
- Correlations in the matter content and couplings do occur, but how generic these are is unclear - better comparison to other constructions is needed.