

Asymmetries in the early universe

Valerie Domcke CERN

IPMU, Kashiwanoha, Japan Jan 25, 2023

baryon asymmetry at BBN (~ 1 MeV) and CMB decoupling (~ eV) : $\frac{n_B}{s} \simeq 8.7 \times 10^{-11}$

In SM, B – L and B + L are conserved below EWPT / sphaleron freeze-out (\sim 100 GeV). Above, sphaleron processes drive B + L = 0.

→ lepton asymmetry at 100 GeV:

$$\frac{|n_L|}{s} \lesssim 10^{-10}$$

baryon asymmetry at BBN (~ 1 MeV) and CMB decoupling (~ eV) : $\frac{n_B}{s} \simeq 8.7 \times 10^{-11}$

In SM, B – L and B + L are conserved below EWPT / sphaleron freeze-out (\sim 100 GeV). Above, sphaleron processes drive B + L = 0.

→ lepton asymmetry at 100 GeV:

$$\frac{|n_L|}{s} \lesssim 10^{-10}$$

spontaneous CP violation the early Universe is very small

baryon asymmetry at BBN (~ 1 MeV) and CMB decoupling (~ eV):

$$\frac{n_B}{s} \simeq 8.7 \times 10^{-11}$$

In SM, B – L and B + L are conserved below EWPT / sphaleron freeze-out (\sim 100 GeV). Above, sphaleron processes drive B + L = 0.

→ lepton asymmetry at 100 GeV:

$$\frac{|n_L|}{s} \lesssim 10^{-10}$$

spontaneous CP violation the early Universe is very small

However:

B + L asymmetry can be much larger at earlier times

B – L asymmetry can be much larger if B – L violation introduced

Asymmetries in electron neutrinos from BBN, CMB: (charged particles constrained by charge neutrality)

$$\frac{|n_{\nu_e} - n_{\bar{\nu}_e}|}{s} \sim \frac{|\mu_{\nu_e}|}{T} \lesssim 10^{-2}$$

Due to neutrino oscillations, large $\mu_{\nu_{\alpha}}$ with $\Sigma \mu_{\nu_{\alpha}} = 0$ only constrained to: $|\mu_{\nu_{\alpha}}|/T \lesssim \mathcal{O}(1)$

or not?

Observationally,
O(1) lepton flavour asymmetries
are not excluded

Hints from BBN (helium anomaly) and CMB (polarization) for large CP violation

Burns, Tait, Valli '22, Minami, Komatsu '20

Implications for baryogenesis, CP-violating BSM physics, thermal phase transitions,....

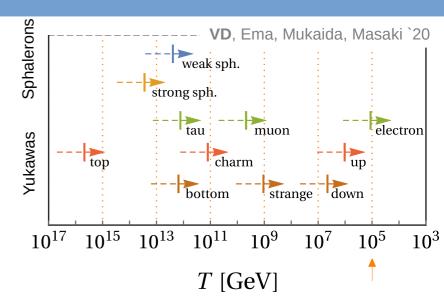
Observationally,
O(1) lepton flavour asymmetries
are not excluded

Implications for baryogenesis, CP-violating BSM physics, thermal phase transitions,....

Hints from BBN (helium anomaly) and CMB (polarization) for large CP violation Burns, Tait, Valli `22, Minami, Komatsu `20

Outline of this talk:

- implications of large spontaneous CP violation in the early universe
- new bounds on lepton flavour asymmetries
- implications for baryogenesis

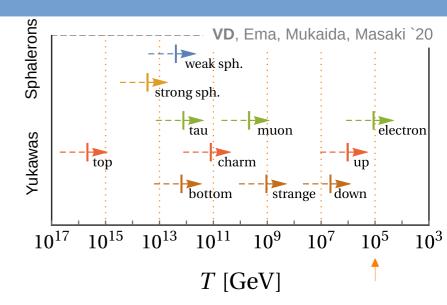

SM interactions and conserved charges

 $B/3-L_{\alpha}$, Y exactly conserved charges:

$$B/3-L_{\alpha}$$
, Y

(lepton flavour, hypercharge)

 in the early Universe, SM interactions cannot keep up with expansion


 \rightarrow additional approximately conserved charges $q_X = n_X - n_{\bar{X}} = \mu_X T^2/6$:

SM interactions and conserved charges

• exactly conserved charges: $B/3 - L_{\alpha}$, Y

(lepton flavour, hypercharge)

 in the early Universe, SM interactions cannot keep up with expansion

 \rightarrow additional approximately conserved charges $q_X = n_X - n_{\bar{X}} = \mu_X T^2/6$:

	T [GeV]	$\mid y_e \mid$	y_{ds}	y_d	y_s	y_{sb}	y_{μ}	y_c	$y_{ au}$	y_b	WS	SS	y_t
(v)	$(10^5, 10^6)$	q_e	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(iv)	$(10^6, 10^9)$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(iii)	$(10^9, 10^{11-12})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(ii)	$(10^{11-12}, 10^{13})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	\checkmark	\checkmark
(i)	$(10^{13}, 10^{15})$	$\mid q_e \mid$	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	q_u	\checkmark

conserved charges + # equilibrated interactions = # particle species = 16

asymmetries are redistributed across different species

chiral plasma instability

chiral magnetohydrodynamics (MHD): hyper gauge fields, plasma w asymmetries

classical Maxwell eqs with
$$J_Y = \frac{\sigma_Y}{\sigma_Y}(E_Y + v \times B_Y) + \frac{2\alpha_Y}{\pi}\mu_{Y,5}B_Y$$

conductivity

fluid velocity

→ inverse cascade

chiral magnetic effect → chiral plasma instability

$$\mu_{Y,5} = \sum_{i} \varepsilon_i g_i Y_i^2 \mu_i$$

chiral chemical potential

chiral plasma instability

chiral magnetohydrodynamics (MHD): hyper gauge fields, plasma w asymmetries

classical Maxwell eqs with
$$J_Y = \sigma_Y (E_Y + v \times B_Y) + \frac{2\alpha_Y}{\pi} \mu_{Y,5} B_Y$$

conductivity

fluid velocity → inverse cascade chiral magnetic effect → chiral plasma instability

$$\mu_{Y,5} = \sum_{i} \varepsilon_i g_i Y_i^2 \mu_i$$

helicity:

$$\partial_{\eta} h_k = -\frac{2k^2}{\sigma_Y} h_k + \frac{4\alpha_Y}{\pi} \frac{\mu_{Y,5}}{\sigma_Y} \rho_{B,k}$$

magn. energy density:

$$\partial_{\eta} \rho_{B,k} = -\frac{2k^2}{\sigma_Y} \rho_{B,k} + \frac{\alpha_Y}{\pi} \frac{\mu_{Y,5}}{\sigma_Y} k^2 h_k$$

diffusion chiral magnetic effect

modes of one helicity with $k < k_{\rm CPI} \equiv \alpha_Y |\mu_{Y,5}|/\pi$ become tachyonically unstable for $|\mu_{Y,5}| \neq 0$

chiral plasma instability

chiral magnetohydrodynamics (MHD): hyper gauge fields, plasma w asymmetries

classical Maxwell eqs with
$$J_Y = \sigma_Y (E_Y + v \times B_Y) + \frac{2\alpha_Y}{\pi} \mu_{Y,5} B_Y$$

conductivity

fluid velocity → inverse cascade chiral magnetic effect → chiral plasma instability

$$\mu_{Y,5} = \sum_i \varepsilon_i g_i Y_i^2 \mu_i$$
 chiral chemical potential

$$\partial_{\eta} h_k = -\frac{2k^2}{\sigma_Y} h_k + \frac{4\alpha_Y}{\pi} \frac{\mu_{Y,5}}{\sigma_Y} \rho_{B,k}$$

magn. energy density: density:

$$\partial_{\eta} \rho_{B,k} = -\frac{2k^2}{\sigma_Y} \rho_{B,k} + \frac{\alpha_Y}{\pi} \frac{\mu_{Y,5}}{\sigma_Y} k^2 h_k$$

diffusion chiral magnetic effect

modes of one helicity with $k < k_{\rm CPI} \equiv \alpha_Y |\mu_{Y,5}|/\pi$ become tachyonically unstable for $|\mu_{Y,5}| \neq 0$

chiral chemical potential converted into helical gauge fields $h = \pi T^2/\alpha_Y c_5(T) \mu_{Y,5}^{\rm ini}$ at

$$T_{\mathrm{CPI}} \sim 10^5 \ \mathrm{GeV} \ \left(\frac{10^2}{g_*}\right)^{\frac{1}{2}} \left(\frac{\alpha_Y}{0.01}\right)^2 \left(\frac{10^2 T}{\sigma_Y}\right) \left(\frac{\mu_{Y,5}/T}{2\cdot 10^{-3}}\right)^2 \bigg|_{T_{\mathrm{CPI}}}$$
 particle asymmetries can be converted to helical gauge fields

inverse cascade

Brandenburger et al `17 Schober et al `18

neglecting the fluid velocity, diffusion will erase helical gauge fields on short scales.

fluid velocity introduces non-linear mode coupling, free energy is minimized when helicity stored in long-wave length modes — inverse cascade

For sufficiently large helical fields (ie Reynolds number > 1) inverse cascade is triggered and helicity is protected from diffusion

helical gauge fields can survive even after chemical potentials are erased

baryogenesis from decaying hypermagnetic fields

At EW phase transition, hypermagnetic helicity converted to EM helicity

generation of B+L asymmetry due to ABJ anomaly

Joyce, Shaposhnikov `97

Sphaleron wash-out decouples at EW phase transition

final B+L asymmetry sensitive to detailed time evolution of EW PT

Baryon asymmetry today estimated as:

Kamada, Long `16

$$\frac{n_B^h}{s} = c_B^{\text{dec}} \frac{\alpha_Y}{2\pi} \frac{h}{n_\gamma} \sim 10^{-6} h/T^3 \sim 10^{-4} (\mu_{Y,5}/T)_{T_{\text{CPI}}}$$

for $|\mu| \gtrsim 10^{-6}$ danger of massive overproduction of baryon asymmetry in SM EW PT!

summary and outline

- implications of large spontaneous CP violation in the early universe
 - SM interactions re-shuffle particle asymmetries
 - chiral plasma instability: $\mu \mapsto h$
 - helicity can survive until EW PT and generate (large) baryon asymmetry

- new bounds on lepton flavour asymmetries
- implications for baryogenesis
 - baryogenesis from axion inflation
 - axiogenesis

e.g. at T ~ $10^{5..6}$ GeV

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

$$\frac{\mu_{Y,5}}{T} = \frac{711}{481} \frac{\mu_e}{T} + \underbrace{\left(\frac{5}{13} \frac{\mu_{\Delta_e}}{T} + \underbrace{\frac{4}{37} \frac{\mu_{\Delta_{\mu+\tau}}}{T}}\right)}_{T},$$

$$\Delta_{\alpha} = B/3 - L_{\alpha}$$

all SM interactions in equilibrium except electron Yukawa

e.g. at T $\sim 10^{5..6}$ GeV

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

$$\frac{\mu_{Y,5}}{T} = \frac{711}{481} \frac{\mu_e}{T} + \underbrace{\frac{5}{13} \mu_{\Delta_e}}_{T} + \underbrace{\frac{4}{37} \mu_{\Delta_{\mu+\tau}}}_{T}, \qquad \Delta_{\alpha} = B/3 - L_{\alpha}$$

$$\Delta_{\alpha} = B/3 - L_{\alpha}$$

all SM interactions in equilibrium except electron Yukawa

consider only B-L conserving lepton flavour asymmetries

$$\mu_e^{\mathrm{ini}} = 0 \,, \quad \sum_{\alpha} \mu_{\Delta_{\alpha}} = 0$$

$$\rightarrow \mu_{Y,5} \sim \mu_{\Delta_{\alpha}} \neq 0$$

e.g. at T ~ $10^{5..6}$ GeV

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

$$\frac{\mu_{Y,5}}{T} = \frac{711}{481} \frac{\mu_e}{T} + \underbrace{\frac{5}{13} \frac{\mu_{\Delta_e}}{T}}_{T} + \underbrace{\frac{4}{37} \frac{\mu_{\Delta_{\mu+\tau}}}{T}}_{T}, \qquad \Delta_{\alpha} = B/3 - L_{\alpha}$$

$$\Delta_{\alpha} = B/3 - L_{\alpha}$$

all SM interactions in equilibrium except electron Yukawa

consider only B-L conserving lepton flavour asymmetries $\mu_e^{\rm ini}=0\,, \quad \sum \mu_{\Delta_{\alpha}}=0$

$$\mu_e^{
m ini} = 0 \,, \quad \sum_{lpha} \mu_{\Delta_lpha} = 0$$

$$\rightarrow \mu_{Y,5} \sim \mu_{\Delta_{\alpha}} \neq 0$$

last SM coupling (electron Yukawa) comes into equilibrium

overproduction of baryon asymmetry if

$$T_{\mathrm{CPI}} \gtrsim 10^5 \; \mathrm{GeV} \quad \rightarrow \quad \left| \frac{\mu_{\Delta_e}}{T} \right| = \left| \frac{\mu_{\Delta_\mu} + \mu_{\Delta_\tau}}{T} \right| > 0.01 \qquad \text{and}$$
 $\frac{n_B}{s} > 10^{-10} \quad \rightarrow \quad |\mu_{\Delta_\alpha}/T| \gtrsim 10^{-5}$

e.g. at T ~ $10^{5..6}$ GeV

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

$$\frac{\mu_{Y,5}}{T} = \frac{711}{481} \frac{\mu_e}{T} + \underbrace{\left(\frac{5}{13}\right)^{\mu_{\Delta_e}}_{T}}_{T} + \underbrace{\left(\frac{4}{37}\right)^{\mu_{\Delta_{\mu+\tau}}}_{T}}_{T}, \qquad \Delta_{\alpha} = B/3 - L_{\alpha}$$

$$\Delta_{\alpha} = B/3 - L_{\alpha}$$

all SM interactions in equilibrium except electron Yukawa

consider only B-L conserving lepton flavour asymmetries $\mu_e^{\rm ini}=0\,, \quad \sum \mu_{\Delta_{\alpha}}=0$

$$\mu_e^{\mathrm{ini}} = 0 \,, \quad \sum_{\alpha} \mu_{\Delta_{\alpha}} = 0$$

$$\rightarrow \mu_{Y,5} \sim \mu_{\Delta_{\alpha}} \neq 0$$

last SM coupling (electron Yukawa) comes into equilibrium

overproduction of baryon asymmetry if

$$T_{\mathrm{CPI}} \gtrsim 10^5 \; \mathrm{GeV} \quad \rightarrow \qquad \left| \frac{\mu_{\Delta_e}}{T} \right| = \left| \frac{\mu_{\Delta_\mu} + \mu_{\Delta_\tau}}{T} \right| > 0.01$$

$$\frac{n_B}{s} > 10^{-10} \quad \rightarrow \quad |\mu_{\Delta_\alpha}/T| \gtrsim 10^{-5}$$

and

bound on LFAs, two orders of magnitude stronger than BBN bound

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

$$|\mu_{\Delta_{\alpha}}|/T < 0.01$$

- applies also for B-L = 0 → in that case factor 100 stronger than BBN bound
- applies at T > 10⁵ GeV → constraint on primordial asymmetries
- helium anomaly in EMPRESS data suggests $~\mu_{\Delta_e}/T \sim 0.04~$ Burns, Tait, Valli `22
 - possible only if generated at 10⁵ GeV > T > MeV (in particular large B-L violation after EWPT still viable)
- disfavours leptoflavourgenesis Mukaida, Schmitz, Yamada `21
- if marginally fulfilled, provides a viable (though tuned) baryogenesis mechanism
- sensitive to CPI dynamics, not sensitive to EW PT dynamics

outline

- implications of large spontaneous CP violation in the early universe
- new bounds on lepton flavour asymmetries
- implications for baryogenesis
 - baryogenesis from axion inflation
 - axiogenesis

'axion' inflation, a minimal setup for SM + inflation:

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

axion with scalar potential (hyper charge) massless (SM) fermions axion gauge field coupling
$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\alpha} \bar{\psi}_{\alpha} (i\partial \cdot \gamma - gQA \cdot \gamma) \psi_{\alpha} + \frac{\alpha \phi}{4\pi f_{a}} F_{\mu\nu} \tilde{F}^{\mu\nu} - (\partial_{\mu} \phi) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$$

'axion' inflation, a minimal setup for SM + inflation:

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

axion with scalar potential (hyper charge) massless (SM) fermions axion gauge field coupling
$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\alpha} \bar{\psi}_{\alpha} (i\partial \cdot \gamma - gQA \cdot \gamma) \psi_{\alpha} + \frac{\alpha \phi}{4\pi f_{a}} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{(\partial_{\mu} \phi) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi}{(\partial_{\mu} \phi) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi}$$

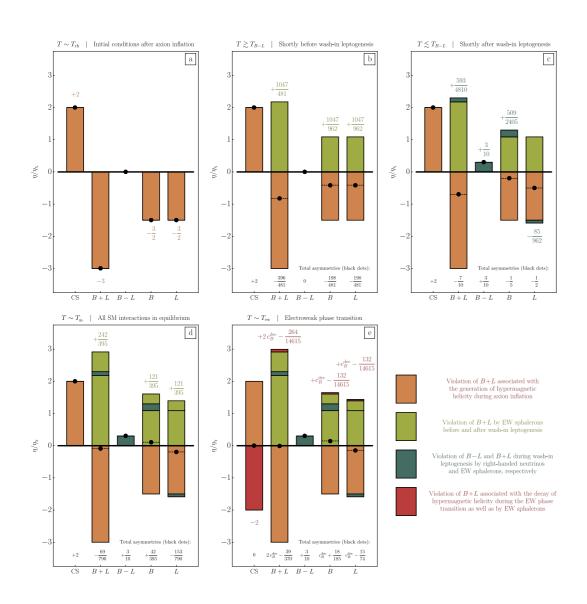
 \rightarrow exponential production of helical gauge fields through tachyonic instability for $\dot{\phi} \neq 0$ chemical potentials for fermions

'axion' inflation, a minimal setup for SM + inflation:

Domcke, Kamada, Mukaida, Schmitz, Yamada `22

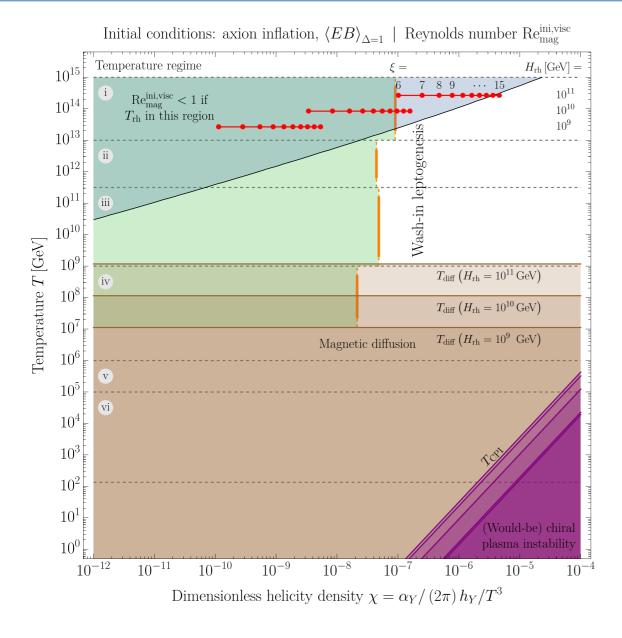
axion with scalar potential (hyper charge) massless (SM) axion gauge field scalar potential U(1) gauge field fermions coupling
$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\alpha} \bar{\psi}_{\alpha} (i\partial \cdot \gamma - gQA \cdot \gamma) \psi_{\alpha} + \frac{\alpha \phi}{4\pi f_{a}} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{(\partial_{\mu} \phi) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi}{(\partial_{\mu} \phi) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi}$$

- \rightarrow exponential production of helical gauge fields through tachyonic instability for $\dot{\phi} \neq 0$ chemical potentials for fermions
- two contribution to final baryon asymmetry:


$$\eta_B^h \simeq 7.5 \cdot 10^{-3} \left(\frac{c_B^{\text{dec}}}{0.05} \right) \chi$$

from decaying helical hypermagn. gauge fields

$$\chi = \frac{q_{CS}}{2T^3} \big|_{\rm rh}$$


$$\eta_B^{\rm N} \simeq 0.01 \left(\frac{c_B^{\rm N}}{0.1}\right) \chi$$

from re-shuffling chemical potentials if right-handed neutrinos included (B-L) = wash-in leptogenesis

- evolution of primordial asymmetries for axion inflation
- analytical expressions for general initial conditions at all temperature ranges given in

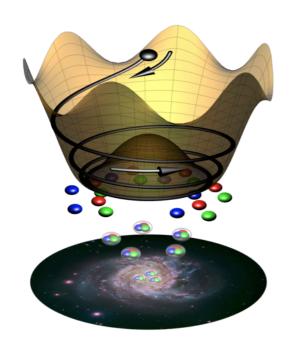
Domcke, Kamada, Mukaida, Schmitz, Yamada `22

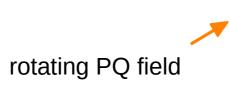
$$\xi = \frac{\alpha_Y \dot{\phi}}{2H f_a}$$

onset of CPI cancels off helicity and chemical potentials

diffusion erases gauge fields (for conservative estimate of Reynold number)

for RHN mass scale above diffusion temperature, successful wash-in leptogenesis


 $\chi \sim 10^{-8}$ naturally achieved in axion inflation

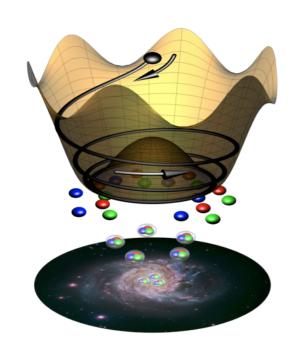

axion inflation can account for successful baryogenesis

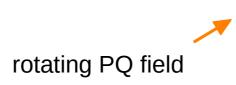
implications for axiogenesis

Kinetic misalignment & axiogenesis

[Co, Hall, Harigaya `19; Co, Harigaya `19]

axion DM via kinetic misalignment




baryon asymmetry from via spontaneous baryogenesis (but in simplest model insufficient to explain BAU)

implications for axiogenesis

Kinetic misalignment & axiogenesis

[Co, Hall, Harigaya `19; Co, Harigaya `19]

axion DM via kinetic misalignment

baryon asymmetry from via spontaneous baryogenesis (but in simplest model insufficient to explain BAU)

- rotating PQ field induces large CP violation
- can trigger chiral plasma instability

- rotation of PQ field lasts until QCD PT
- → CPI possible below 10⁵ GeV

[Co, Domcke, Harigaya `22]

implications for axiogensis

scaling of PQ field:

$$r \propto T^{3/2}$$
, $|\dot{\theta}| = N_{\rm DW} m_{\sigma}$, $\rho_{\theta} \propto T^{3}$
 $r = N_{\rm DW} f_{a}$, $\dot{\theta} \propto T^{3}$, $\rho_{\theta} \propto T^{6}$

before PQ field settles at $T=T_S$ after PQ field settles at $T=T_S$

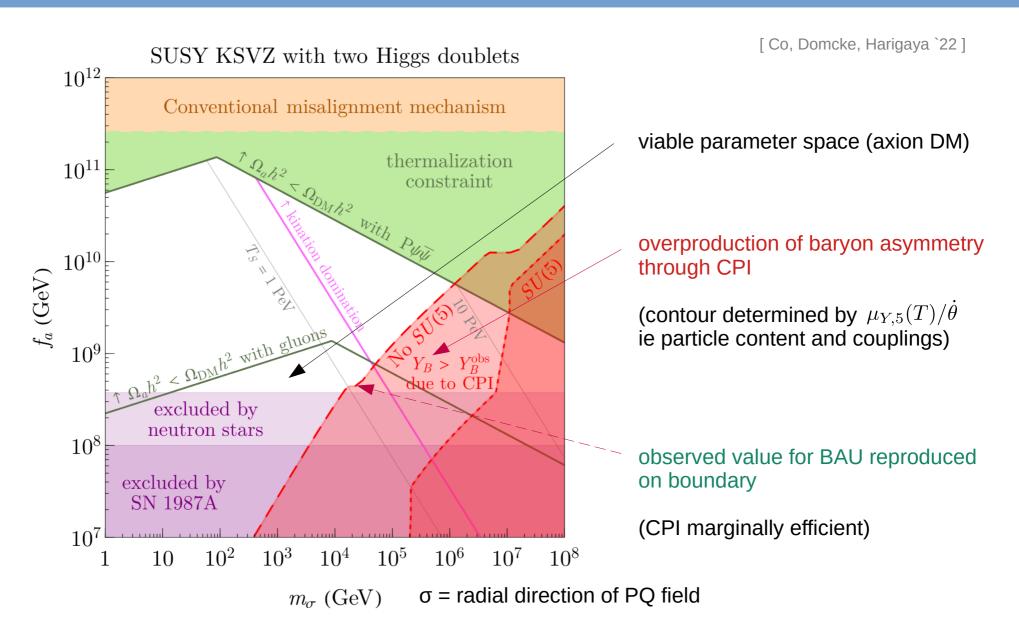
DM production:
$$(T < T_{\rm QCD} < T_S)$$
 $r|\dot{\theta}|^2/s$
$$\Omega_a h^2 = \Omega_{\rm DM} h^2 \times c_{\Omega} \left(\frac{10^9 \ {\rm GeV}}{f_a}\right) \left(\frac{Y_{\theta}}{73.3}\right)$$

implications for axiogensis

scaling of PQ field:

$$r \propto T^{3/2}$$
, $|\dot{\theta}| = N_{\rm DW} m_{\sigma}$, $\rho_{\theta} \propto T^{3}$
 $r = N_{\rm DW} f_{a}$, $\dot{\theta} \propto T^{3}$, $\rho_{\theta} \propto T^{6}$

before PQ field settles at $T=T_S$ after PQ field settles at $T=T_S$


DM production:
$$(T < T_{\rm QCD} < T_S)$$
 $r|\dot{\theta}|^2/s$
$$\Omega_a h^2 = \Omega_{\rm DM} h^2 \times c_\Omega \left(\frac{10^9~{\rm GeV}}{f_a}\right) \left(\frac{Y_\theta}{73.3}\right)$$

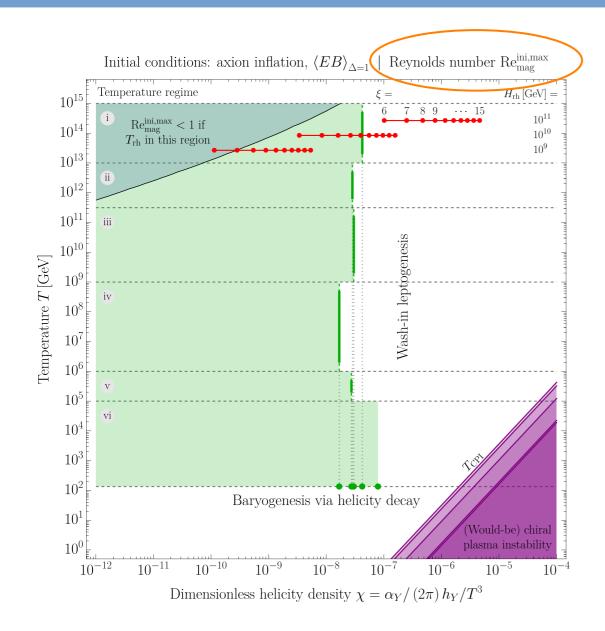
chiral plasma instability: $(T_{\mathrm{CPI}} > T_S)$

$$T_{\text{CPI}}^{\text{MD}} \simeq 3.0 \text{ PeV} |c_5|^{4/5} c_{\Omega}^{1/5} \left(\frac{10}{c_{\text{CPI}}} \frac{50 \, T}{\sigma_Y}\right)^{\frac{2}{5}} \left(\frac{N_{\text{DW}} \, m_{\sigma}}{10^5 \text{ GeV}}\right)^{\frac{3}{5}} \left(\frac{10^9 \text{ GeV}}{f_a}\right)^{\frac{1}{5}} \left(\frac{g_{\text{MSSM}}}{g_*(T_{\text{CPI}}^{\text{MD}})}\right)^{\frac{1}{5}}$$

- CPI is avoided only if $T_{\mathrm{CPI}} < T_S$
- If CPI occurs, overproduction of BAU in entire parameter space viable for DM

implications for axiogenesis

Summary


- (spontaneous) CP violation in the early universe can trigger chiral plasma instability, inverse cascade and baryogenesis
- new bound on primordial B-L conserving lepton flavour asymmetries, $|\mu_{\Delta_{lpha}}|/T < 0.01$
- improved understanding of baryogenesis from axion inflation
- constraints + new baryogenesis mechanism for axion kinetic misalignment mechanism
- framework to constrain or obtain observable predictions for models with large primordial asymmetries

Summary

- (spontaneous) CP violation in the early universe can trigger chiral plasma instability, inverse cascade and baryogenesis
- new bound on primordial B-L conserving lepton flavour asymmetries, $|\mu_{\Delta_{\alpha}}|/T < 0.01$
- improved understanding of baryogenesis from axion inflation
- constraints + new baryogenesis mechanism for axion kinetic misalignment mechanism
- framework to constrain or obtain observable predictions for models with large primordial asymmetries

ありがとうございます!

backup slides

baryogenesis via helicity decay and wash-in leptogenesis