I. The Nascence of Late-type Galaxies : Angular Momentum and Mass-Size Relation

February 24 2023

by Ji Hoon Kim Astronomy Research Center @ SNU

Formation of Late-type Galaxies

- In the current standard galaxy formation picture within the ΛCDM paradigm,
 - I. density fluctuation out of primordial gas slowly cools out of hot gaseous halos conserving specific angular momentum, j, and
 - 2. forms disks with stellar and gaseous components at centers of potential well of dark matter halos.
- Assumptions :
 - I. Conservation of Angular Momentum
 - 2. No Angular Momentum Transfer between **Baryons and DM**

Millennium Run

Formation of Late-type Galaxies

- The fundamental properties of galactic disks, such as central surface density, and disk scale length, must reflect the physical conditions of their formation.
- It is still unclear what regulates these properties.
- Leading Hypotheses
 - I. "Density Begets Density" (DD) : Differences in surface brightness are driven by the differences in the amplitude of the original density fluctuations (e.g. Ho et al. 1994).
 - 2. "Same Halo (SH)": Differences in surface brightness are driven by differences in the spin parameter (e.g. Dalcanton et al. 1997).

McGaugh & de Blok (1998)

 $LSBG \neq UDG$, or Galaxies with low mean surface brightness

3

Empirical Laws of Galactic Rotation

- I. Flat Rotation Curves (Rubin-Bosma Law)
 - Rotation curves tend asymptotically towards a constant rotation velocity that persists to indefinitely large radii : $V(R \rightarrow \infty) \rightarrow V_f$
- 2. Tully-Fisher Relation (Luminous, Stellar Mass, and **Baryonic TF relations**)
 - The baryonic mass of galaxies scales as the fourth power of the flat rotation curve : $M_{b} =$ AV_f⁴
- 3. Central Density Relation
 - Lower surface brightness galaxies exhibit larger mass discrepancies.

Lelli et al. (2019)

Lelli et al. (2016)

Empirical Laws of Galactic Rotation

- 4. Radial Acceleration Relation
 - distribution of baryons : $g_{obs} = \mathcal{F}(g_{bar})$
- 5. Renzo's Rule (Sancisi's Law)
 - curve and vice versa."

McGuagh et al. (2016)

Rotation Curves of Disk Galaxies

- Rotation curve amplitude correlates with the mass of stars and gas.
- Rotation curve shape correlates with the distribution of stars and gas.

Rotation Curves of Disk Galaxies

Radius measured by disk scale length h

NGC 2403 @V_h ~ 135 km/s

UGC 128 @V_h ~ 4535 km/s

Predictions by the Hypotheses

- DD
- Right
 - I. Clustering Properties : LSBGs should be less clustered than HSBGs
 - 2. Rotation Curve Shapes : LSBGs should have slowly rising rotation curves.
 - 3. Low Surface Density
 - 4. Collapse Time : Collapse time for LSBGs should be later than HSBGs.
- Wrong
 - I. Tully-Fisher Relation : LSBGs and HSBGs should have different TF relations.

SH

- Right
 - I. Tully-Fisher Relation : LSBGs and HSBGs should have a same TF relation.
- Wrong
 - I. Rotation Curve Shapes : There need to be a lot of fine tuning.
 - 2. No Age Difference : It is difficult to distinguish between late collapse and delayed stellar components.
 - 3. Environment : Are spin and environment correlated?

Questions

- What determines surface brightness, or surface density of disk galaxies?
- Do LSBGs have higher spin parameters?
- Do spin and environment really not correlate?
- Can environment affect shapes of rotation curves without impacting TF relation?
- Is the surface brightness distribution of disk galaxies similar to one predicted by the theoretical hypotheses?

3.8 Sab

s (j*

2.6

9.5

10.0

10.5

Cervantes-Sodi (2019)

Cervantes-Sodi (2019)

The Dependence of Surface Density on Spin

- SPARC : Spitzer Photometry and Accurate Rotation Curves
- the Sample : 175 late-type galaxies
- Data : Spitzer photometry at 3.6 μ m and highquality HI+H α rotation curves
- a wide range in stellar masses (5 dex), surface brightnesses (>3 dex), and gas fractions
- Posti et al. (2018) calculated specific angular momentum (j=J/M) for 92 out of 172 SPARC sample galaxies.

$$- \lambda = \frac{j}{\sqrt{2RV}}$$

Sbe Sab

Fall Relation vs Baryonic Tully-Fisher Relation

Fundamental Disk Parameters

Spin Parameter

So far...

- LSBGs may have systematically higher angular momentum for given mass.
- There are certainly outliers;
 - I. No peculiar morphology
 - 2. Not in interaction
- LSBGs may not have systematically higher spin parameter, even for given mass.
- Spin parameter proxies are messy, therefore consider it as a grain of salt.

Then, what?

- We will measure environment parameters:
 - 1. Σ_5 , or δ_5
 - 2. Distance to filament structure
- We will recalculate spin parameters to calibrate proxies.
- We are also carrying out a study on galaxy environment of disk galaxies based on Stripe82 Coadds data.

II. Introduction to 7DT/7DS

Hyung Mok Lee

Myungshin Im

Arman Shafieloo

Center for the Gravitational-Wave Universe team Seoul National University, Korea Astronomy and Space Science Institute, Ewha Womans University, and Postech

Chunglee Kim

Jae-Hun Jung

Gravitational-wave EM Counterpart Identification

- 4 messengers : photons (electromagnetic wave), cosmic rays (protons and atomic nuclei), neutrinos, and gravitational waves.
- Gravitational Wave Astronomy
 - I. Binary Black Hole Merger
 - 2. Binary Neutron Star Merger
 - 3. Violent Events, such as Supernovae
 - 4. Epoch Prior to Recombination
 - 5. the Properties of GW Sources : mass and distance
- GWI708I7 : a binary neutron star merger

An artistic rendition of binary neutron star merger (image credit : NASA)

Time-frequency representations of data containing the gravitational-wave event, GW170817 observed by LIGO.

Multi-Messenger Astronomy

- 3 Challenges to EM Counterpart Identification
 - I. Wide Localization Area
 - a few 100's square degrees for O3
 - a few 10's of square degrees for 04?
 - 2. Faint, Fast-declining Transients (kilonova)
 - Peak apparent magnitudes are $R = 17 \sim 22.5$ mag.
 - They become a few mag fainter in several days.
 - 3. Numerous Transients and Bogus Signals in large FoVs
 - a few 100's transients and/or variable objects in 10 square degrees
 - a few 10⁵'s artifacts in 10 square degrees

Multi-Messenger Astronomy

- 3 Challenges to EM Counterpart Identification
 - I. Wide Localization Area
 - ~100's square degrees for O3
 - ~10's of square degrees for O4?
 - 2. Faint, Fast-declining Transients (kilonova)
 - Peak apparent magnitudes are $R = 17 \sim 22.5$ mag.
 - They become a few mag fainter in several days.
 - 3. Numerous Transients and Bogus Signals in large FoVs
 - ~100's transients and/or variable objects in 10 square degrees
 - ~10⁵ artifacts in 10 square degrees

Multi-Messenger Astronomy

- 3 Challenges to EM Counterpart Identification
 - I. Wide Localization Area
 - ~100's square degrees for O3
 - ~10's of square degrees for O4?
 - 2. Faint, Fast-declining Transients (kilonova)
 - Peak apparent magnitudes are $R = 17 \sim 22.5$ mag.
 - They become a few mag fainter in several days.
 - 3. Numerous Transients and Bogus Signals in large FoVs
 - ~100's transients and/or variable objects in 10 square degrees
 - ~10⁵ artifacts in 10 square degrees

What do we need?

- I. Wide Field of View
 - Need to cover as much area as possible.
- 2. Flexible Operation
 - Need to start follow-up as soon as possible.
- 3. Real Time Analysis
 - Need to distinguish real and bogus objects.
 - Need to keep covering localization areas while analyzing obtained data.
- 4. Low Resolution Spectroscopy
 - Need to classify among transients.

Courtesy of Gregory S. H. Paek

7-Dimensional Telescope in a Nutshell

- 7DT is a multi-telescope system of 20 small telescopes with a large FoV and medium-band filters.
- 7DT will carry out a wide-field survey with high cadence which will produce IFU-style data.
- 7DT will be located at Observatorio
 El Sauce situated in the Río
 Hutardo Valley in Chile.
- Science operation will be done remotely. We are developing softwares for fully automated operation, including scheduling, and data reduction pipeline.

A conceptual view of 7DT (Image Credit : Dr. Hyun, M.)

Site

- 7DT will be installed at Observatorio El Sauce which is located in the Río Hutardo Valley in Chile. Currently, SNU RASA36 is deployed at **Observatorio El Sauce.**
- Science operation will be done remotely, but will be assisted by a hosting company, ObsTech which will provides technical support and infrastructure.
- altitude : 1700 m
- more than 300 clear nights (up to 320 nights)
- the median seeing : 1.3"
- the mean sky brightness : ~22 mag/"

Site

- The structure is scheduled to be complete by the end of this month.

Credit : V. Suc @ ObsTech

Instrument : Telescope

- Delta-Rho 500 by PlaneWave Instruments
 - I. Primary mirror diameter : 508 mm
 - 2. Effective focal ratio : f/3.0
 - 3. Field of view : 2.62 degree
 - 4. Optical field of view : 70 mm diameter
 - 5. Back focal length : 232.8 mm
 - 6. Weight: 75 kg
 - 7. Central obstruction : 60% by diameter

Instrument : Telescope

- Delta-Rho 500 by PlaneWave Instruments
 - 6. Optical performance
 - 4 micron RMS on-axis
 - 4.6 micron RMS at 22 mm off-axis
 - 6.4 micron RMS at 30 mm off-axis
- 20 × DR500 is an equivalent of 2.3-m telescope with focal ratio of 0.67.

OBJ: -1.3100, 0.0000 (deg)

Instrument : Camera

- C3 61000 Pro by Moravian
 - I. Sony IMX455 CMOS Sensor
 - 2. 9576 x 6388 pixels of 3.76 micron pixel size
 - 3. 36 mm x 24 mm (~ 43 mm diagonal)
 - 4. 1.4 degree x 0.9 degree on sky
 - 5. All 6 cameras arrived in Chile.
 - 6. We will order 4 more cameras for Batch 2.
 - 7. Upgrade in future : C5A-150M using IMX411 (53.42 mm x 40 mm, 66.7 mm diagonal) is released.

Instrument : Filter

- Filter

- I. Medium-band filters : Off-the-Shelf filters from Edmund Optics
 - 20 Medium-band Filters with FWHM of 25nm from 400 nm to 900 nm
- 2. Sloan Broad-band u-, g-, r-, i-, and z-bands : Off-the-Shelf filters from Chroma Technology
- 3. Filter transmissivities are being measured.

Instrument : Filter

- Filter

- I. Medium-band filters : Off-the-Shelf filters from Edmund Optics
 - 20 Medium-band Filters with FWHM of 25nm from 400 nm to 900 nm
- 2. Sloan Broad-band u-, g-, r-, i-, and z-bands : Off-the-Shelf filters from Chroma Technology
- 3. Filter transmissivities are being measured.

Sensitivity

Survey Strategy

Surveys	Survey Area (deg²)	Cadence	Depth (5yr)
Reference Imaging Survey	20,000	_	20 mag
Wide-field Survey (WFS)	I,620	14 days	23.3 mag
Intensive Monitoring Survey (IMS)	12.6	I day	25.1 mag

The survey depths are estimated assuming 1.5" seeing and 70% survey efficiency.

GW Follow-Up & Monitoring Survey Strategy

- There are two approaches for scanning the sky localization of GW with telescopes:
 - I. Tiling observation
 - 2. Galaxy-targeting observation

Which field should be observed preferentially to discover a GW counterpart?

Find the galactic environment of BNS merger events using short GRB host galaxies.

GW Follow-Up & Monitoring Survey Strategy

- I. Tiling Observation
 - Multi-order coverage (MOC) maps are generated based on FoV.
 - Then, tiles are ranked based on GW probability which is released by LIGO group.

Elahe Khalouei et al. (*in prep*)

GW Follow-Up & Monitoring Survey Strategy

2. Galaxy-targeting Observation

- Within localization areas for GW events, we identify host galaxy candidates. -
- Host galaxies are ranked based on BNS merger rate.

If BNS rate Stellar mass?

 \Rightarrow sGRB would follow the mass-weighted distribution

 \Rightarrow *Emprically, not true.*

Then, which "weight" reproduce the observed data?

 \Rightarrow the weight would be the proxy of merger rate

 $\Rightarrow \log(N_{BNS}/Gyr) = 0.82 \times \log(M_*) + 0.47 \times \log(sSFR) + C$

Mankeun Jeong et al. (*in prep*)

Software Development

I. Main Controller/Scheduler :

- Is a backbone frame to control/communicate TCSs of telescopes.
- Needs to accommodate various ToO triggers.
- We are developing TCS + scheduler based on Alpaca Pi suite.
- 2. Data Reduction Pipeline
 - Should provide data products for real-time analysis.
 - Is expected to carry out transient object classification to trigger ToO observation.
- 3. Data Catalog and Analysis Tool
 - Produces open-to-public database (images, and catalogs). -
 - Provides photometry, or spectra for objects of interest.

Software Development

TCSpy : Telescope control system for 7DT

- TCSpy operates multiple telescopes with TCP/IP network
- TCSpy synchronizes multiple telescopes
- TCSpy will enable
 - 1. Fast follow-up observation
 - 2. Focused observation
 - 3. Tiled observation (large FOV)

.

Manual input				
	TA COI			

	OBS COI
Wea stat	ther ion

Courtesy of Hyunho Choi

ASCOM Alpaca

Software Development

Progress (230217)

Courtesy of Hyunho Choi

Data Storage and Processing Servers

1. Data Processing Servers

- Expected Data Inflow Rate : ~1.5 TB per night
- We are expecting to data generation rate of 1.5 PB per year including processed data. - Up to 12 PB data storage will downlink data via KREONET utilizing 10Gbps data transfer rate. - IPB storage of NFS will be ready for O4 run, and we will increment the storage by the end of
- 2024.
- 2. Data Processing Servers
 - Needs for either multiprocessing, or multithreading computing servers to expedite data reduction process for real-time data analysis
 - We will purchase a GPU-based data processing server soon.

Science beyond Gravitational-wave Astronomy

Subject	Now	7DS	Scientific Value
Time-series Spectra of Quasars	~1000	>30,000	Complete Census of SMBH AGN Variability
RM Measurement of SMBH Mass	~100	10,000	Growth History of SMBHs
Velocity Maps of Galaxies	~10,000	50,000,000	Galaxy Evolution
Galaxy Clusters	100,000	100,000	Cosmology, Galaxy Evolution
Early Spectra of SNe	~10	>1,000	Physical Mechanism of SNe
Time-series Spectra of Stellar Objects	1,000,000	109	Stellar Evolution
Time-series Spectra of Small Bodies of the Solar System	100	>10,000	Origin of the Solar System, Census of Asteroids/Comets

Timeline

- 1. Year 3 : 2023
 - March : Completion of Unit #1 and #2
 - May ~: GW ToO during LVK O4
 - June : Completion of Unit #3 ~ #10
 - December : Completion ?
- 2. Year 4, 5 : 2024 ~ 2025
 - Completion of Data Analysis System
 - Regular 7DT Operation (7DS + GWToO)

Summary on 7DT/7DS

- 7DT provides a wide-field, multi-object spectroscopic capability with high cadence.
 - I.4 by 0.9 square degree FoV
 - 40 medium-band (25 nm) filters
 - very fast optics : f/3.0
- 7DS will carry out 3 layers of survey with various area coverages and depths:
 - Reference Imaging Survey, Wide-Field Survey, and Intensive Monitoring Survey.
 - pilot operation starts in early 2023; full operation is expected in early 2024.
- 7DS will benefit various projects beyond GW E&M counterpart identification, including, but not limited to the solar system small body, stellar evolution, galaxy evolution, and cosmology.
- The synergy with the NIR coverage of SPHEREx will significantly enhance the scientific value of 7DS.

Formation of Late-type Galaxies

- The fundamental properties of galactic disks, such as central surface density, and disk scale length, mush reflect the physical conditions of their formation.
- Tidal Torque Theory within the ACDM paradigm predicts LSBGs to be located in less denser regimes.
- The difference in the specific angular momentum of host dark matter halos result in different surface densities of disks.
- Does LSBGs have systemically large specific angular momenta, and reside in low density environments?

Phototometric Redshift and SED Fitting with 7DS

- I. Photo-z Error Estimation
 - With 20 bands : < 1% up to z~0.8
 - With 40 bands : < 0.5 % up to z~1.0
- 2. SED Fitting
 - Stellar Mass: reduced uncertainty (0.3% to 0.2%)
 - SFR: reduced bias
 - Age: reduced bias & uncertainty
- 3. 7DS+SPHEREx : reduced photo-z uncertainty at z > 1

Courtesy of Eunhee Ko and S.-K. Lee

Instrument : Telescope

Site

