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Intr ion

* One of the most important unsolved questions - find
the phases of strongly coupled gauge theories

* Nail down the mechanism of confinement in QCD

* Find for how many flavors do we expect chiral
symmetry breaking, does confinement persist for

larger number of flavors, ...?

 Are there other phases realized”? Expect at least
conformal phase a la Banks-Zaks



Intr ion

* Not that many tools available for studying this
guestion

* Lattice gauge theories (not yet applicable for chiral
theories)

* Anomaly matching conditions
* " Tumbling” for chiral theories - will discuss

» Extrapolation from SUSY theories - will focus on
this



Exact results in SUSY heori

« SUSY gives powerful constraints on strong
dynamics

« Seiberg was able to nail down phase structure of
SUSY QCD in 1994 using

* Holomorphy

* 't Hooft anomaly matching
* Instanton calculations

* Integrating out/Higgsing

« Obtained many different phases depending on F vs
N



SUSY QCD

 N=1 SUSY SU(N) gauge theory with F flavors
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* Moduli space (D-flat directions) parametrized by
holomorphic gauge invariants, generically mesons

= Q;Q,; andbaryons B;; = QiQ; ...k
where the baryons are totally antisymmetric in the
flavor indices, and only exist for F=N



The ph f Y QCD

F > 3N Theory IR free
—— F =3N

Conformal - non-abelian Coulomb phase

— ['=-N
2
Free magnetic phase
—— F=N+1 s-confinement
—— F =N Quantum modified constraint
—— F=N-1

ADS superpotential, runaway vacuum

— =0 Pure SYM - gaugino condensation
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F=0 - Pure SYM
* No matter fields, no continuous flavor symmetry
» Zon discrete R-symmetry rotating gauginos
* Dynamics: gaugino condensation
. W =NA° (AN\) = —327%w; A3

« Should be truly confining V(R) ~ oR
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<F<N: AD r ntial
* First obtained by Affleck, Dine, Seiberg 1984

* Dynamics generates a non-perturbative
superpotential

WaDs Z(N—F)<

ABN—F 1/(N-F)
det M )

 For F=N-1 actually generated by instanton,

calculable T

« Gauge group (partially) Higgsed

« V(R) ~ constant (at least for F=N-1)

* For F<N-1 gaugino condensation in unbroken group



The ph f Y QCD

F > 3N Theory IR free
—— F =3N

Conformal - non-abelian Coulomb phase

Free magnetic phase

—— F=N+1 S- conflnement
—— F =N Quantum modified constraint
— =N -1

ADS superpotential, runaway vacuum

— =0 Pure SYM - gaugino condensation



F=N,N+1: special cases
* Both have description in terms of gauge singlet
mesons and baryons

* F=N: Quantum modified constraint X N
)

Wconstraint = X (detM — FB — AQN

Ul)a U1) U)r
detM 2N 0 0
B N N 0
B N —N 0
0

A2N 92N 0

* 't Hooft anomalies all matched (as long as the
constraint is satisfied)



F=N,N+1: special cases

* F=N+1 s-confinement - all 't Hooft anomalies
matched by meson+baryons
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* Dynamical superpotential implements classical
constraints

W = [BngEj - detM}

A2N—-1

« Both F=N,N+1 ""screened phase” - complementarity
no phase boundary between Higgs and screened
phase



The ph f Y QCD

F > 3N Theory IR free
—— F =3N

Conformal - non-abelian Coulomb phase

Free magnetic phase

—— F=N+1 s-confinement
—— F =N Quantum modified constraint
—— F=N-1

ADS superpotential, runaway vacuum

— =0 Pure SYM - gaugino condensation



N+1<F<3N: Seiber

* In this range there is a magnetic dual (Seiberg 1994)

* Electric theory IR =T R R R =
Qi O 1 O -1 |FEE
_ SU(Np — N.)|SU(Np)|SU(Np)r| U)s | UQ)r
 Magnetic theory |4 5 O 1 N | X
q" ] 1 O] NFN_CNC ﬁ—F
M 1 N O 0 QNP;V;QN

* Flow to the same IR theory - describe the same low-

energy physics

e All anomalies matched, same flat directions, can
move up and down by integrating out, Higgsing...




N+1<F<3/2 N: Free magnetic th
* The magnetic SU(F-N) group is actually IR free

* |n this range the theory will have free dual gluons,
quarks and meson in the IR

* An emergent gauge symmetry! In the UV start out
with SU(N) and in the IR end up with completely
different group. "Massless composite gauge
bosons” - could be used for composite model
building etc.

+ V(R) ~ 1H(§A)




3/2N < F < 3N:

* The electric and magnetic groups flow to the same
IR fixed point

» Conformal phase, ""'non-Abelian Coulomb phase”
* Close to the edges of the boundary could be

perturbative - electric or magnetic Banks-Zaks fixed
points

VR~



The ph f Y QCD
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The ph f Y QCD

A beautiful picture, BUT very different from what we
expect in non-SUSY QCD

» Lattice simulations suggest only 2 phases

» Chiral symmetry breaking
 For large number of flavors (perhaps as
high as F>3N) conformal phase

* Would like to start making connection between
SUSY and non-SUSY theories



How to add SUSY breaking?

* Clearly one of the most important questions - started
very early on

* Aharony, Sonnenschein, Peskin, Yankielowicz "95:
add soft SUSY breaking on electric side

ALY = —md (1Q1 +1QF) + (mgS + hc. )
» Guess effect on magnetic side

ALyt = —m | By M + Bar (1B +1B2) | + (my (8) + he. )

« Assumed positive soft breaking masses for
composites

* For F<N gave "right” symmetry breaking pattern, but
for F=N unpredictive, no xSB for F>N



How to add SUSY breaking?

 Around same time: Evans, Hsu, Schwetz ‘95

* Couple to spurions and use holomorphy and broken
global symmetries to restrict the allowed SUSY
breaking terms

* In their analysis they still found runaway direction for
ADS case



How to add SUSY breaking?

* Another more systematic approach: Cheng &
Shadmi 1998

* Try to find the mapping of SUSY breaking by turning
it into a gauge mediated model

» Add extra massive quark flavor and couple that
directly to SUSY breaking spurion X

*Map XQri1Qpi1 — XMpi1,Fy1

* Will be essentially messenger in UV theory,
calculate effect in IR



How to add SUSY breaking?

» Calculated resulting soft breaking terms using
RGE'’s

* Result - free magnetic:

. My 1 N?—1 -,

~2 o~ o \T .~ 2 ~ 2
mq_m(i__ 2 o 2Nf—|—N [(qu<v)_meM(v))+Nf_BNMé(U)

* They find runaway direction either in squark or
meson field

« Symmetry breaking pattern is not as expected in
QCD



How to add SUSY breaking?
» Arkani-Hamed & Rattazzi ‘98; Luty & Rattazzi ‘99

* Map of soft breaking masses through the duality by
coupling to background anomalous gauge fields,
gauged U(1)rand SUGRA

* However ignored pure AMSB effects

* Magnetic squark runaway, results not clear for F=N



How to add SUSY breaking?

* Most systematic previous approach:
Abel, Buican, Komargodsky ‘11

* |dea: Conserved currents are easy to exactly map
through the duality

* Relate SUSY breaking terms in UV to conserved (or
anomalous) currents and find the corresponding
Noether currents in the IR

e For F>N+1 result
SLo = —m? (QQN+QQ1) +ma(N4 +ec)
, 2N;— 3N, l

Omag = =’ (a¢" +qq" —2MMT) +-m, -

2N; — 3N,
3N, — Ny

()\?nag + c.c.)



How to add SUSY breaking?

» Baryonic runaway direction, breaking pattern not like
in QCD again

» Consistent with Cheng/Shadmi

 Would like to find a different method where we have
full control over all aspects of SUSY breaking

* |deally should produce symmetry breaking pattern
consistent with QCD at least as a local minimum



Th f AMSB

* Recent proposal of Murayama '21: use anomaly
mediated SUSY breaking for perturbing the Seiberg
exact results

« AMSB: originally " "designed” to provide a specific
iImplementation for MSSM with predictive soft
breaking patterns

* Here we will simply use it only to study phases of
gauge theories, not as a BSM model

* Assumption of AMSB: SUSY breaking mediated
purely by supergravity, no direct interaction between
SUSY breaking sector and matter sector



AMSB

Randall, Sundrum ‘98
Giudice, Luty, Murayama, Rattazzi '98
see also Arkani-Hamed, Rattazzi ‘98

/ SUG ?A\

SUSY Matter sector/SQCD

* Assume matter sector sequestered - no direct
iInteractions with SUSY breaking generated

* Only source of SUSY the auxiliary field of
supergravity multiplet



AMSB

» Best way to describe effect of AMSB is via the
introduction of the Weyl compensator ®

Pomarol, Rattazzi ‘99

* This conformal compensator is a spurion for super-
Weyl transformations (SUSY rescaling + U(1)
rotations) with weight 1

* The effects of SUSY will show up through the

coupling
L= /d49<1>*<1>K + /d26’<1>3W + c.c.

e With the spurion @ = 1+ 6°m



AMSB

 |f the matter sector is conformal: can scale out ® by
rescaling the fields ~ ¢; — &1,

- For example if K = ®*®¢pT¢ and W = $°¢°

. @i — &1, rescaling will completely remove @
from the theory - no SUSY breaking

« SUSY breaking will be tied to violations of
conformality! UV insensitive process!



L in AMSBE eff

* If scale invariance broken via RGE running:

3 B(g?)

g
Blg*) = o2 SR -3CG)+... — ma(p) = — 29° (1)m
2 1 : 2
m; (1) = =7 Fi(w)m
%Y“’f = Y"P [#%’;Jr...] + (k< i)+ (k < §)
N |
Aijr(p) = —5(%‘ + 95 + ) ()m
92
» For example in SUSY QCD  m = 1 (3Ne — Ny)m
2 2 g° 2
mg = mg = (87?2)22@(3]\[6 — Ny)m



L in AMSBE eff

* Loop induced breaking terms provide positive
squark masses and gaugino mass - massless
spectrum that of ordinary QCD

* For AMSB version of MSSM slepton masses were
problematic - right handed sleptons were tachyonic.
Here only AF gauge group - AMSB gives perfect UV
boundary condition



A surprise - tree-level AMSB eff

* If there is a non-scale invariant superpotential: will
contribute to AMSB potential

ow
O

£tree =m (Cbz — SW) + c.c.

» Vanishes for dim 3 superpotential, but not in general

» Expression for general Kahler potential:

C.C., Gomes, Murayama, Telem ‘21
Viree :ainij*a;‘W* +m*m (&;Kgij*a;K — K)

+m (&ngj*@;K — SW) + c.c.



A non- rbative AMSB ntial

(Murayama ’21)

» Example: SU(N) for Nf< Nc. ADS Superpotential

A3Nc—Nf 1/(Nc_Nf)
N.— N
( f) ( det M )

 Will lead to induced term from /d29<1>3WADS

ABNe—Ny\ 1/ (Ne=Ny)
—(BNC—Nf)m( 7 ) +c.c.
* Along direction (1 O\
Q=Q= | |e M=¢
oo




* Non-perturbative effect involving SUSY breaking
« AMSB allows us to pin down this term

* Formally tree-level but really must be a non-
perturbative effect including SUSY breaking

* Will stabilize ADS superpotential!

* Will give rise to proper symmetry breaking pattern!



Phase for QCD* for N<N¢

%

Supersymmetric
ADS potential

together witfk/‘
AMSB

« Symmetry breaking pattern SU(Ny)r x SU(N¢)r — SU(N¢)v

* As in QCD, massless DOF'’s just pions

* Could be continuously connected to actual QCD for
m>>A



The Ph f AMSB QCD

* We have seen for Ns< N¢ get chiral symmetry
breaking SU(Ny)r x SU(Ns)r — SU(Ng)y QCD-like vacuum

* What happens for higher flavors? More subtle, recent
analysis

(Gomes, Murayama, Noether, Ray-Varier, Telem +C.C.)

N=N. - Quantum Modified Constraint

 The first case where baryons show up
. Seiberg:  det M — BB = A*Me.

* Issue: VEVs O(A) - higher order corrections in
Kahler not suppressed!



N=N. - Quantum Modified Constraint

* Use non-linear analysis

« Meson point (in units where A=1)

_ 1 1
M = (1+BB)Neelt = 14 = BBA 14 511+

 I1 is a traceless complex matrix

* What is the Kahler potential? 1 mtar, (e Mta)?, T Mfarnrtm

1 1
» For example: TrMTM > TrII'II + 5 Tr I1% + 5 Tr mt

* Resulting potential: for & =¢'o+a/2(0? + ¢t

Vanmsg = (@ +a)m?(Rep)? + (o — a)m?(Im ¢)?



N=N¢ - Quantum Modified Constraint
* Mesons are stable at this point! However baryons

uncalculable... KDQ(BTB+BTB)+§(BB+C,C,)

« Depending on a/p ratio may or may not have baryonic

runaways. Theory strongly coupled - simply can not
say

- Baryon point: B = (1 —det M)'/?¢’
B=—(1—det M)/2e?

- Kahler: B'B+B'B=2+ (b+b)*+--.
* Im b Goldstone, Re b positive mass, OK

* Mesons: again uncalculable due to higher order terms



N=N; - Quantum Modified Constraint

* Ni=N¢=2 special case - SU(2)xSU(2) flavor symmetry
enhanced to SU(4), no difference between meson and
baryon.

e Constraint MEM®* =1 solution breaks
SU(4)—Sp(4), 5 Goldstones.

* Positivity of kinetic term will imply positive masses for
all non-Goldstone fluctuations - will give rise to a
stable global minimum



Ni=Nc¢+1 - s-confinement

» Subtle case - previously claimed it has runaway
directions, but we found this one is actually predictive
and no runaways with expected QCD-like vacuum

» Superpotential: W = aBMB — fdet M
o, p O(1) to make Kahler canonical
. Vsusy = o*(|(MB)a|* + [(BM)a|?)

4 |aB,By — Bdet M(M™1) 2
Vamss = — (N, — 2)Bmdet M + c.c.



Ni=Nc:+1 - s-confinement

* Minimize the potential along direction

* Most general by symmetries. Assume m real - all
VEVs can be taken real

V = 202220 + (ab? — fo¥e)? + N, 22202 (Ne D)
— 2(N,, — 2)pmav™e.



Ni=N+1 - s-confinement

« Baryon number conserving direction b=0

* This is the usual QCD-like vacuum with chiral
symmetry breaking

N, — 2)m | T
v — 1 — (( Ncﬁ)m) 7Vmin — _O(mQNc/(Nc—l)).

 Along this direction baryons massive - integrate them
out. Effect of Yukawa coupling will be two loop meson

mass > (2N + 3)a(v)im?
= (1672)2
* Leading to potential  V2_100p = (Ne +1)C@Ne +3)a(v)’ s »

(1672)2



Ni=Nc¢+1 - s-confinement

* At the minimum this is same order ~ O(m?e/(Ne=1))
iIn m but two loop, so will not destabillize.

- Higher order Kahler terms? (Tr MTM)? TrMTMMTM
» Higher order in m at the VEV ~ m?v?

* This direction is a stable minimum

« Baryon number breaking direction b#0

- Minima at  » = 2" -2 Runaway potential????
 (Ne—2)m N. — 2)2
T 200 V‘b,:c — —( - ) BWQUNC

2c



Ni=N+1 - s-confinement

* This led to the conclusion that there is no stable
minimum but runaway baryonic direction.

« BUT: loop effects! b gets VEV - bottom Nc
components of B and B get masses - integrate them
out. Gives all but M11 two-loop mass as before. At this
point remaining W_= aBi1My1B:1. So M1 gets a mass
at lower scale \/iab - integrate it out will give 2 loop

AMSB mass to baryons: 5 3a(b)*m?
my =
(1672)2

* S0 loop induced potential:

m2

Va—loop = (167)2 [N.(2N.+3)a(v)*v? 4+60(b)*b?]



Ni=Nc:+1 - s-confinement
 Runaway VS. loop

(Nc o 2)25777,21}]\"3

Vipr, = —
|b’ 2c

Dominates!

* Even though loop suppressed, lower power in v, will
stabilize around the origin! No runaway direction here!

* Loops come in to save the day from a tree-level
runaway, quite remarkable.

« Don’t know what happens for O(A) fields, but origin
stable with expected VEV around there.



3/2N:>Nf>Nc+1 Free Magnetic Phase

« Will not show full analysis here. Expected to be beset
by baryonic runaway directions - no useful info?

* Analysis very subtle - even more than s-confining.
Found: N; < 1.43N. the baryonic runaways lifted!

* Need to analyze several branches

Baryonic branch - no runaways for Ny < 1.43N,
Mesonic branch: stable chiral SB minimum

Mixed branch: check no runaways



3/2N:>Nf>Nc+1 Free Magnetic Phase

* The baryonic branch: W = ATr ¢; M;;;

d ¢?
+Both g, A goto 0 (IR free), BUT 0= ;77— %.

SO A can be expressed in terms of g in the deep IR.

(—b)g* N2 —3NyN.— N2+1

. 2
N . m p— o~ m
Loop induced AMSB: ™4 (1672)2 ON; + N,
b 3NC _ Nf My = (167‘(‘2)2 m

*Until N, <1.43N. (almost all free magnetic
window) these are positive - no baryonic runaway
expected!



3N >NFf>3/2 Nc Conformal Window

* Three regions

Lower conformal window: baryonic runaways to uncalculable
regions

Intermediate regime: fully uncalculable

Upper conformal window: no runaways, stable chiral symmetry
breaking minimum

« SCFT destroyed by AMSB in all regions

 Lower conformal window (BZ in dual) N; = 3N./(1 + ¢)

_ N, A2, _ &92. B(ZU) — Q?(-Qy -+ 733)7
B(y) = —3y*(e — y + 3x).




3N >NFf>3/2 Nc Conformal Window
* Admits BZ fixed point at  (zo,v0) = (2€, 7T¢)

 Along the approach to the FP the AMSB masses:

3
3
m?] =-7 25y m2.

* Negative squark mass - will yield runway baryonic dir.

* Upper conformal window (BZ in electric theory):

32

(—0y) ~



3N >Nf>3/2 Nc Conformal Window

» QCD-like chiral symmetry breaking phase exists
throughout the window as local minimum

« Along mesonic branch dual quarks massive, can be
integrated out, superpotential:

W = N.A3 = N, (det M)L/Ne

* In conformal window power-law wave-function
izati 1—3N./N
renormalization Zar (1) ~ 1 /Ny

« Scaling of local minimum: o: 4—»5—4
Ny

V=-0m?), o=1+ — —.
N2 — 3N{N, + 3N?




The ph f Y QCD/AMSB

AMSB QCD

PURE SUSY QCD

F>3N Theory IR free
—— F =3N
Conformal
- 3y

Free magnetic phase

—— =N +1 s-confinement
—— =N Quantum modified constraint
— FF =N —1

ADS

— =0 Pure SYM - gaugino condensation

}
;
}

QCD-like

Runaway?
+QCD-like
local

QCD-like

Non-calc +QCD

QCD-like



The Chiral Lagrangian and n’ ntial

R. d’Agnolo, R. Gupta, E. Kuflik, T. Roy,
M. Ruhdorfer and C.C.

« AMSB also a nice tool to find chiral Lagrangian and
examine dynamics leading to ' mass (or axion mass in

extensions)

* Naive assumption U(1)a anomalous, broken by
instantons, so instanton effects will give mass to n'?

* Form of chiral Lagrangian would be

L= f>Tr —(@LU)T@“U] +aAf2TrmoU + h.c.

Linst = bA2f2e?? det U + h.c.



The Chiral Lagrangian and n’ ntial

« Would correspond to instanton effect because ~ ei¢
« Would give ' mass ~ A

 Consistent with spurion analysis for axial U(1):

0 — 60— Fa

n//fn’ — n//fn’ +

« After integrating out n’ get low-energy action

Voin, = —2\a|Af72\/m% + mfl + 2mymyg cos 0



The Chiral Lagrangian and n’ ntial
* Issue: large N limit anomaly vanishes

2

g A F
~F—=—T —T —

iy 62 rGG ~ 62 N rGG — 0

» 11 mass should vanish in this limit

e But from Vi =20A%cos(6¢ + Fif) does not vanish for large
N

« Witten: n’' needs to cancel 0 dependence of pure QCD
vacuum energy E(6) = N*f(6)

» Form of potential more like L, = A*f2(e"detU)/N



The Chiral Lagrangian and n’ ntial

« Non-analytic - how is it 2z periodic in 67?

* Need to have several branches, potential of the form

0+ Fn' + 27k
N

V(0,n") = A? f*Miny, cos( ), k=0,...,N—1

» 11 acts like a (heavy) axion and relaxes to minimum

of potential to cancel 8 dependence (and wash out

branch structure) 0+ ok

(') = 7

» Check this picture in AMSB QCD



The Chiral | ian in AMSB QCD

« Consider first F<N as we did before - with quark

mass 3N—F\ /(N-F)
W= (N - F) (A )

Tr(MoM
det M + Tr(Mo M)

* The meson VEV as usual

N+F A (N=F)/(2N)
o=4(sv=rn)

SN — Fm + O(mg/m)

e The meson matrix:

Q} =10l6%, Q}=Q%Ups, M=|p|’U

- ' part of U matrix, need to make sure we keep the
whole phase everywhere



The Chiral | ian in AMSB QCD

 Chiral Lagrangian:

A3N—F

o]

ABN—F 1/(N—F)
— 2 det(U) Y/ N=F)y mJr Ut +c.c.
|¢‘2F ( ) Q

* Has the branch structure like Witten predicted, but 1/
(N-F) power. ' potential:

N+F\ N N 3 F n 60+27k
V——2(3N—F)<3N_F) (m) m|Al COS(N_an/— N—F)

N+ F 1—F/N<m>F/N 77/
—2F ( ) — Imgl|A|? cos (— + HQ)
3N — F |A| ”

N+FN\ TN N 5 N 1 0+ 27k
_4F<3N—F) (m) imol|Al COS(N_an/—I—HQ— N—F)’

V=—m

1/(N—F)
) det(U) Y N=E) 1|42 Tr(mgU) | + c.c.

(3N—F)(




The Chiral | ian in AMSB QCD
* For N-F>1 NOT an instanton effect

* We know it is actually gaugino condensation

* For F=N-1 it actually IS an instanton effect, and no
branches in QCD

* In that case the ' mass does not vanish for large N

* But also anomaly does not vanish, since both F,N —

* Which one is QCD? Does QCD with F=N have
branches or not?



The Chiral | ian in AMSB QCD

* F~N both large the situation is very different!

« For example F=N-1 and both large

/ /
VST — ANSBm? Ayl cos ((N - 1)}7— — 9) — 2N mg|m|Appys|? cos (77_ + 9@)
n’ n’

/
— 4N5/3]mQ\m\Aphys\2 cos (Nn— +6g — 9) :
77/

« No branches, ' mass does not go to zero

myy o NUm2 Apnys /£ ~ N3

2
n
 Large F,N qualitatively different from large N, fixed F
limits!



 The F=N,N+1 special cases

* Only consider mesonic VEV, assume other branches
OK

- For example F=N  w - x (det(]‘QN_ bb 1) T mgTe(M)
C Tr(MTM)  XTX B'B B'B

K =

o AE T BIAJT T APV T GjApEN-2

» Resulting n’ potential

/ /
V =—2|AR(JA]? + (N — 2)m?) cos <Nf”— - 9) — 2Nm|mol|AJ? cos <(N 1)L — g — 9)
77/ n/

/
— 4Nm|mg||A|* cos (fn— + QQ) :
n’

* No branches - looks like an instanton effect!



» After integrating out " get the usual F branches

0+ N Og + 27k
Vk(e):—GNm|mQ||A|2cos< TNt o )

N
 Very similar results for F=N+1:

N — 92 m \ NVHD/(N-1) i
V=—20N-2) ——— mA3cos(N—|—1——0)
-2 (M) AP cos (£ 1)
N —92 m \ V-1 i
—2(N +1 (——) m A3cos<N——9 —9)
W) (S malAfcos (N 1~ g
N — 9 m \ /V-1) o
—4(N +1 (——) m|m A2cos<——|—9 )
W+ (S mallAfcos £+ 8

* Again looks like instanton effect - no branches



The Chiral | ian in AMSB QCD
* For F>N+1 - will have a Seiberg dual SU(F-N)

* Along meson direction DUAL quarks get mass - will
get gaugino condensate in dual group - analogous to
ADS superpotential, will again have F-N branches...

* We will get very similar results as for F<N, with
N-F—F-N
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New results in chiral gauge theories

(C.C., Murayama, Telem '21)
* These are the hardest to analyze, currently no

technigue on the lattice (yet) that could do a reliable
serious simulation

* Proposal from 70's-80’s: " "tumbling”
* Postulate the presence of fermion bilinear
condensates that break the gauge group until it is

QCD-like

» Usually assume most attractive channel (MAC) is
condensing first



New results in chiral gauge theories

« Example of tumbling: SU(N) with anti-symmetric
fermion and (N-4) anti-fundamentals

o (AWEDY = v30% # 0 breaking to SU(N) x
SU(N-4) to SU(N-4)v x SU(4) where SU(4) is the
remaining gauge symmetry that is QCD-like.

* Resulting theory would have SU(N-4) global
symmetry with massless composite AFy; Fj

* 't Hooft anomaly matching conditions satisfied, but
not really clear if this is indeed the correct low-energy
phase of the theory



SU(3)

* This is one of the most well-known SUSY theories

* "The mother” of SUSY breaking

* No flat directions, anomaly-free R-symmetry

* Dynamical SUSY expected w/o AMSB

« Can make theory calculable by adding extra flavor(s)

* Interesting new(?) observation: there is an unbroken
U(1)s in the DSB vacuum



SU(5) with an extra flavor

SUB)|[SU2)|U(1)m |U(L)y |U)r||U(1)s
A — 1 2 1 0 1
E; O] [] —1 -3 —6 23
F ] 1 —4 3 8 —2
B, = AAF 1 1 0 5 8 0
H = AF|Fy 1 1 0 -5 | —12 0
M =FF 1 ] -5 0 2 05

* The unbroken U(1)is U(1)s =575 + %QM

* In this theory need tree-level
Wtree — )\1B1 + )\QH + mMFpl

A massless fermion will match the 't Hooft
anomalies, in my—eo limit will be AFF



The original h

* The U(1)s symmetry will be unbroken, with a
massless fermion AFF matching the anomalies

* This is in addition to Goldstino (not carrying global
charges)

* Adding AMSB: don’t expect the dynamics to be
iInfluenced much, since DSB ~ A>m. But: Goldstino

will pick up mass, while AFF remains exactly
massless.



The original h

» Tumbling picture: SU(5)—SU(4)xU(1)b via €apcae AP A%
most attractive channel

« Decomposition of remaining fermions:

A-60+4_512 F ~45/0+1_5

» The vectorlike pieces condense, but 1_5
remains

* We will see more general case will require
augmenting this by additional condensate A®° F},

» Breaking pattern same as first condensate



Th N for N=2n+1 odd

SU(N)| U(1) |SUN —4)||Sp(N —5)| U(1)
— |-N+4 1 1 —N +4
_ O (N —4)
O | N-2 O | (N+1)(V-4)
2
_ H N(N-4)
AF;Fn_4| 1 N ] 2
1 N(N —4)

e Flat directions in the SUSY limit:

A: ¥ J(N—5)‘ 0 ’ F: I(N—S)‘ 0
\/§< 0 ‘O5><5> Sp( 0 ‘05><1 ’

* Break SU(N)xXSU(N-4)xU(1) to SU(5)xSp(N-5)xU(1)

« Sp due to factthat AFE = —¢°J;;, along flat
direction

N L



Th N for N=2n+1

« Dynamical scale of the unbroken SU(5) (which has
same matter content as previous theory:

2N+3
13 AN

AL = N_
> (PI'AFF)(Pf'A)

« After DSB in SU(5) will get potential

AZN+3 4/13
o A4 N
V= A5 - <¢2N10>

* On its own runaway, in SUSY can stabilize via \AFF;.%

* With AMSB no stabilization needed, since loop
induced soft breaking terms will stabilize



Th N for N=2n+1 odd

. g NIDWN=2) g,
» With AMSB 7, 5, = 57z 2Gi 2N + 3)m, o= {

2N

A A\ 13/ (4N=T)
T ) > A.

. Stable ground state at o~ a (—

m

* Note: runaway potential here from DSB NOT from
ADS superpotential - no corresponding tree-level
AMSB generated (unlike QCD example, or even
case to come)

* The low-energy dynamics: symmetry breaking
pattern SU(N-4)xU(1) —-Sp(N-5)xU(1)



Th N for N=2n+1

» Can check all anomalies matched by massless
fermions AF; Fx_4 fundamental + singlet under Sp

e Tumbling picture: MAC
(AP ~ A36% £0, d,a <N —4.
* Would break SU(N)xSU(N-4)xU(1) —
SU(4)xSU(N-4)vxU(1)

* The SU(4) is diagonal QCD-like
« SU(N-4) global symmetry with color-flavor locking.

* To make tumbling agree with AMSB picture:



Th N for N=2n+1

e Second most attractive channel
<Fainj>NA3Jainj7é07 1§i,j,CL,bSN—5,

* This will break the SU(N-4)—Sp(N-5)
* Only antisymmetric part is attractive hence the J’'s
« AMSB provides an alternative proposal to the actual

phase of this theory - should in principle at some
point be testable.

« Dynamics can persist to m»A - good guess for non-
SUSY phase?



Th N for N even

SU(N) U(1) SU(N — 4)||Sp(N — 4)
A — —N+4 1 1
F; O N —2 O O
AFF;| 1 N — —¢ 1
PfA 1 [—iN(N-—4) 1 1

« D-flat direction breaks theory to Sp(4)=S0O(5),
gaugino condensate generates

B (PfA;;;(SPfA) N
v = (wrarmme)

* This will have a corresponding AMSB term, which
will stabilize runawaysat A ~ F ~ A(A/m)3/2N

« Remaining global symmetry Sp(N-4), all fermions
massive, no 't Hooft anomalies



Th N for N even

* Tumbling picture:

(A% ) ~ A369,

o 1, 7,a,0 < N —4.
(FuiFy;) ~ N3 JapJij

* Unbroken Sp(N-4) with no massless fermions

 Picture can survive to m>»A again



N) with mmetric tensor
(C.C., Murayama, Telem '21)

* Another example of a chiral gauge theory - more
difficult to analyze

SU(N —4)|SU(N)| U(1) U(1)r
S (1] 1 —2N (N+1§?N—4)
F; O [] 2N — 4 (Ni_(i\)r(_z\?)_@
M;; = SE; F; 1 [T1 | 2N -8 et
U = detS 1 1 [2NU4-N)| %4

* Magnetic dual found by Pouliot & Strassler

Spin(8)|SU(N)| U(1) |UQ)r|SO(N)
¢ | 8 ] 4-N |70 || O
P 85 1 | N(N—-4)| 3 1
M;;| 1 (17 | 2N -8 | x7 |1+
U 1 1 |2N(4—N)| 55 1
I 1 1.7 1 2N —11\2A 17— N 2N  N-—-5
Wiree = M—%Mijq g + ,UN_5 Upp (A )°A = M1 Ho
2



N) with mmetri nsor

« Superpotential cubic, so adding AMSB naively loop-
level leading to a local minimum

A2\,
VN_<167T2) i

* However there is a deeper one - go out on moduli
space along M and S, then dual quarks and spinor
become massive and integrate them out - gaugino
condensate 18 detM U

L AN-17

.\ 1/6
Z.ﬂ-_k ~ ,L-7r_k detMU
Wdyn = € 3 (Ai8)1/6 = e 3 ( ]\N—l? )




N) with mmetri nsor

* This will imply a ““tree-level” AMSB term

N — 17
6

Etree =m Wdyn _|_ C.C.

* The minimum along this direction (loop induced
AMSB is negligible here) is at

N—17
/N\ N-—-11

M;; = ojym | — U
J J m ’

2(N—17)

V%_mél <]\ N—11 |

Q
—/
3| =
~
'2\

m

e Minimum deeper for N>17



N) with mmetric tensor
« Symmetry breaking pattern: SU(N)xU(1) —» SO(N)

« Note M has maximal rank N - OK in SUSY vacua
« Differs again from old tumbling predictions

* Tumbling interpretation: want a symmetric
condensate for SO, but it is not attractive.

 Resolution: two condensates, first:
SabScd SadScb X 5ab50d 5ad50b
Breaks SU(N -4) gauge to SO(N-4), now symmetric

attractive 50 Fz-“ Ff x 6,

* Breaks SU(N) global to SO(N)




N) with mmetri nsor

* Discussion valid as long as N>17 (dual theory in free
magnetic phase)

* For N<17 dual theory conformal - AMSB naively
vanishes at fixed point.

 Our initial guess was theory flows to conformal fixed
point - not quite sure if this is correct (see Hitoshi’s
upcoming paper for QCD in the conformal regime)



Th N) seri

(C.C., Gomes, Murayama, Telem '21)
* Interesting since this could have true confinement”

* For SU(N) with quarks charges can always be
screened, don’t expect true area law for Wilson
loops

« For SO(N) with matter in vector (N-dim’l rep)

* Note SO(N) could stand for several groups with
same Lie algebra but slightly different global
structures, Spin(N), SO(N)+ or SO(N)- for now
doesn’t matter (but will make a difference for actual
Wilson loop behavior)



« SO(N) with F vectors _|SONe) |SUWNF)| U()r
Qz |:| |:| Np—Ncq+4+2
Np
A — 1 |
M| 1 [T |2~EgreE

* Global symmetries  (SU(Np) x U(1)g X Zon, X Z3/Zn,.)

» Flat directions parametrized by mesons and
baryons M =Qi@Qi  Blit,in] — QU .. Qe

M — ( diag (gp% ..... gp?vc) ‘ 0 )

0 ‘ONF—NCXNF—NC

 For SO(N) baryons NOT independent



The ph f th Y N) th

F >3(N-2)

Free magnetic phase

F=3(N-2)
} Conformal - non-abelian Coulomb phase

F=N

? z ]]VV Abelian Coulomb phase
F—N_— 3 Multiple branches,
F=N—-14 } s-confining vs ADS
F=N-5

} ADS superpotential, runaway vacuum

Pure SYM - gaugino condensation

IR free Intriligator, Seiberg ‘95



Ph f Y N

* Phase structure more rich than for SU(N)

 Most notable difference: for F=N-2 we have an
abelian Coulomb phase

« Simple explanation: N-2 vectors generically break
SO(N)—-SO(2)~U(1)

* This case is essentially a Seiberg-Witten type theory
(but for N=1 SUSY, so no pre-potential, only fix the
holomorphic gauge kinetic terms)



Th Y F=N-2 th

(C.C., Gomes, Murayama, Telem '21)
 Since R-charge of M is zero, quantum moduli space.

« U=det M is the variable on the moduli space, and
gauge kinetic function will depend on that

* The Seiberg-Witten curve is
y? =2’ + z? (8A2N0_4 — detM) + 16A*N"8,

« Has 2 singularities at U=0 and and U=U1= 16 A2F

* There are massless monopoles/dyons at those
singularities



The th round the sinqulariti

e Around U=0 _|SO(Ne) |SU(Nr) U (1)
Q' [] [] 0
A — 1 1
M| 1 [T 0
g = O 1
Amag| — 1 1

* N Massless dyons and anti-dyons satisfying
anomaly matching

* Around this singularity superpotential

1 o
Wdyon — ;f(t)M]q;Lq]

« Where t = UA*"e and f(t) holomorphic, f(0)=1.



The th round the sinqulariti

* Around U=U:j [SOW) | SUW) UMW) R || U(1)mas| SOWF)
Q' ] ] 0 — 0
A — 1 1 — 1
M;; 1 1] 0 — 14017
EX| - 1 1 +1 1
Amag — 1 1 0 1

* Massless monopole-antimonopole

 Around this singularity ~ Wuen = f (%;N?) ETE-

 Leading expression for canonically normalized fields

~

i
ANF




Adding AMSB
 Around U=0

» Tree-level AMSB highly suppressed since essentially
cubic superpotential

* Loop induced will dominate + tree-level quartics

« AMSB mass term: gauge contribution negative, but
Yukawa induced term positive. Since ratio of
couplings flows to fixed number possible to find
overall sign - positive.

« So potential: positive loop AMSB + loop AMSB A-
terms + tree-level quartic



Adding AMSB

» Will result in local minimum  O( g% ) from origin

« Symmetry breaking pattern from

Vo= Sl¢"a™)a a7
+|Mq" > +|Mq™ > 4+ Vamss
010 - 0
* VEV of form ((1)\ ((1)\ (100--- 0\
=|0la, ¢=|0]a, Mo |[O000-0
o) Lo Lo 0lo . o)

* SU(F)—>SU(F-2) global symmetry breaking,
V = -0(+25)4

1672




Adding AMSB
* Around U=U1 very different - tree-level AMSB!
o oo (%)

« Will force monopole condensation

2

(B2 +1E71) + EYE +

1 M et
N

ENp

E+E_ + c.c.

e Minimumat M = 165 A , |ET||E~|=16% 'kmA
Vi

= —16WNF kaAQ .

 This is the true global minimum

« SU(F)—>SO(F) symmetry breaking pattern



Adding AMSB
» Confinement with chiral symmetry breaking in non-
SUSY setting

* Relate it to fermion bilinears:

(Wiw;) = Fyy, = 16A°M ETE™ o §i;kmA® # 0.



F<N-2

* Would like to show that these theories confining as
well with same mechanism, but don’t have
monopoles there

« Add extra flavors to reach F=N-2 and explicit mass p

to additional flavors - want to show that still get
monopole condensate and same symmetry breaking

pattern VP ———

0.16

\
\ p=50A
\

 Monopole condensate ¢ .
persists, M interpolates
smoothly to known VEV e«
with lower number of F = =

SU(F)—>SO(F) always



Free magnetic phase: N-2<F<3/2(N-2
* |n this case there is an IR free Seiberg dual:

;9()(ffp —-fVé-+w4);9[](DJF) [](1)3
.. Np—Nq+2
M;, 1 M [22e N
1
Wdual = — M ]quj .

20

* Near the origin there is a local minimum with
V= -0(:2,)*

1672

* However far out on moduli space all dual quarks
massive, generate superpotential ~A.3



Free magnetic phase: N-2<F<3/2(N-2
* There will be a corresponding tree-level AMSB term

Vamss = —2mA® 2 ANr

3(N.—2) — Np [16¥rdet(Mr)\ "7 7 oy
Ng — (N, —2) A .

Np—(Nc—2)

oo sy Np—(Ne=2)=2 / I\ 5ih— 3N y
» Minimum at M7 ~ 4= (p2) T A0

2(Nc—2)

Vi ~ (f%)zmc—m—NF A4

* SU(F)—>SO(F) breaking again




(C.C., Gomes, Murayama, Telem '21)

mm f N) ph
Range SUSY +AMSB

Np = run-away confinement
1< Np < N.—14 run-away confinement+xSB
Nr=N.,—4 2 branches | confinement+xSB
Nrp = N.—3 2 branches | confinement+yxSB
Np =N, —2 Coulomb confinement+ySB
Nrp =N.—1 free magnetic confinement+xSB

2 branches

Nr = N, free magnetic confinement+ySB

2 branches

free magnetic

confinement +xSB

3

2

(Ne —2) < Np < 3(N, — 2)

CFT

CFT

IR free

run-away

— CFT??7

 All of the various exotic phases collapse to one and
same confinement +ySB phase with same

SU(F)—SO(F) breaking pattern



What happens for m>»A?

« Our results pretty clean for m«A - when perturbing

around SUSY theories. Already find quite interesting
results and breaking patterns.

« What happens for m>»>A? Possibly phase transition

* We have seen our results can at least in principle be
connected to non-SUSY m— limit no PT needed

« Can holomorphy help? If PT must be for |[m| ~ |A|

e But both holomorphic - not possible to write a

holomorphic equation for phase boundary of this
sort??7?7?



§ummg[y

« Use SUSY theories for finding vacuum structure of
gauge theories

« AMSB appears to be superior method for perturbing
SUSY theories

* UV insensitive, predictive and usually gives results
as expected in non-SUSY theories

» Established QCD-like vacua for most of SUSY-QCD
based theories

« Established 1)’ potential and branches - for fixed F

behaves as guessed but for large F qualitatively
new



§gmmg:¥

* Found novel symmetry breaking patterns for chiral
gauge theories (antisymmetric & symmetric)

 Establish confinement & ¥SB in SO(N) theories via
monopole condensation



