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Function fields

Let X be a smooth projective algebraic variety over k, a field of

characteristic zero.
Basic questions:

e Classify K = k(X) up to isomorphism. In particular, when is X

rational, i.e.,
K~ k(P") = k(x1, ... ,xn)-

e Classify finite groups
G C Aut(K/k) = BirAut(X),
up to conjugation. In particular, when does a finite group
G C Cr, := BirAut(P")

arise from a linear action on P"?
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Cremona group

Recall that
Cr, = BirAut(P?)

is generated by elements in PGL3; = Aut(P?) and the Cremona
involution

T 1 1

(x:y:z)»—)(;:;:;).

Conjugacy classes of finite G C PGLj3 are known.

Open problem: Classify G C PGLj3 up to conjugation in Cr;.

The classification of abelian G C Cr, has been completed in 2006
(Blanc). Even the classification of involutions in Crj is still open.



Flavors of birationali

Birationality:

® varieties

e varieties with additional structures, e.g.,
o C-varieties
e varieties with logarithmic volume forms

e varieties with Azumaya algebras ...
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Flavors of rationality

X ~ P" — rationality

X X P" ~ P™ — stable rationality
e X ~¢ P" — G finite group, X a G-variety, action P" is linear
e X X P™ ~g P" - the action P" is linear and on P is trivial

(X,wx) ~ (P", wy), where

dX1 an
X1 Xn

is the standard volume form with logarithmic poles on P".
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Burnside groups

Why are these interesting?

There is a ring structure on (all variants of)

Burn(k) := @p>0 Burn, (k).

These rings have an intricate internal structure, reflecting, e.g., nontrivial
stable birationalities.
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D= UaGADa’

a divisor with normal crossings. For each A C A, let D4 := NaecaDa

and wy be the iterated residue of wy along Da.
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Burn, (k)

There is a (well-defined) derivation:
0 : Burn,(k) — Burn,_1(k),
given by

8([X, w]) = Z (_1 )Card(/-\)—1 [DA, WA] . -I-Card(A)—1’
DAACH
which satisfies
0o0d=0.
This was inspired by polar homology of Khesin-Rosly (2003), except that

e we record contributions from strata of all codimensions, rather than
only from those of codimension one,

e we record birational types of strata, rather than the strata themselves.



Moreover,

d(a-b)=e"-0(a) b+a-db) —T-0(a) - (b),

when a € Burn,, (k) and b € Burn, (k).
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Applications: invariants of birational maps

Now consider Burn(k) - free abelian group on birational equivalence

classes of algebraic varieties over k.

Let
¢ X--2Y

be a birational map between smooth projective varieties over k. Let
Ex(¢) and Ex(¢~") be the sets of divisorial components of the

exceptional locus of ¢, respectively ¢~ '. Put

(¢9):= Y, [KEI- Y kD)

E€EEx(¢p~") DEEx(¢)

1
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Applications: invariants of birational maps

Theorem (Lin-Shinder 2022)

This yields a homomorphism:
c : BirAut(X) — Burn,_q(k).

Corollary: Cr, is not generated by regularizable maps, forn > 4,
(disproving a conjecture from 2004). A map ¢ € Crj, is regularizable if
there exists a birational o : P" --» X such that o p o ™' € Aut(X).
Proof: It suffices to present one nonregularizable map; done by
Hassett-Lai (2018).
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Applications: invariants of birational maps

This formalism extends to the equivariant, orbifold, and logarithmic
volume forms context (Kresch-T. 2022, Chambert-Loir—Kontsevich-T.
2023).

This yields new structural information about the Cremona group

Cr, (k).
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Applications: Failure of (stable) rationality via specialization

Voisin (2013): integral decomposition of A (Bloch-Srinivas)

Colliot-Théléne—Pirutka (2015): universal CHg-triviality
Nicaise-Shinder (2017): Ko(Vary)/L, char(k) = 0
Kontsevich-T. (2017): Burn(k), char(k) =0

These developments led to a wealth of new results in birational geometry,
for the following reasons:

* new, computable, obstructions to (stable) rationality arise in singular
fibers,

® one can use general position arguments to establish rationality.
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Let 0 be a DVR, k its residue field and K the function field. Let X be a
smooth projective variety over K of relative dimension n and X" a proper
model over o, with special fiber Uoc 4D,,. (For some of the

constructions, one may ignore multiplicities.)

Put

p(XK) = Z (_] )Card(A)—1 [k(DA)]LCard(A)—1 )
ACA

Theorem (Kontsevich-T.)

This is essentially the same formula as the one for

0 : Burn,(k) — Burn,_q(k).
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Specialization

Theorem (Kontsevich-T.)

Similar specialization results hold for

e equivariant birational types (Kresch-T. 2022)

e birational types of varieties with logarithmic volume forms
(Chambert-Loir, Kontsevich, T. 2023)

e birational types of orbifolds (Kresch-T. 2023)
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Equivariant Burnside groups (Kresch-T. 2020)

Let G be a finite group. We had introduced
Burn, (G, k)

as the free abelian group on birational equivalence classes of algebraic

G-varieties over k.

To distinguish such classes, we would like to have an analog of 0,

extracting invariants from information about subvarieties.
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Problem: How to distinguish equivariant birational types of linear
actions? How to distinguish linear actions from nonlinear actions?

Basic facts:

e If X is rational and G is cyclic, then X© # ().

e If Y -—» X is a G-birational map between smooth projective
G-varieties, and G is abelian, then

YO £ = XC £ 0.
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Reichstein—Youssin (2002)

e Thus, cyclic linear actions on P, with n > 2, of the same order, are

equivariantly birational.
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Reichstein—Youssin (2002)

e Thus, cyclic linear actions on P, with n > 2, of the same order, are

equivariantly birational.

¢ Note that any two faithful representations of G are equivariantly

stably birational.

21



First examples: P

Consider an action of Z/pZ on X = P2 given by
(x:y:z) e (¢x: Py 2),

C = gp’ aub € Z/pZ7 ng(aab7p) = 1) a 75 b

Fixed points are

(0:0:1), (0:1:0), (1:0:0).
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First examples: P

Consider an action of Z/pZ on X = P2 given by
(x:y:z) e (¢x: Py 2),

(=¢, abeZ/pZ, gcd(a,b,p)=1, a#b.

Fixed points are
(0:0:1), (0:1:0), (1:0:0).
Record the weights in the tangent space at these points as a formal sum:

B(X) = [a,b] + [a — b, —b] + [b — a, —a].

22



First examples: P

All such actions are equivalent. Declare 5(X) = 0, i.e.,
[aab] = _[b -4, _a] - [a — b, _b]

Allowing
[a,b] = —[a, —b]

we find

[a,b] = [a,b — a] + [a — b, b].

23



Birational types 53,(Z/pZ)

Generators: [a,b], a,b € Z/pZ, gcd(a, b, p) = 1

Relations:

e [a,b] = [b,a]
e [a,b] =[a,b—a]+[a—b,b]ifa#b
¢ [a,a] = [a,0]

24
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Birational types

Let G be a finite abelian group, and A = G its group of characters.

Let X be smooth projective, of dimension n, with regular G-action.
Consider X¢ = LI F,, and record eigenvalues of G

[31,(1, cee 7an,a]

in the tangent space Ty, X, at some xo € Fq. Put

BX) = [a1ar--»anal

[e%

Here, we keep no information about F,.
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Birational types

Consider the free abelian group
5,(C)
spanned by unordered tupels

[ar,...,an], a €A,
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Birational types
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Birational types

Consider the free abelian group

spanned by unordered tupels
[ar,...,an], a €A,

subject to condition:
(G) Zi Za,‘ = A,

We get a map
{ G-varieties } — S,(G)
X = B(X)

26



Birational types 5,(C)

Let Y — X be a G-equivariant blowup and impose relations:

B(Y) — B(X) = 0.
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Birational types 53,(G)

Let Y — X be a G-equivariant blowup and impose relations:
B(Y) — B(X) = 0.
All such relations can be encoded in a compact form: Consider the

quotient
Sn(G) — B,(G),

by relations
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Birational types 53,(G)

Let Y — X be a G-equivariant blowup and impose relations:
B(Y) — B(X) = 0.

All such relations can be encoded in a compact form: Consider the

quotient
Sn(G) — B,(G),
by relations
(B) forall ay,ay,bs,...,b, € A we have

[31,32,b3,...bn] =
[a1 — as,a0,b3,...,bp] + [a1.22 — a1, b3, ..., byl ifa; # ay,

[a170,b3,...,b,,] ifa1 = dj.
27



Birational types

Kontsevich-T. 2019

28



Birational types

Kontsevich-T. 2019

Proof: Equivariant Weak Factorization (Abramovich, Karu, Matsuki,
Wrtodarczyk)
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Birational types

For G=7/pZ and n = 2, we get (’2’) linear equations in the same

number of variables.

p*—1

1
Y

rko(B,(C)) =

For n > 3 the systems of equations are highly overdetermined.

(B 2 M=) P et

Jumps at
p =43,59,67,83,...

These are interesting groups! 29



Birational types

Variant: introduce the quotient
w : By(C) = B, (G)
by an additional relation

[ar,ay,...,a,] = —[—ar,az,...,a,]
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Variant: introduce the quotient
w : By(C) = B, (G)
by an additional relation

[ar,ay,...,a,] = —[—ar,a,...,a,)]
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(X0y - -+ s Xn) > (CNX0y X15 -+« Xn)-

This action fixes the point (1,0, ..., 0) and the hyperplane xo = 0.
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Cyclic actionon P, n > 2

Since all such actions are birationally equivalent, it suffices to consider
one, with G = Z/NZ acting by

(X0y - -+ s Xn) > (CNX0y X15 -+« Xn)-

This action fixes the point (1,0, ..., 0) and the hyperplane xo = 0. We
have

B(P") =[1,0,...,0] +[0,—1,...,—1] =[1,0,...] +[-1,0,...].

31



[1,0] + [—1,0] € By(Z/pZ)

For a,b # 0, we have

[a, b]
[a—b,a]

[a—b,b] + [a,b — a]
[—b,a] + [a— b, b].

32



[1,0] + [-1,0] € B,(Z/pZ)

For a,b # 0, we have

[a,b] = [a—b,b]+[a,b— 3]
[a—b,a] = [—b,a]+ [a—b,b].

Taking the difference,

[a,b] + [—b,a] = [a,b — a] + [a,a — b].
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[1,0] + [-1,0] € B,(Z/pZ)

For a,b # 0, we have

[a,b] = [a—b,b]+[a,b— 3]
[a—b,a] = [—b,a]+ [a—b,b].

Taking the difference,
[a,b] + [—b,a] = [a,b — a] + [a,a — b].
If b — a = a, we stop and record:
[a,b] + [-b,a] = [a,a] + [a,—a] = [a,a] = [a, 0]

If b — a # a, we iterate untila = b — ma, i.e., b = (m + 1)a, where it
stops. This is solvable mod p.
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[1,0] + [-1,0] € B,(Z/pZ)

We record:
[a,b] + [—b,a] = [a,a] + [a, —a] = [a, 0]
Replacing a by —a, and requiring that b # +a,
[-a,b] + [-b, —a] = [-a,0],
adding these:
[a,b] + [—b,a] + [—a,b] + [-b, —a] = [a,0] + [—a,0].
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[1,0] + [-1,0] € B,(Z/pZ)

We record:
[a,b] + [—b,a] = [a,a] + [a, —a] = [a, 0]
Replacing a by —a, and requiring that b # +a,
[-a,b] + [~b, —a] = [-a,0],

adding these:

[a,b] + [—b,a] + [—a, b] + [-b, —a] = [a,0] + [—a,0].
These are symmetric in a and b, thus

[a,b] + [-b,a] + [—a, b] + [-b, —a] = [b,0] + [—b, 0].
In particular,

[a,0] + [—a, 0] = [b,0] + [—b, 0]
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[1,0] + [-1,0] € B,(Z/pZ)

We record:
[a,b] + [—b,a] = [a,a] + [a, —a] = [a, 0]
Replacing a by —a, and requiring that b # +a,
[-a,b] + [~b, —a] = [-a,0],

adding these:

[a,b] + [—b,a] + [—a, b] + [-b, —a] = [a,0] + [—a,0].
These are symmetric in a and b, thus

[a,b] + [-b,a] + [—a, b] + [-b, —a] = [b,0] + [—b, 0].
In particular,

[a,0] + [—a, 0] = [b,0] + [—b,0] =: 4.
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[1,0] + [-1,0] € B,(Z/pZ)

Consider the sum

Si= Y. lab],

a,b,#0,a#+b
We have

25 =3 3 fa b+ [-a b] = (p-3) Y lb o) = L3P 5
b

2
b a#+b

34



[1,0] + [-1,0] € B,(Z/pZ)

Consider the sum

Si= Y. lab],

a,b,#0,a#+b
We have
26 = Z Z [a,b]+[—a,b] — (P—3)‘Z[b,0] _ (p — 3)é(p — 1)-(5,
b attb b

Apply the blowup relation to each term in S:

S=>_> la—b,b]+[ab—al.

b a#tb
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[1,0] + [-1,0] € B,(Z/pZ)

Relate the two sums to S:

> bazapl@a—b,b] = S+, ([b,b] —[-2b,b])

Dbazpss b —a] = S+37 ([a,a] —[-2a,a]).

The second sum equals the first, with a and b switched. Thus

§S=25+2) [b,b] = Y ([~2b,b] + [2b,—b]).
b

b
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[1,0] + [—1,0] € By(Z/pZ)

Note that

so that the last sum vanishes.
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[1,0] + [-1,0] € B,(Z/pZ)

Note that

so that the last sum vanishes. As before,

S b.b] =S [b,0] = (p;” 6.
b b
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[1,0] + [-1,0] € B,(Z/pZ)

Note that

so that the last sum vanishes. As before,

S b.b] =S [b,0] = (p;” 6.
b b

We find that

0:5+(p—1)5:(p_3)4ﬁ-5+(p—1)-5.

It follows that
- Np+1)
4

0 3,

thus § is torsion.
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[1,0] + [-1,0] € B,(Z/pZ)

Note that

so that the last sum vanishes. As before,

S b.b] =S [b,0] = (p;” 6.
b b

We find that

0:5+(p—1)5:(p_3)4ﬁ-5+(p—1)-5.

It follows that
- Np+1)
4

0 3,

thus § is torsion.

36



Birational types and arithmetic groups




Let G be a nontrivial abelian group. We work & () and consider
B,(G) ® Q in both variables, n and G.

Consider short exact sequences of finite abelian groups
0+G—=G—-0d" =0

and the corresponding short exact sequences of character groups
0—-A" A=A =0

Let

38



Multiplication and co-multiplication

We define a Q-bilinear multiplication map
V : By (C) @ By (C") = By (),
given by
[@],...,a ] ®[a],...,al] — Z[a1,...,an/,aql,...,af,’,,]

the sum over all lifts a; € A of @] € A’, and a]’ are understood as
elements of A, via the embedding A” < A.
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Multiplication and co-multiplication

We define a Q-bilinear multiplication map
V : By (C) @ By (C") = By (),
given by
[@],...,a ] ®[a],...,al] — Z[a1,...,an/,aql,...,af,’,,]

the sum over all lifts a; € A of @] € A’, and a]’ are understood as
elements of A, via the embedding A” < A.

We also have
V™ B, (d)®B,(C") = B, ,..(C).

nll
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Multiplication and co-multiplication

There are also co-multiplication maps

A Bn/+n//(C) — Bn/(C/) Y B;,(G”),

A B, ..(C) = B, (C)® B, (3"

where G” is nontrivial.
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Modular types: structure

B, pim(G) =Ker | B, (C) = P B,(¢)@B,(c/C) |,

We have
B1(C) = B prim(C)
for all G; when G = 1 = Z/1Z we have

Bi(1) =Q, Bn(1) = Bnprim(1) =0, forn > 2.
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Modular types: structure




Modular types: structure

dim By pin(Z/NZ) © Q = dim By, (Z/NZ) © Q

and is equal to the dimension of the space of cusp forms of weight 2
for [1(N),

dim Bs prim(Z/NZ) @ Q = dim B3, (Z/NZ) ® Q

and is equal to the number of certain cuspidal automorphic

representations for a congruence subgroup of GL3(Z),
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Modular types: structure

dim By pin(Z/NZ) © Q = dim By, (Z/NZ) © Q

and is equal to the dimension of the space of cusp forms of weight 2
for [1(N),

dim Bs prim(Z/NZ) @ Q = dim B3, (Z/NZ) ® Q

and is equal to the number of certain cuspidal automorphic

representations for a congruence subgroup of GL3(Z),
Computer experiments suggest that, for all N > 1:
[ ]
By prim(Z/NZ) @ Q = B, ,i(Z/NZ) @ Q =0, n > 4,

43



Modular types: structure

Thus we can compute the Q-ranks of B,(Z/NZ) using:

e n = 1: Euler function ¢(N)/2
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Modular types: structure

Thus we can compute the Q-ranks of B,(Z/NZ) using:

e n = 1: Euler function ¢(N)/2
e n=2:g(Xi(N))
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Modular types: structure

Thus we can compute the Q-ranks of B,(Z/NZ) using:

e n = 1: Euler function ¢(N)/2

e n=2:g(Xi(N))

® n = 3: mysterious dimensions
N |43 ]51]52]59]63]...|208 211239
dim|[ 1|1 [1]1]2]...]54]7]3
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Modular types: structure

Thus we can compute the Q-ranks of B,(Z/NZ) using:

n = 1: Euler function ¢(N)/2
n = 2: g(X1(N))

® n = 3: mysterious dimensions

N |43 ]51]52]59]63]...|208 211239
dim|[ 1|1 [1]1]2]...]54]7]3

® n = 4: no primitives, with N < 242

44



Modular types

G a finite abelian group, A = GV
o L~7",

® Y € L ® A such that the induced homomorphism
LY — A

is a surjection,

® a basic simplicial cone, i.e., a strictly convex cone
A€ L

spanned by a basis of L; A ~ RY, for L = Z" C R".
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Modular types

For every equivalence class of triples

(L7 X7 /\)7
define
Y(L, x; N)
as follows: choose a basis eq, ..., e, of L, spanning A\, express
n
X = Z e; ® aj, M
i=1
and put

P(L, x,N) = [ay,...,a,] € Ba(C).
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Modular types

For every equivalence class of triples

(L7 X7 /\)7
define
Y(L, x; N)
as follows: choose a basis eq, ..., e, of L, spanning A\, express
n
X = Z e; ® aj, M
i=1
and put

YL, x,N) = [ar,...,a,] € Ba(C).
The ambiguity in the choices corresponds to the &,-action on the basis

elements.
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Modular types

For every equivalence class of triples

(L7 X7 /\)7
define
Y(L, x; N)
as follows: choose a basis eq, ..., e, of L, spanning A\, express
n
X = Z e; ® aj, M
i=1
and put

YL, x,N) = [ar,...,a,] € Ba(C).
The ambiguity in the choices corresponds to the &,-action on the basis
elements. The blowup relation corresponds to scissors relations on

cones. This yields multiplication, co-multiplication, Hecke operators, etc.
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Equivariant Burnside group (Kresch-T. 2020)

We work over a field k of characteristic zero (with enough roots of 1). Let
Burn,(G) = Burn, x(C)
be the Z-module, generated by symbols
(H,Y K, f),

where
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Equivariant Burnside group (Kresch-T. 2020)

We work over a field k of characteristic zero (with enough roots of 1). Let
Burn,(G) = Burn, x(C)
be the Z-module, generated by symbols
(H,Y K, f),

where

e H C Gisan abelian subgroup, Y C Z¢(H)/H,
e K = k(F), with generically free Y-action, trdeg,(K) = d < n,

e 3= (by,...,bn—d), asequence, up to order, of nonzero elements
of HY, that generate H".
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Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:

©: (H,YCK,B)=(H,Y CK, ), when
H =gHg™ ', Y=---, withgeg,

and 3 and /3’ are related by conjugation by g.
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Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:

©: (H,YCK,B)=(H,Y CK, ), when
H =gHg™ ', Y=---, withgeg,

and 3 and /3’ are related by conjugation by g.

B1): (H,Y C K, 3) = 0 when by + b, = 0.

48



Equivariant Burnside group: relations

(B2): (H,Y C K, ) = O + ©O,, where

o — 0, if by = by,
(H,YCK,p1)+ (H,YCK,[5;), otherwise,
with
B1:=(bi,by — bi,bs,....bn—a), B2 := (b1 — by, bsybs,...,by—d),
and
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Equivariant Burnside group: relations

(B2): (H,Y C K, ) = O + ©O,, where
o - 0, if by = by,
(H,YCK,p1)+ (H,YCK,[5;), otherwise,
with
By = (bi.by — by b3y bo_g), Bai= (b1 — by by, b3, ..., bo_q),
and
o, — 0, ] if bj € (b — by) for some i,
(H,Y 2 K(t), 8), otherwise,
with

A :=HY/(by —by), B:=(by,bs,...,bo_g), bicH'.
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Equivariant Burnside group: relations

Model case: Blowing up an isolated point (with abelian stabilizer) on a

surface.

It will explain the action of Y on K = K(t).
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Equivariant Burnside group

The class
[X © ] € Burn,(G)

of a G-variety is computed on a standard model (X, D):

e X is smooth projective, D a normal crossings divisor,
e Gacts freely on U := X\ D,

e for every g € G and every irreducible component D, either
g(D) = Dorg(D)ND = 0.
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Equivariant Burnside group

Passing to a standard model X, define:
X Gl:=> " (H, Y k(F), Be(X)) € Burn,(C),
H F

where the sum is over (conjugacy classes of) abelian subgroups H C G,
and all F C X with generic stabilizer H.
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Equivariant Burnside group

Passing to a standard model X, define:
X Gl:=> " (H, Y k(F), Be(X)) € Burn,(C),
H F

where the sum is over (conjugacy classes of) abelian subgroups H C G,
and all F C X with generic stabilizer H.

The symbols record

¢ the generic stabilizer H,
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Equivariant Burnside group

Passing to a standard model X, define:
X Gl:=> " (H, Y k(F), Be(X)) € Burn,(C),
H F

where the sum is over (conjugacy classes of) abelian subgroups H C G,
and all F C X with generic stabilizer H.

The symbols record

¢ the generic stabilizer H,

e the induced Y C Z;(H)/H-action on the function field of the
subvariety F C X, with generic stabilizer H,
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Equivariant Burnside group

Passing to a standard model X, define:
X Gl:=> " (H, Y k(F), Be(X)) € Burn,(C),
H F

where the sum is over (conjugacy classes of) abelian subgroups H C G,
and all F C X with generic stabilizer H.

The symbols record

¢ the generic stabilizer H,

e the induced Y C Z;(H)/H-action on the function field of the
subvariety F C X, with generic stabilizer H,

¢ the (generic) eigenvalues of H in the normal bundle along F.
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Equivariant Burnside group

Kresch-T. (2020)
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Equivariant Burnside group

Kresch-T. (2020)

Proof: Equivariant Weak Factorization.
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Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the

function fields of strata
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Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the

function fields of strata; there is a distinguished subgroup
Burn™*(G) C Burn,(G),
generated by incompressible divisor symbols, i.e.,
s=(H,YCK,B), trdeg(K)=n—-1,

H is a nontrivial cyclic group and 8 = (b), a single character, generating
H\/
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Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of the

function fields of strata; there is a distinguished subgroup
Burn™*(G) C Burn,(G),
generated by incompressible divisor symbols, i.e.,
s=(H,YCK,B), trdeg(K)=n—-1,

H is a nontrivial cyclic group and 8 = (b), a single character, generating
HY, and such that s cannot arise from ©, in relation (B2).
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Burnside groups: incompressibles

The subgroup
Burn'"(G) C Burn,(G),

is a direct summand, freely generated by incompressible divisor symbols
(modulo conjugation).
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Burnside groups: incompressibles

The subgroup
Burn'"(G) C Burn,(G),

is a direct summand, freely generated by incompressible divisor symbols
(modulo conjugation).




Burnside groups: incompressibles

The subgroup
Burn'"(G) C Burn,(G),

is a direct summand, freely generated by incompressible divisor symbols
(modulo conjugation).
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Applications: Birationality of linear actions on P

Let G = C, x B3, and x be a primitive character of C,. We have a

G-action on
P? =PI®V®Y),

where V is the standard 2-dimensional representation of G5 and I is the

trivial representation of G.
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Applications: Birationality of linear actions on P

Let G = C, x B3, and x be a primitive character of C,. We have a

G-action on
P? =PI®V®Y),

where V is the standard 2-dimensional representation of G5 and I is the

trivial representation of G. Then

[X O G = (Ca, &5 C k(P), (x)) + (G, &5 C k(P), (—X))-
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Applications: Birationality of linear actions on P

Let G = C, x B3, and x be a primitive character of C,. We have a

G-action on
P? =PI®V®Y),

where V is the standard 2-dimensional representation of G5 and I is the

trivial representation of G. Then
[X O C]il’lC = (Cm 63 c k(P1)7 (X)) + (Cm 63 c k(]Pﬂ)? (_X))

If x # £’ then the corresponding actions are not G-birational.
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Applications: Birationality of linear actions on P

Let G = C, x B3, and x be a primitive character of C,. We have a
G-action on

P? =PI®V®Y),

where V is the standard 2-dimensional representation of G5 and I is the
trivial representation of G. Then

[X O C]il’lC = (Cm 63 C k(P1)7 (X)) + (Cm 63 C k(]Pﬂ)? (_X))
If x # £’ then the corresponding actions are not G-birational.

Birational rigidity techniques do not work well in this case, since X© # (.
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Applications: quadric threefolds

Consider X C P* given by
X$++X§:0,

with an action of G C W(Ds), permuting the variables and changing
signs.
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Applications: quadric threefolds

Consider X C P* given by
X$++X§:0,

with an action of G C W(Ds), permuting the variables and changing
signs.

The action is linearizable if X¢ # (0.
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Applications: quadric threefolds

Consider X C P* given by
X$++X§:0,

with an action of G C W(Ds), permuting the variables and changing
signs.

The action is linearizable if X© # (). Linearizable actions of abelian

groups have fixed points; thus we assume that

o X" =£ (), for all abelian H C G, and
[ ) XG = @
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Applications: quadric threefolds

Consider X C P* given by
X$++X§:0,

with an action of G C W(Ds), permuting the variables and changing
signs.

The action is linearizable if X© # (). Linearizable actions of abelian

groups have fixed points; thus we assume that

o X" =£ (), for all abelian H C G, and
[ ) XG = @

Then G is one of the following...
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Applications: quadric threefolds

Sy
Dy
CqwrCy GL(2,3) S3 X Dy
. / / / \\
D4:C SD16 L(2,3) X Gy : D1y

D) —————— DY/ Qs
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Applications: quadric threefolds

Theorem (Cheltsov-Sarikyan-Zhuang, 2023)
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X; C IP° given by

6

E XiXjXkX| = E x; =0,

1<i<j<k<I<6 i=1

it carries an action of Gg.
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X; C IP° given by

6
E XiXjXkX| = E x; =0,

1<i<j<k<I<6 i=1

it carries an action of G4. Then the action of any G containing

H:=((12))

is not linearizable.
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X; C IP° given by

6

E XiXjXkX| = E x; =0,

1<i<j<k<I<6 i=1

it carries an action of G4. Then the action of any G containing

H:=((12))

is not linearizable. Indeed, the fixed locus of H is a quartic with 12
singular points, a K3 surface S.
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X; C IP° given by

6

E XiXjXkX| = E x; =0,

1<i<j<k<I<6 i=1

it carries an action of G4. Then the action of any G containing

H:=((12))

is not linearizable. Indeed, the fixed locus of H is a quartic with 12
singular points, a K3 surface S. The symbol

(H, Y k(X), (1))

is incompressible (for any Y).
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Applications: Burkhardt quartic (with Cheltsov and Zhijia Zhang, 2023)

Consider X; C IP° given by

6

E XiXjXkX| = E x; =0,

1<i<j<k<I<6 i=1

it carries an action of G4. Then the action of any G containing

H:=((12))

is not linearizable. Indeed, the fixed locus of H is a quartic with 12
singular points, a K3 surface S. The symbol

(H, Y k(X), (1))

is incompressible (for any Y). Such symbols do not arise for linear actions.

60



Applications: cubic fourfolds

Kresch—Hassett—T. 2020
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Applications: cubic fourfolds

Kresch—Hassett—T. 2020

Bohning—von Bothmer-T. 2023
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Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)
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Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)

Based on an equivariant version of De-Concini—Procesi compactifications
of subspace arrangements.
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Applications: Birational characters for (projective) linear actions

Theorem (Kresch-T. 2022)

Based on an equivariant version of De-Concini—Procesi compactifications
of subspace arrangements.

This has been implemented in Magma by Kaiqi Yang and Zhijia Zhang.
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Applications: Birational characters for (projective) linear actions

There are two projective linear actions of G = G4 on P2, with classes
[P © G] = (Cr, 86 & k(P?),())
+(Co, Uy S K(P?), (1)) + (o, As C k(P?), (1))
+(C5, G5 C k(P?), (1)) + (G5, 65 < k(IP?), (1))
+(G, 12k ((1,1),(1,2),(2,0))),
respectively,
[P © G] = (Cr, 86 & k(P?),())
+(Co, Uy S K(P?), (1)) + (o, As C k(P?), (1))
+(C5, G5 C k(P?), (1)) + (C5, 63 < k(IP?),(2))
+(C3,1 2k, ((0,2),(2,0),(2,2))).
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Applications: Birational characters for (projective) linear actions

There are two projective linear actions of G = G4 on P2, with classes
[P © G] = (Cr, 86 & k(P?),())
+(Co, Uy S K(P?), (1)) + (o, As C k(P?), (1))
+(C5, G5 C k(P?), (1)) + (G5, 65 < k(IP?), (1))
+(G, 12k ((1,1),(1,2),(2,0))),
respectively,
[P © G] = (Cr, 86 & k(P?),())
+(Co, Uy S K(P?), (1)) + (o, As C k(P?), (1))
+(C5, G5 C k(P?), (1)) + (C5, 63 < k(IP?),(2))
+(C3,1 2k, ((0,2),(2,0),(2,2))).
These differ in Burns(G); thus, the actions are not birational.
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Equivariant Burnside group: structure

Let us examine the crucial relation
B2): (H,Y 2 K,j) =
(H,YC K, B1) + (H,YC K, B2) + (H Y CK(t), B).
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Equivariant Burnside group: structure

Let us examine the crucial relation
(B2): (H,YCK,p) =

(H,YC K, B)+ (H,YC K, 3) + (H,Y CK(t), 3).

Observation: This relation preserves various geometric properties of the
function field K, e.g.,

e dimensions of MRC quotients
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(B2): (H,YCK,p) =

(H,YC K, B)+ (H,YC K, 3) + (H,Y CK(t), 3).

Observation: This relation preserves various geometric properties of the
function field K, e.g.,

e dimensions of MRC quotients
e unramified cohomology, H' (Y, Pic(D)),
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Equivariant Burnside group: structure

Let us examine the crucial relation

B2): (H,Y G K,j3) =

(H,YC K, B1) + (H, Y C K, 82) + (H, Y 2 K(1), B).
Observation: This relation preserves various geometric properties of the
function field K, e.g.,

e dimensions of MRC quotients
e unramified cohomology, H' (Y, Pic(D)),
e other stable birational invariants.

This means that the Burnside group admits direct sum decompositions

Burn,(C) =&®...
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Equivariant Burnside group: structure

Let us examine the crucial relation

B2): (H,Y G K,j3) =

(H,YC K, B1) + (H, Y C K, 82) + (H, Y 2 K(1), B).
Observation: This relation preserves various geometric properties of the
function field K, e.g.,

e dimensions of MRC quotients
e unramified cohomology, H' (Y, Pic(D)),
e other stable birational invariants.

This means that the Burnside group admits direct sum decompositions
Burn,(C) =&®...

The incompressibles we discussed give just one of the direct summands.
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¢ |deas from motivic integration led to the introduction of new
invariants in birational geometry,
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¢ |deas from motivic integration led to the introduction of new
invariants in birational geometry,

e Burnside groups have a rich algebraic structure, to be investigated,
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¢ |deas from motivic integration led to the introduction of new

invariants in birational geometry,
e Burnside groups have a rich algebraic structure, to be investigated,

® There are now many examples of nonbirational actions of finite
groups; and we continue to explore the range of applicability of

these new invariants.
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