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Motivation

• There has been a recent interest in more general symmetry 
structures: higher group structure, non-invertible symmetries.

• Many examples of these symmetries have been recently studied in 
various dimensions.

• It is interesting to consider what happens to these symmetries under 
dimensional reduction.

• Can be used to better understand dimensional reduction. 

• Can be used to better understand generalized symmetries. 
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Dimensional reduction

• Take a quantum field theory in D spacetime dimensions. Consider it 
on the space 𝑅𝑑 ×𝑀, for 𝑀 a compact manifold.

• In the limit where the size of 𝑀 goes to zero, get a new quantum field 
theory in d spacetime dimensions.

• The properties of the resulting theory depend on the chosen higher 
dimensional theory and the properties of the compact surface 𝑀.

• Can be used as a method to generate new quantum field theories 
from known ones.

• Leads to relations between the higher and lower dimensional theories 
and properties of 𝑀.
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Dimensional reduction: examples

• Dimensional reduction on 𝑀 = 𝑆1:

• Dimensional reduction on 𝑀 = 𝑇2:

• Dimensional reduction on general Riemann surfaces:

• Construction can be used to elucidate properties like the conformal manifold and 
dualities of the lower dimensional theory.
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 Relation between 6d (2,0) SCFT and 5d MSUSY Yang-Mills [Douglas, 2011; 
Lambert, Papageorgakis, Schmidt-Sommerfeld, 2011].

 Can reduce 4d 𝓝=1 SCFTs to 3d 𝓝=2 SCFTs [Aharony, Razamat, Seiberg, Willett, 
2013]. 

 6d (2,0) SCFT →𝓝=4 super Yang-Mills

 6d (2,0) SCFT → 4d 𝓝=2 SCFTs, class S construction [Gaiotto, 2017]



Relation between symmetries

• What is the relation between the symmetries of the two theories?
• Generically, expect the lower dimensional theory to inherit the global 

symmetries of the higher dimensional parent.
• Furthermore, can predict the ‘t Hooft anomalies of the lower dimensional 

theory from those of the higher dimensional theory. 
• For continuous symmetries, done by integrating the anomaly polynomial of 

the higher dimensional theory on the compact surface [Benini, Tachikawa, 
Wecht, 2010]:  𝑀 𝐼𝐷+2 = 𝐼𝑑+2 (𝐷, 𝑑 = even integers).

• For discrete symmetries, done by integrating the anomaly theory on the 
compact surface [Sacchi, Sela, GZ, 2023].

• Here we shall be concerned about the case of more general symmetry 
structures.
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Dimensional reduction from 4d to 2d

• We will be primarily interested in the reduction of 4d 𝓝=1 SCFTs on 
𝑆2 to give 2d 𝓝=(0,2) theories [Gadde, Razamat, Willett, 2015].

• Since 𝑆2 is curved: to preserve some SUSY, must turn on a flux in a 
𝑈(1)𝑅 R-symmetry such that its curvature cancels the spin 
connection for some of the supercharges. This allows us to preserve 2 
supercharges → (0,2) SUSY in 2d.

• There is some freedom in choosing the flux corresponding to a choice 
of 𝑈(1)𝑅 R-symmetry.
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(0,2) triality and Seiberg duality

• A specific example we consider: 4d 𝓝=1 𝑈(𝑁) gauge theory* + 𝑁𝐹
fundamental flavors. Here we have also added matter in the determinant 
representation so that the R-symmetry be non-anomalous (dashed 
arrows).

• This theory has a very rich generalized symmetry structure.

• The 𝑆2 reduction of this theory is known [Gadde, Razamat, Willett, 2015].
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𝑈(𝑁)𝑁𝐹 𝑁𝐹

1

* Globally 𝑈 1 × 𝑆𝑈(𝑁).



(0,2) triality and Seiberg duality

• When reduced on the 2-sphere: gives a 2d (0,2) gauge theory.

• The 2d gauge theories were studied in [Gadde, Gukov, Putrov, 2013]. 
Exhibit dual descriptions (related to Seiberg duality of the 4d theory).

• Here the 2d 𝑈(𝑁) gauge group comes from the 4d 𝑈(𝑁) gauge 
group. 
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𝑈(𝑁)

𝑁 − 𝑛

𝑁𝐹

1

𝑁𝐹 − 𝑁 − 𝑛

(anti-) fundamental (0,2) chiral

(anti-) fundamental (0,2) fermi

(anti-) determinant (0,2) fermi



A puzzle

• The 2d theory inherit the 𝑈(1)𝑅 R-symmetry of the 4d theory.

• However, one can show that the corresponding 2d 𝑈(1)𝑅 R-symmetry 
is anomalous: broken to discrete group ℤ2𝑛𝑁.

• Why is the symmetry broken in 2d?

• We shall see that this is a consequence of the presence of generalized 
symmetry structure in the 4d theory.
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𝑈(𝑁)𝑁 − 𝑛 𝑁𝐹

1

𝑁𝐹 − 𝑁 − 𝑛

𝑇𝑟 𝑈 1 𝑅𝑈 1 𝐺 = 2𝑛𝑁𝐽𝐺𝐽𝑅



Generalized symmetries

• Renewed interest in symmetries recently.

• Interest spurred by the discovery of novel types of symmetries.

• Here we would be interest with the fate of such symmetries (higher 
group and non-invertible) upon dimensional reduction.

• Begin with a brief review of generalized symmetries.
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Symmetries = Topological operators

• Symmetries can be associated with 
topological operators.

• Example: 𝑈(1). Have conserved current: 
𝑑 ∗ 𝑗 = 0.

• Leads to conserved charge: 

𝑄 =  𝑗0 𝑑
𝑑−1𝑥.

• Can use this to build an operator:

• Current conservation → Operator is 
topological.

• Works similarly for discrete symmetries.
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ℳ

𝑈(𝜃)
𝒪

ℳ

𝑈(𝜃)
𝑒𝑖𝑞𝜃𝒪

[Frolich, Fuchs, Runkel, Schweigert, 2009; Kapustin, Seiberg, 2014; Gaiotto, Kapustin, Seiberg, Willett, 2014; …]



Properties of topological operators

• Properties of the topological operators then imply properties of the 
associated symmetries.

• Example: fusion rule → group property.  
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𝑈(𝜃1) 𝑈(𝜃2) 𝑈(𝜃1 + 𝜃2)

𝑈 𝜃1 ⨂𝑈 𝜃2 = 𝑈(𝜃1 + 𝜃2)



Generalizations

• The topological operator viewpoint suggests several generalizations of 
the notion of symmetries.

• Topological operators of higher codimension → higher form 
symmetries (codimension p+1 operator → p-form symmetry).

• Non-invertible symmetries: symmetries that do not form a group.

• Elements don’t necessarily possess an inverse.

• Non-invertible symmetries can be described by a fusion (n-)category.
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𝑎 ⨂ 𝑎 = 𝑏 ⨁𝑖𝑐𝑖⨁…



Examples of higher form symmetries

• Pure 𝑆𝑈(𝑁) gauge theory: has a ℤ𝑁 1-form symmetry acting on the 
Wilson lines.

• Similarly for other gauge groups with matter invariant under some 
part of the center.

• A 𝑈(1) gauge theory has 𝑈(1) 1-form symmetry acting on the ‘t 
Hooft lines. 

• Can associate a background 2-form connection, 𝐵, to this symmetry, 

which then couples to the magnetic charges as:  𝐵
𝐹

2𝜋
. 
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2-group structure

• Given two symmetries, the two can combine to form a larger group.

• Example: two ℤ2 symmetries can form a direct product ℤ2 × ℤ2, but 
can also mix to form a general extension, for example ℤ4.

• Similarly, given a 0-form and a 1-form symmetry, the two can form a 
direct product, but can also mix leading to the analogues of a semi-
direct product or a more general extension.

• The resulting structure is referred to as a 2-group structure.  
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Continuous 2-group structure in 4d

• Example: 4d 𝑈(1)𝐺 gauge theory with a 𝑈(1)𝐹 global symmetry and the above 
mixed gauge-flavor anomaly.

• Causes anomalous variation of the action under background flavor gauge 

transformation (𝐴𝐹 → 𝐴𝐹 + 𝑑𝜆): δS~ 𝜅  𝜆
𝑑𝐴𝐹 𝑑𝐴𝐺

(2𝜋)2
.

• Due to the coupling  𝐵
𝑑𝐴𝐺

2𝜋
, can be canceled by shifting 𝐵 → 𝐵 − 𝜆𝜅

𝑑𝐴𝐹

2𝜋
.

• Leads to a 2-group structure between 𝑈(1)𝐹 and 1-form magnetic symmetry 
[Cordova, Dumitrescu, Intriligator, 2018]:
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𝑇𝑟 𝑈 1 𝐹
2𝑈 1 𝐺 = 𝜅

𝐽𝐺

𝐽𝐹

𝐽𝐹

𝐴𝐹 → 𝐴𝐹 + 𝑑𝜆 ,𝐵 → 𝐵 + 𝑑Λ − 𝜆𝜅
𝑑𝐴𝐹
2𝜋



Non-invertible symmetries: chiral anomaly

• What about examples of non-invertible symmetries?

• One example is a 𝑈(1) flavor symmetry “broken” by an ABJ anomaly 
[Choi, Lam, Shao, 2022; Cordova, Ohmori, 2022].

• Here the 𝑈(1) axial symmetry is broken to an invertible ℤ𝜅 by the 
anomaly.

• However, it was argued that axial rotations by a rational angle are still 
symmetries, albeit non-invertible.

𝑇𝑟 𝑈 1 𝐺
2𝑈 1 𝐹 = 𝜅

𝐽𝐺

𝐽𝐹

𝐽𝐺
𝑈 1 𝐹 → ℤ𝜅



Reduction of generalized symmetries

• It is interesting to ask what happens to the aforementioned 
generalized symmetries upon dimensional reduction on a surface Σ.

• Specifically, we shall consider reduction in the presence of fluxes:

• Can study this using the relation to anomalies. 

 Fluxes in flavor symmetries (2-group):  
Σ

1

𝑐1(𝐹) = 𝑚𝐹

 Fluxes in gauge symmetries (2-group and non-inv.):  
Σ

1

𝑐1(𝐺) = 𝑚𝐺

 For gauge symmetry flux: mean looking at the theory 
expanded around a vacuum with fixed flux. 



Reduction of generalized symmetries: 
anomaly polynomial viewpoint

• Can integrate the anomaly polynomial for anomalies involving gauge 
symmetries.

• Reduction on Σ of 2-group in the presence of flavor fluxes:

• Resulting 2d anomalies imply flavor symmetry broken to a discrete 
group: 𝑈(1)𝐹 → ℤ𝜅𝑚𝐹 .

 

Σ

1

𝑐1(𝐹) = 𝑚𝐹 ,
𝜅

2
 

Σ×𝑀4

1

𝑐1
2(𝐹)𝑐1(𝐺) → 𝑚𝐹𝜅  

𝑀4

1

𝑐1(𝐹)𝑐1(𝐺) → 𝑇𝑟 𝑈 1 𝐹𝑈 1 𝐺 = 𝑚𝐹𝜅



Reduction of generalized symmetries: 
anomaly polynomial viewpoint

• Similarly, can consider Reduction on Σ of non-invertible symmetry in the 
presence of gauge fluxes:

• Resulting 2d anomaly again imply flavor symmetry broken to a discrete 
group: 𝑈(1)𝐹 → ℤ𝜅𝑚𝐺.

• Can similarly consider the case of 2-group with gauge flux.

• However, anomalies involving gauge symmetries should not be good 
physical observables, so how should we understand this?

• Can more properly understand this as the reduction of the generalized 
symmetries. 

 

Σ

1

𝑐1(𝐺) = 𝑚𝐺 ,
𝜅

2
 

Σ×𝑀4

1

𝑐1
2(𝐺)𝑐1(𝐹) → 𝑚𝐺𝜅  

𝑀4

1

𝑐1(𝐺)𝑐1(𝐹)



Reduction of generalized symmetries: flavor 
flux

• Consider the reduction of a 2-group in the presence of flavor fluxes.

• The 2-group transformation law (under 0-form gauge trans.):

• When reduced on the surface, we get:

• Holonomy of 1-form symmetry, exp(i  Σ
1
𝐵), is a parameter in the 

theory so must remain invariant. 

• This leads to the breaking of the flavor symmetry: 𝑈(1)𝐹 → ℤ𝜅𝑚𝐹. 

𝐴𝐹 → 𝐴𝐹 + 𝑑𝜆 ,𝐵 → 𝐵 − 𝜆𝜅
𝑑𝐴𝐹
2𝜋

 

Σ

1

𝐵 →  

Σ

1

𝐵 − 𝜆𝜅 

Σ

1
𝑑𝐴𝐹
2𝜋

=  

Σ

1

𝐵 − 𝜆𝜅𝑚𝐹



Reduction of generalized symmetries: gauge 
flux

• Can similarly discuss the case with gauge flux:

• Reducing a 2-group in the presence of gauge flux, 2-group reduces to 
a ‘t Hooft anomaly for the zero form symmetry:

• Reducing a non-invertible chiral symmetry, non-invertible symmetry 
becomes a discrete ℤ𝑚𝐺𝜅 invertible symmetry.

• Can study this by directly reducing the topological defect.

• Can also study this by reducing the symmetry TQFT [Antinucci, Benini, 
2024; Brennan, Sun, 2024].

 

Σ

1

𝑐1(𝐺) = 𝑚𝐺

𝐴𝐹 → 𝐴𝐹 + 𝑑𝜆 , 𝐵 → 𝐵 − 𝜆𝜅
𝑑𝐴𝐹

2𝜋
in 4d → 𝑇𝑟 𝑈(1)𝐹

2 = 𝜅𝑚𝐺 in 2d



Application: sphere reduction from 4d to 2d

• Can study this in the context of the sphere reduction of 4d 𝓝=1 
theories to 2d 𝓝=(0,2) theories.

• Here we shall consider the 4d 𝓝=1 𝑈(𝑁) SQCD, that we previously 
introduced.

• The sphere reduction of this theory is the 2d (0,2) 𝑈(𝑁) gauge 
theories that were previously introduced.

𝑈(𝑁)𝑁𝐹 𝑁𝐹

1

𝑈(𝑁)𝑁 − 𝑛 𝑁𝐹

1

𝑁𝐹 − 𝑁 − 𝑛

4𝑑 2𝑑



Application: sphere reduction from 4d to 2d

• The 𝑈(𝑁) version has a rich generalized symmetry structure.

• Has a 2-group structure involving the 𝑈(1)magnetic 1-form and 
various flavor symmetries.

• Has Non-invertible symmetry: global symmetry acting on the two 
determinant fields broken only by the 𝑈(1) gauge anomaly. 

𝑈(𝑁)𝑁𝐹 𝑁𝐹

1

𝑈(𝑁)𝑁 − 𝑛 𝑁𝐹

1

𝑁𝐹 − 𝑁 − 𝑛

4𝑑 2𝑑



Resolution of the puzzle

• One interesting observation: the 4d R-symmetry and magnetic 1-form 
symmetry form a 2-group: 𝐼6 ⊃ −𝑛𝑁𝑐1

2(𝑅)𝑐1(𝐺) .

• Recall that to preserve supersymmetry we need to turn on a magnetic 
flux in the R-symmetry.

• As such, the R-symmetry should be broken to a discrete group in 2d!

• The resolution of the puzzle: R-symmetry is broken due to the 2-
group structure.

• Can match the 2d 𝑈(1)𝐺𝑈(1)𝑅 anomaly with the sphere reduction of 
the 4d 𝑈(1)𝐺𝑈(1)𝑅

2 anomaly. 



Interesting implications

• 2-group leads to breakdown of flavor symmetry in the presence of flavor 
fluxes: seen example of this for 4d 𝓝=1 SQCD.

• 2-group leads to additional ‘t Hooft anomalies in the presence of gauge 
flux.

• In general: reduction on 𝑆2 gives a direct sum of different 2d theories 
associated with different gauge fluxes [Gadde, Razamat, Willett, 2015]. 
Now see that these have different ‘t Hooft anomalies in the presence of a 
2-group!

• Non-invertible axial symmetry → invertible ℤ𝑚𝐺𝜅 2d symmetry.

• Order of symmetry depends on magnetic flux: different sectors have 
different global symmetry in the presence of a non-invertible symmetry!

• In the example of 4d 𝓝=1 SQCD: can match the 4d and 2d anomalies, 
including those involving gauge symmetries, for various choices of flux.



Overview of the results

• Here we discuss the fate of 2-group and non-invertible structure upon reduction 
to 2d.

• In the paper we also discuss the fate of 2-group and non-invertible structure 
upon reduction to 3d. 

• Short overview of the results on that front:

 In the presence of matter: generalized symmetry structure 
trivializes once the KK tower is integrated out (Lagrangian
examples, no twist). 

 Without matter, generalized symmetry structure can survive 
(example: Maxwell on a circle). 

 Discuss implication of these for 𝓝=1 𝑈 𝑁 SCQD. 



Conclusions

• Dimensional reduction can be a useful tool to study QFT problems.

• Understanding the relation between symmetries under dimensional 
reduction may further our understanding of both dimensional reduction 
and generalized symmetries.

• Have studied the fate of 2-group and non-invertible symmetries under 
dimensional reduction, particularly the reduction from 4d to 2d, in the 
presence of fluxes.

• Have seen that these generalized structures, even when not present in 2d, 
can leave an imprint on the resulting 2d theories in terms of additional 
anomalies or breaking to a discrete group.

• Expect results to apply in more general cases: other compactifications, 
discrete 2-group, more general non-invertible symmetries. 



Open questions

• More general reductions from 4d: on more general surfaces, with 
twisting by discrete symmetries.

• Dimensional reduction from other dimensions:

• Understanding the reduction from the symmetry TQFT.

 6d: Little string theories generally possess 2-group structure. Can 
we see these effects in their reduction to 4d? 

 5d: Many 5d SCFTs possess 2-group structure. Can we see these 
effects in their reduction to 3d? 



Thank you
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