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Motivation

* There has been a recent interest in more general symmetry
structures: higher group structure, non-invertible symmetries.

* Many examples of these symmetries have been recently studied in
various dimensions.

* It is interesting to consider what happens to these symmetries under

dimensiona
e Can be useo

e Can be useo

reduction.
to better understand dimensional reduction.
to better understand generalized symmetries.
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Dimensional reduction

* Take a quantum field theory in D spacetime dimensions. Consider it
on the space R% X M, for M a compact manifold.

* In the limit where the size of M goes to zero, get a new quantum field
theory in d spacetime dimensions.

* The properties of the resulting theory depend on the chosen higher
dimensional theory and the properties of the compact surface M.

e Can be used as a method to generate new quantum field theories
from known ones.

* Leads to relations between the higher and lower dimensional theories
and properties of M.



Dimensional reduction: examples

e Dimensional reductionon M = S1:

= Relation between 6d (2,0) SCFT and 5d MSUSY Yang-Mills [Douglas, 2011;
Lambert, Papageorgakis, Schmidt-Sommerfeld, 2011].

= Can reduce 4d V=1 SCFTs to 3d V=2 SCFTs [Aharony, Razamat, Seiberg, Willett,
2013].

 Dimensional reduction on M = T?:
» 6d (2,0) SCFT —» V=4 super Yang-Mills
 Dimensional reduction on general Riemann surfaces:
= 6d (2,0) SCFT — 4d WV'=2 SCFTs, class S construction [Gaiotto, 2017]

* Construction can be used to elucidate properties like the conformal manifold and
dualities of the lower dimensional theory.



Relation between symmetries

 What is the relation between the symmetries of the two theories?

* Generically, expect the lower dimensional theory to inherit the global
symmetries of the higher dimensional parent.

* Furthermore, can predict the ‘t Hooft anomalies of the lower dimensional
theory from those of the higher dimensional theory.

* For continuous symmetries, done by integrating the anomaly polynomial of
the higher dimensional theory on the compact surface [Benini, Tachikawa,
Wecht, 2010]: |, Ipi, = Iq42 (D, d = even integers).

* For discrete symmetries, done by integrating the anomaly theory on the
compact surface [Sacchi, Sela, GZ, 2023].

* Here we shall be concerned about the case of more general symmetry
structures.



Dimensional reduction from 4d to 2d

* We will be primarily interested in the reduction of 4d N'=1 SCFTs on
S? to give 2d N'=(0,2) theories [Gadde, Razamat, Willett, 2015].

* Since S? is curved: to preserve some SUSY, must turn on a flux in a
U(1)r R-symmetry such that its curvature cancels the spin
connection for some of the supercharges. This allows us to preserve 2
supercharges — (0,2) SUSY in 2d.

* There is some freedom in choosing the flux corresponding to a choice
of U(1)r R-symmetry.



(0,2) triality and Seiberg duality
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* A specific example we consider: 4d V=1 U(N) gauge theory* + Ny
fundamental flavors. Here we have also added matter in the determinant
representation so that the R-symmetry be non-anomalous (dashed
arrows).

* This theory has a very rich generalized symmetry structure.

* The S? reduction of this theory is known [Gadde, Razamat, Willett, 2015].
* Globally U(1) x SU(N).



(0,2) triality and Seiberg duality
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 When reduced on the 2-sphere: gives a 2d (0,2) gauge theory.

* The 2d gauge theories were studied in [Gadde, Gukov, Putrov, 2013].
Exhibit dual descriptions (related to Seiberg duality of the 4d theory).

* Here the 2d U(N) gauge group comes from the 4d U(N) gauge
group.
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* The 2d theory inherit the U (1), R-symmetry of the 4d theory.

* However, one can show that the corresponding 2d U(1)z R-symmetry
iIs anomalous: broken to discrete group Z,,,n -

* Why is the symmetry broken in 2d?

* We shall see that this is a consequence of the presence of generalized
symmetry structure in the 4d theory.



Generalized symmetries

 Renewed interest in symmetries recently.
* Interest spurred by the discovery of novel types of symmetries.

* Here we would be interest with the fate of such symmetries (higher
group and non-invertible) upon dimensional reduction.

* Begin with a brief review of generalized symmetries.



Symmetries = Topological operators

* Symmetries can be associated with
topological operators. M M

* Example: U(1). Have conserved current:
d *j=0.

e Leads to conserved charge:

Q= f]O d*1x. O E—— eld%0
* Can use this to build an operator: 0 u(o) ueo) )

[ — eiﬂ@ _ eiﬁng *

* Current conservation — Operator is
topological.

* Works similarly for discrete symmetries.

[Frolich, Fuchs, Runkel, Schweigert, 2009; Kapustin, Seiberg, 2014; Gaiotto, Kapustin, Seiberg, Willett, 2014; ...]



Properties of topological operators

* Properties of the topological operators then imply properties of the
associated symmetries.

U(61) ® U(6,) = U(6, + 6,)

U(6;) U(6,) U6, +6;)

* Example: fusion rule = group property.



Generalizations

* The topological operator viewpoint suggests several generalizations of
the notion of symmetries.

* Topological operators of higher codimension - higher form
symmetries (codimension p+1 operator - p-form symmetry).

* Non-invertible symmetries: symmetries that do not form a group.
a@®Ra=bDcd..

* Elements don’t necessarily possess an inverse.

* Non-invertible symmetries can be described by a fusion (n-)category.



Examples of higher form symmetries

* Pure SU(N) gauge theory: has a Zy 1-form symmetry acting on the
Wilson lines.

 Similarly for other gauge groups with matter invariant under some
part of the center.

* AU(1) gauge theory has U(1) 1-form symmetry acting on the ‘t
Hooft lines.

* Can associate a background 2-form connection, B, to this symmetry,

. . F
which then couples to the magnetic charges as: fB pynl



2-group structure

* Given two symmetries, the two can combine to form a larger group.

* Example: two Z, symmetries can form a direct product Z, X Z,, but
can also mix to form a general extension, for example Z,.

 Similarly, given a O-form and a 1-form symmetry, the two can form a
direct product, but can also mix leading to the analogues of a semi-
direct product or a more general extension.

* The resulting structure is referred to as a 2-group structure.



Continuous 2-group structure in 4d

, D]—G TrU(DRU(1)) =k
________ F.
* Example: 4d U (1), gauge theory with a U(1) global symmetry and the above

mixed gauge-flavor anomaly.

e Causes anomalous variation of the action under background flavor gauge

transformation (Ar > Ap + dA): 85~k [ A d'ggf&'.

* Due to the coupling [ B dAG , can be canceled by shifting B > B — Ak — dAF

* Leads to a 2-group structure between U (1) and 1-form magnetic symmetry

[Cordova, Dumitrescu, Intriligator, 2018]: dA
Ap ~ Ap+d2,B > B+ dh—k——



Non-invertible symmetries: chiral anomaly

Tr(UMEU)p) =k U = Zy

* What about examples of non-invertible symmetries?

* One example is a U(1) flavor symmetry “broken” by an ABJ anomaly
[Choi, Lam, Shao, 2022; Cordova, Ohmori, 2022].

* Here the U (1) axial symmetry is broken to an invertible Z, by the
anomaly.

* However, it was argued that axial rotations by a rational angle are still
symmetries, albeit non-invertible.



Reduction of generalized symmetries

* It is interesting to ask what happens to the aforementioned
generalized symmetries upon dimensional reduction on a surface X.

* Specifically, we shall consider reduction in the presence of fluxes:

= Fluxes in flavor symmetries (2-group): Jcl(F) = mg
z

" Fluxes in gauge symmetries (2-group and non-inv.): fcl(G) = mg
z

= For gauge symmetry flux: mean looking at the theory
expanded around a vacuum with fixed flux.

e Can study this using the relation to anomalies.



Reduction of generalized symmetries:
anomaly polynomial viewpoint

* Can integrate the anomaly polynomial for anomalies involving gauge
symmetries.

e Reduction on X of 2-group in the presence of flavor fluxes:
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* Resulting 2d anomalies imply flavor symmetry broken to a discrete
group: U(1)p = Zym,-



Reduction of generalized symmetries:
anomaly polynomial viewpoint

* Similarly, can consider Reduction on X of non-invertible symmetry in the
presence of gauge fluxes:

K
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* Resulting 2d anomaly again imply flavor symmetry broken to a discrete

group: U(1)p = Zym,-
* Can similarly consider the case of 2-group with gauge flux.

 However, anomalies involving gauge symmetries should not be good
physical observables, so how should we understand this?

* Can more properly understand this as the reduction of the generalized
symmetries.



Reduction of generalized symmetries: flavor
flux

* Consider the reduction of a 2-group in the presence of flavor fluxes.

* The 2-group transformation law (under O-form gauge trans.):

dAx
AF—>AF+dA,B—>B—/1K¥

dA
* When reduced on the surface, we get: jB - jB —ijz—n” fB — Akmy
hX hX hX hX

* Holonomy of 1-form symmetry, exp(i fz B), is a parameter in the
theory so must remain invariant.

* This leads to the breaking of the flavor symmetry: U(1)p = Zy,.-



Reduction of generalized symmetries: gauge
flux

* Can similarly discuss the case with gauge flux: fcl(G) = Mg

e Reducing a 2-group in the presence of gauge fluzx, 2-group reduces to

a ‘t Hooft anomaly for the zero form symmetry:

Arp > Ap+dA,B—> B —AK% in4ad > Tr(U(1)%) = kmg in 2d

T

* Reducing a non-invertible chiral symmetry, non-invertible symmetry
becomes a discrete Z,, ., invertible symmetry.

e Can study this by directly reducing the topological defect.

e Can also study this by reducing the symmetry TQFT [Antinucci, Benini,
2024; Brennan, Sun, 2024].



Application: sphere reduction from 4d to 2d
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e Can study this in the context of the sphere reduction of 4d N =1
theories to 2d V'=(0,2) theories.

* Here we shall consider the 4d N'=1 U(N) SQCD, that we previously
introduced.

* The sphere reduction of this theory is the 2d (0,2) U(N) gauge
theories that were previously introduced.



Application: sphere reduction from 4d to 2d
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* The U(N) version has a rich generalized symmetry structure.

* Has a 2-group structure involving the U(1) magnetic 1-form and
various flavor symmetries.

* Has Non-invertible symmetry: global symmetry acting on the two
determinant fields broken only by the U(1) gauge anomaly.



Resolution of the puzzle

* One interesting observation: the 4d R-symmetry and magnetic 1-form
symmetry form a 2-group: I © —nNcZ(R)c,(G) .

e Recall that to preserve supersymmetry we need to turn on a magnetic
flux in the R-symmetry.

* As such, the R-symmetry should be broken to a discrete group in 2d!

* The resolution of the puzzle: R-symmetry is broken due to the 2-
group structure.

* Can match the 2d U(1) U (1) anomaly with the sphere reduction of
the 4d U(1),U(1)% anomaly.



Interesting implications

e 2-group leads to breakdown of flavor symmetry in the presence of flavor
fluxes: seen example of this for 4d N=1 SQCD.

. ]gl-group leads to additional ‘t Hooft anomalies in the presence of gauge
ux.

* In general: reduction on S* gives a direct sum of different 2d theories
associated with different gauge fluxes [Gadde, Razamat, Willett, 2015].
yow see| that these have different ‘t Hooft anomalies in the presence of a

-group!

* Non-invertible axial symmetry — invertible Z, ., 2d symmetry.

* Order of symmetry depends on magnetic flux: different sectors have
different global symmetry in the presence of a non-invertible symmetry!

* In the example of 4d V=1 SQCD: can match the 4d and 2d anomalies,
including those involving gauge symmetries, for various choices of flux.



Overview of the results

* Here we discuss the fate of 2-group and non-invertible structure upon reduction
to 2d.

* In the paper we also discuss the fate of 2-group and non-invertible structure
upon reduction to 3d.

* Short overview of the results on that front:
" In the presence of matter: generalized symmetry structure

trivializes once the KK tower is integrated out (Lagrangian
examples, no twist).

= Without matter, generalized symmetry structure can survive
(example: Maxwell on a circle).

= Discuss implication of these for N=1 U(N) SCQD.



Conclusions

* Dimensional reduction can be a useful tool to study QFT problems.

* Understanding the relation between symmetries under dimensional
reduction may further our understanding of both dimensional reduction
and generalized symmetries.

* Have studied the fate of 2-group and non-invertible symmetries under
dimensional reduction, particularly the reduction from 4d to 2d, in the
presence of fluxes.

* Have seen that these generalized structures, even when not present in 2d,
can leave an imprint on the resulting 2d theories in terms of additional
anomalies or breaking to a discrete group.

* Expect results to apply in more general cases: other compactifications,
discrete 2-group, more general non-invertible symmetries.



Open guestions

* More general reductions from 4d: on more general surfaces, with
twisting by discrete symmetries.

 Dimensional reduction from other dimensions:
= 6d: Little string theories generally possess 2-group structure. Can

we see these effects in their reduction to 4d?

= 5d: Many 5d SCFTs possess 2-group structure. Can we see these
effects in their reduction to 3d?

* Understanding the reduction from the symmetry TQFT.



Thank you



