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Defects are interesting objects in physics

• Line defect: Wilson-’t Hooft line, impurities, cosmic strings, … 

• Higher-dimensional defects: D-branes, … 

• Topological defect: Skyrmions (2D), Hopfions (3D), …

Normally, only one defect is considered in a physical system. What if there 

exists more than one defect ? In this situation, perhaps we can do more 

engineering. The simplest situation is to consider two defects. 

• Two of the same dimension 

• Two of different dimensions 



What is a composite defect ?

We can start by doing some engineering, taking a line defect and a 

surface defect

When a lower-dimensional defect is embedded inside a higher-

dimensional defect, this gives rise to a composite defect.



The plans:

• Free vector O(N) model with a composite defect in d=4 -     

• Free vector O(N) model with a composite defect in d=3 -   

• A (weak) C-theorem for the sub defect 

The aims:

• Understand the local RG properties of the composite defect 

• Seeking a model giving rise to a conformal composite defect 

• Test if a C-theorem still applies for the composite defect

ε

ε



Defects ~ Localized interactions

In the model we are considering, defects are represented by the localized 

interactions. This means that they can flow under local renormalization 

group (RG) flow. The local deformations are marginal classically. For 

example, a scalar field has a classical dimension
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A single scalar model with composite defect

Epsilon expansion of the bare couplings,
D

(1)

D
(2)

Figure 1. The configuration of the composite defect consisting of a line sub-defect D
(1) (orange)

embedded into a surface defect D
(2) (light green). The gray region is the bulk spacetime where the

free O(N) model lives and localized interactions are turned on only on the subspaces.

sub-defect. In section 4, we propose the sub-defect C-theorem and check the validity of our

conjecture in the model we are studying. Section 5 summarizes the main results of this paper

and discusses future directions. In appendix A, some useful integral formulas needed for the

loop calculations are listed. In appendix B, we show that there are no non-trivial conformal

fixed points with composite defects for d = 2n � ✏. In appendix C, we give the details on

calculating the anomalous dimensions of the low-dimensional operators.

2 A single scalar with a composite defect

In this section, as a warm-up, we consider the model of a single scalar in d = 3� ✏ dimensions

with both a surface defect and a line defect turned on,
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where x
µ = (x?, xk, xL), with x? being the orthogonal direction to the surface defect, xk

being parallel to the surface but orthogonal to the line, and xL being parallel to the line

defect. The hatted coordinates cover the surface defect ŷ = (x? = 0, xk, xL) and the tilde

coordinates cover the line defect z̃ = (x? = 0, xk = 0, xL). In this way, the line defect

is embedded inside the surface defect. We work in the minimal subtraction scheme; the

dimensional regularization allows us to write the bare couplings in terms of the renormalized

ones as
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To obtain the beta functions of the two couplings, it is enough to consider two types of bulk

composite fields, �2(x) and the composite one �
4(x). The bare fields and the renormalized
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Model: Line defect + surface defect

Regularization of the theory, one-point function of the renormalized field 

should be finite
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A Some useful formulas

In this section, we collect a few formulas that are useful for the one-loop calculation,
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B Free model in even dimensions d = 2n� ✏: no composite DCFT

We consider the defect RG flow in even spacetime dimensions d = 2n� ✏ for a single scalar.

The action including the two localized deformations (r = n� 1) is given as
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where the lower dimensional defect is placed at xr = x
r+1 = · · · = x

2n�1 = 0 and the higher

dimensional defect is placed at x2r = x
2r+1 = · · · = x

2n�1 = 0. The hatted coordinates cover

the higher dimensional defect and the tilde coordinates cover the lower dimensional defect.

We work in the minimal subtraction scheme, we can write the bare couplings in terms of the

renormalized ones as
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To obtain the beta functions of the two couplings, it is enough to consider two types of

bulk fields, the elementary one �(x) and the composite one �
2(x). The bare fields and the

renormalized ones are related as

�(x) = Z� [�](x) , �
2(x) = Z�2 [�2](x) , (B.4)
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with Z� and Z�2 being the wave-function renormalizations, however, for free bulk theory

Z� = Z�2 = 1. The physical condition requires that the correlation of the renormalized fields

to give finite answer as ✏ ! 0, in the case of one-point functions, that is

h[�](x)i = finite , h[�2](x)i = finite . (B.5)

In the current situation, the above correlations can be evaluated to all loop order diagram-

matically. Noting that only the completely connected diagrams contribute.9 Let us start by

considering the first one-point function, for the completely connected ones, it is of the chain

type �m as depicted on the left side in figure 10. It has m insertions of the higher-dimensional

defects and ends on the lower-dimensional defect. For simplicity, let us denote the field on

the surface defect as �̂(x̂) and on the line defect as �̃(x̃). The chain diagram can be evaluated

using the Wick contraction with multiplicity 2mm!,
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where the function fr only depends on the momenta parallel to the higher-dimensional defect

while orthogonal to the lower-dimensional one, more explicitly
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✏�2
2 |p̃k,H |
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which is actually independent of the spacetime dimension. Summing up all the diagrams

gives
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For the evaluation of h�2(x)i, there are two types of completely connected diagrams, with

either zero or two insertions of the lower-dimensional defect. The diagram with two insertions

is essentially a product of two chain-type diagrams coming from the one-point function h�(x)i,

summing up all such diagrams gives
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where the factor of 2 in the second sum comes from the pairing of the bulk field and the two

insertions of the lower-dimensional defects. The non-factorizable contribution comes from
9More precisely, the correlation function in presence of the defects is defined as

h�(x)i ⌘
h�(x)DLDHi

hDLDHi
, h�2(x)i ⌘

h�2(x)DLDHi

hDLDHi
, (B.6)

where DL,H = e�IL,H with IL,H being the action of the lower/higher dimensional deformation. In this way, it

is clear that the partially connected diagrams are excluded.
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All loop calculation

Type I diagram:  Chain type

m

�m(x) =

m

�̃m(x) =

Figure 10. The basic diagrams for the evaluation of the one-point functions to all-loop order, with
the left one for h�(x)i and right one for the non-factorizable part of h�2(x)i.

the loop-type diagram �̃m(x) depicted on the right side of figure 10. They can be evaluated

similar to the chain-type diagram with the same multiplicity factor 2mm!,
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where the function fr has the same form as in eq. (B.8). Summing up over all the contributions

gives
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The finiteness condition (B.5) requires that both eq. (B.9) and (B.12) are finite on its own,
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solving them gives
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Taking the derivatives with respect to the renormalization scale M for the above equations

gives the beta functions for the renormalized couplings, one also has to use that fact that the

bare coupling is independent of the renormalization scale
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Surface defect

Line defect

with Z� and Z�2 being the wave-function renormalizations, however, for free bulk theory

Z� = Z�2 = 1. The physical condition requires that the correlation of the renormalized fields
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where the function fr only depends on the momenta parallel to the higher-dimensional defect
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For the evaluation of h�2(x)i, there are two types of completely connected diagrams, with

either zero or two insertions of the lower-dimensional defect. The diagram with two insertions

is essentially a product of two chain-type diagrams coming from the one-point function h�(x)i,

summing up all such diagrams gives
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where the factor of 2 in the second sum comes from the pairing of the bulk field and the two

insertions of the lower-dimensional defects. The non-factorizable contribution comes from
9More precisely, the correlation function in presence of the defects is defined as

h�(x)i ⌘
h�(x)DLDHi

hDLDHi
, h�2(x)i ⌘

h�2(x)DLDHi
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, (B.6)

where DL,H = e�IL,H with IL,H being the action of the lower/higher dimensional deformation. In this way, it

is clear that the partially connected diagrams are excluded.
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We can use the free field propagator to calculate perturbatively

Summing up all the diagrams gives
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For the evaluation of h�2(x)i, there are two types of completely connected diagrams, with

either zero or two insertions of the lower-dimensional defect. The diagram with two insertions

is essentially a product of two chain-type diagrams coming from the one-point function h�(x)i,

summing up all such diagrams gives
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where DL,H = e�IL,H with IL,H being the action of the lower/higher dimensional deformation. In this way, it

is clear that the partially connected diagrams are excluded.
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Type II diagram:  Loop type, with only surface defects
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Figure 10. The basic diagrams for the evaluation of the one-point functions to all-loop order, with
the left one for h�(x)i and right one for the non-factorizable part of h�2(x)i.

the loop-type diagram �̃m(x) depicted on the right side of figure 10. They can be evaluated

similar to the chain-type diagram with the same multiplicity factor 2mm!,
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where the function fr has the same form as in eq. (B.8). Summing up over all the contributions

gives

h�
2(x)i = (h�(x)i)2 +

Z
dd�2r

p̂

(2⇡)d�2r

ddp

(2⇡)d
e
�ixp̂

(p̂+ p)2p2
�h0

1 + h0fr(|pk,H |)
. (B.12)

The finiteness condition (B.5) requires that both eq. (B.9) and (B.12) are finite on its own,
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Taking the derivatives with respect to the renormalization scale M for the above equations

gives the beta functions for the renormalized couplings, one also has to use that fact that the

bare coupling is independent of the renormalization scale
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Figure 10. The basic diagrams for the evaluation of the one-point functions to all-loop order, with
the left one for h�(x)i and right one for the non-factorizable part of h�2(x)i.
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2(ŷj)i

= (�h0)
m

Z
dd�2r

p̂

(2⇡)d�2r

ddp

(2⇡)d
e
�ixp̂

(p̂+ p)2p2
f
m�1
r (|pk,H |) (B.11)

where the function fr has the same form as in eq. (B.8). Summing up over all the contributions
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The finiteness condition (B.5) requires that both eq. (B.9) and (B.12) are finite on its own,
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solving them gives
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gM
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1� h
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Taking the derivatives with respect to the renormalization scale M for the above equations

gives the beta functions for the renormalized couplings, one also has to use that fact that the

bare coupling is independent of the renormalization scale
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Figure 10. The basic diagrams for the evaluation of the one-point functions to all-loop order, with
the left one for h�(x)i and right one for the non-factorizable part of h�2(x)i.
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Summing up all the diagrams gives the non-factorizable part
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Comments: 

• The beta function for the line coupling is corrected by the surface 

coupling, but not vice versa 

• The localized RG flows on the surface and the line cannot flow to the 

fixed point simultaneously -> no conformal composite defect 

• This analysis applies for free theories in higher even dimensions, 

they cannot host conformal composite defects 
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O(N) model with composite defect

D
(1)

D
(2)

Figure 1. The configuration of the composite defect consisting of a line sub-defect D
(1) (orange)

embedded into a surface defect D
(2) (light green). The gray region is the bulk spacetime where the

free O(N) model lives and localized interactions are turned on only on the subspaces.

sub-defect. In section 4, we propose the sub-defect C-theorem and check the validity of our

conjecture in the model we are studying. Section 5 summarizes the main results of this paper

and discusses future directions. In appendix A, some useful integral formulas needed for the

loop calculations are listed. In appendix B, we show that there are no non-trivial conformal

fixed points with composite defects for d = 2n � ✏. In appendix C, we give the details on

calculating the anomalous dimensions of the low-dimensional operators.

2 A single scalar with a composite defect

In this section, as a warm-up, we consider the model of a single scalar in d = 3� ✏ dimensions

with both a surface defect and a line defect turned on,

I =
1

2

Z
ddx (@�)2 +

h0

4!

Z

R2
d2ŷ �4 +

g0

2

Z

R
dz̃ �2

, (2.1)

where x
µ = (x?, xk, xL), with x? being the orthogonal direction to the surface defect, xk

being parallel to the surface but orthogonal to the line, and xL being parallel to the line

defect. The hatted coordinates cover the surface defect ŷ = (x? = 0, xk, xL) and the tilde

coordinates cover the line defect z̃ = (x? = 0, xk = 0, xL). In this way, the line defect

is embedded inside the surface defect. We work in the minimal subtraction scheme; the

dimensional regularization allows us to write the bare couplings in terms of the renormalized

ones as

h0 = M
2✏

✓
h+

�h

✏
+

�2h

✏2
+ . . .

◆
, (2.2)

g0 = M
✏

✓
g +

�g

✏
+

�2g

✏2
+ . . .

◆
. (2.3)

To obtain the beta functions of the two couplings, it is enough to consider two types of bulk

composite fields, �2(x) and the composite one �
4(x). The bare fields and the renormalized
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Model: surface defect + line defect

3 O(N) vector model with composite defects

In the previous section, we obtained the conformal fixed point which realizes the composite

defect CFT in a free scalar theory or the Ising CFT. In this section, we extend the analysis

to the O(N) vector model, and explore various features of the model.

3.1 Localized RG flows and analysis of fixed points

Clearly, we have a lot of symmetry breaking patterns on both the surface and line defects

unlike the Ising CFT. For simplicity, we pay our attention to the case where the O(N)

symmetry is preserved on the surface, but not necessary on the line. Then, the action of our

model in d = 3� ✏ can be written as

I ⌘
1

2

Z

Rd

ddx @µ�
I
@
µ
�
I +

h0

4!

Z

R2
d2ŷ

�
�
I
�
I
�2

+
g0,IJ

2

Z

R
dz̃ �I

�
J
. (3.1)

Here �
I is the O(N) vector field, and I, J run from 1 to N . Also, h0 and g0,IJ are bare

couplings for surface and line actions, respectively. In an analogous manner as the previous

section, we can compute the beta functions for these couplings at one-loop order,

8
><

>:

�h = �2✏h+
N + 8

48⇡
h
2 + (higher order) ,

�IJ = �✏ gIJ +
1

2⇡
(g2)IJ +

1

48⇡
(Trg �IJ + 2gIJ)h+ (higher order) ,

(3.2)

where h and gIJ are renormalized couplings, the beta functions �h and �IJ are defined by

�h ⌘ M
dh

dM
, �IJ ⌘ M

dgIJ
dM

. (3.3)

Conformal fixed points are obtained by solving the equations �h = �IJ = 0. The former

condition leads to the critical surface coupling h⇤ as follows

h⇤ =
96⇡

N + 8
✏+O(✏2) . (3.4)

Substituting this critical value to the equation �IJ = 0, it turns out that critical sub-defect

couplings (g⇤)IJ have to satisfy the following matrix quadratic equations

(N + 8)(g2⇤)IJ � 2(N + 4)⇡✏(g⇤)IJ + 4⇡✏Trg⇤ �IJ = 0 . (3.5)

From this equation, we can immediately see that Trg⇤ 6= 0 for any real symmetric matrix

(g⇤)IJ . We can easily prove this statement by contradiction. Suppose Tr(g⇤) = 0. By taking

trace with respect to O(N) indices in the quadratic equation (3.5), we then obtain Tr(g2⇤) = 0

in general. Since we now assume that g⇤ is a real symmetric matrix, this result implies that

only trivial solutions are possible. This completes the proof. Solving this quadratic equations

(3.5) is, however, a quite hard problem, hence we proceed our analysis by paying our attention
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h�
2(x) i

D0,1 D0,2 D0,3 D0,4

h�
4(x) i

D̄0,1 D̄0,2 D̄0,3 D̄0,4

Figure 2. Diagrams up to the second order in both h0 and g0 contributing h�
2(x) i and h�

4(x) i. he
dashed line represents the propagator and the cross symbols represent the bulk operator insertions.
Also, the circle and square represent the line and surface defect interactions, respectively.

The integrals Ii,j and Īi,j can be evaluated using the free bulk propagator,

G(x, y) =

Z
ddp

(2⇡)d
e
i p(x�y)

p2
=

C��

|x� y|d�2
, C�� =

�(d/2� 1)

4⇡d/2
, (2.11)

with C�� being the two-point function normalization of the free bulk field. Before giving the

explicit formulas of those integrals, let us give an overview of their divergent structures. For

the contributions to h�
2(x) i, only I0,2(x) and I1,1(x) are divergent as 1/✏. This means that

to one-loop order, �g receives corrections from the renormalized surface coupling h, as D1,1

is a mixed diagram. However, for the contributions to h�
4(x) i, only Ī2,0(x) is divergent as

O(1/✏), such that to one-loop order, �h is uninfluenced by the renormalized line coupling

g. This seems to suggest that the surface coupling has a hierarchy over the line coupling,

however, we do not have a rigorous proof if this can hold to all orders. Nonetheless, from the

point of view of the conformal perturbation theory, it is expected that the surface coupling

corrects the line coupling, but not vice versa.

The relevant integrals for the corrections to the line defect coupling are I0,1(x), I0,2(x),

I1,1(x), while to the surface coupling, the relevant ones are Ī1,0(x) and Ī2,0(x). The results for

those integrals are given as following which can be obtained using formulas listed in (A.1),
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Diagrams up to the second order

Divergent 
diagram



O(1) model:  only a single scalar
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Figure 3. RG flows plotted for ✏ = 0.05. The black point represents the UV fixed point, the red/green
point represents the non-trivial IR fixed point with only the line/surface defect, while the magenta
point represents the non-trivial IR fixed point with the composite defect.

a non-trivial IR fixed point (magenta), i.e., an Ising CFT with composite defects. In the

current situation with a single scalar theory, this composite defect fixed point is the most

infrared among the three IR fixed points. Requiring both beta functions (2.18) and (3.7) to

vanish gives the explicit expression for the Ising CFT with composite defects

h⇤ =
32⇡

3
✏+O(✏2) , (2.21)

g⇤ = 2⇡✏�
h⇤
8

+O(✏2) =
2⇡

3
✏+O(✏2) . (2.22)

Notice that if we set ✏ = 0, then the composite defect CFT does not exist. This observation

is consistent with the fact that there is no non-trivial line or surface defects in a single free

scalar theory for three-dimentional bulk [80]. The existence of the Ising CFT with composite

defects is highly non-trivial, even though our discussion is mainly on the free bulk theory. As

we show in appendix B, such a composite defect fixed point does not exist for all the higher

dimensional d > 4 free scalar theories. This captures the essence of our main result; in the

next section we extend the studies to the O(N) case.
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current situation with a single scalar theory, this composite defect fixed point is the most

infrared among the three IR fixed points. Requiring both beta functions (2.18) and (3.7) to
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Notice that if we set ✏ = 0, then the composite defect CFT does not exist. This observation

is consistent with the fact that there is no non-trivial line or surface defects in a single free

scalar theory for three-dimentional bulk [80]. The existence of the Ising CFT with composite

defects is highly non-trivial, even though our discussion is mainly on the free bulk theory. As

we show in appendix B, such a composite defect fixed point does not exist for all the higher

dimensional d > 4 free scalar theories. This captures the essence of our main result; in the

next section we extend the studies to the O(N) case.
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• In this dimension, both conformal 
line and surface defects can be 
hosted 

• A conformal composite defect 
exists !!! 

• At the CCD fixed point, line 
coupling is modified by the 
surface one

Comments: 
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point represents the non-trivial IR fixed point with only the line/surface defect, while the magenta
point represents the non-trivial IR fixed point with the composite defect.
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scalar theory for three-dimentional bulk [80]. The existence of the Ising CFT with composite

defects is highly non-trivial, even though our discussion is mainly on the free bulk theory. As

we show in appendix B, such a composite defect fixed point does not exist for all the higher

dimensional d > 4 free scalar theories. This captures the essence of our main result; in the

next section we extend the studies to the O(N) case.
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3 O(N) vector model with composite defects

In the previous section, we obtained the conformal fixed point which realizes the composite

defect CFT in a free scalar theory or the Ising CFT. In this section, we extend the analysis

to the O(N) vector model, and explore various features of the model.

3.1 Localized RG flows and analysis of fixed points

Clearly, we have a lot of symmetry breaking patterns on both the surface and line defects

unlike the Ising CFT. For simplicity, we pay our attention to the case where the O(N)

symmetry is preserved on the surface, but not necessary on the line. Then, the action of our

model in d = 3� ✏ can be written as
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ddx @µ�
I
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µ
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I +
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I
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J
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Here �
I is the O(N) vector field, and I, J run from 1 to N . Also, h0 and g0,IJ are bare

couplings for surface and line actions, respectively. In an analogous manner as the previous

section, we can compute the beta functions for these couplings at one-loop order,
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2 + (higher order) ,
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(Trg �IJ + 2gIJ)h+ (higher order) ,

(3.2)

where h and gIJ are renormalized couplings, the beta functions �h and �IJ are defined by

�h ⌘ M
dh

dM
, �IJ ⌘ M

dgIJ
dM

. (3.3)

Conformal fixed points are obtained by solving the equations �h = �IJ = 0. The former

condition leads to the critical surface coupling h⇤ as follows

h⇤ =
96⇡

N + 8
✏+O(✏2) . (3.4)

Substituting this critical value to the equation �IJ = 0, it turns out that critical sub-defect

couplings (g⇤)IJ have to satisfy the following matrix quadratic equations

(N + 8)(g2⇤)IJ � 2(N + 4)⇡✏(g⇤)IJ + 4⇡✏Trg⇤ �IJ = 0 . (3.5)

From this equation, we can immediately see that Trg⇤ 6= 0 for any real symmetric matrix

(g⇤)IJ . We can easily prove this statement by contradiction. Suppose Tr(g⇤) = 0. By taking

trace with respect to O(N) indices in the quadratic equation (3.5), we then obtain Tr(g2⇤) = 0

in general. Since we now assume that g⇤ is a real symmetric matrix, this result implies that

only trivial solutions are possible. This completes the proof. Solving this quadratic equations

(3.5) is, however, a quite hard problem, hence we proceed our analysis by paying our attention
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to the following symmetry breaking patterns on the sub-defect: O(N) ! O(m)⇥O(N �m).

In this case, the coupling constants can be written as

gIJ = diag ( g , g , · · · , g| {z }
m

, g
0
, g

0
, · · · , g

0
| {z }

N�m

) ,
(3.6)

and the beta functions become

�g = �✏ g +
1

2⇡
g
2 +

1

48⇡
(mg + (N �m)g0 + 2g)h+ · · · , (3.7)

�g0 = �✏ g
0 +

1

2⇡
g
02 +

1

48⇡
(mg + (N �m)g0 + 2g0)h+ · · · . (3.8)

Notice that without loss of generality, we can set m  N/2. Under this restriction, the

quadratic equation (3.5) is reduced to the following simultaneous equations

(N + 8)g2 + 4(N �m)⇡✏ g0 � 2(N � 2m+ 4)⇡✏ g = 0 ,

(N + 8)g02 + 2(N � 2m� 4)⇡✏ g0 + 4m⇡✏ g = 0 .

(3.9)

In addition to the trivial solution:

P0 : g⇤ = g
0
⇤ = 0 , (3.10)

there are three non-trivial solutions which are given by

P1 : g⇤ = g
0
⇤ =

8� 2N

N + 8
⇡✏+O(✏2) , (3.11)

P2 :

8
>><

>>:

g⇤ =
3N � 4m+ 4 +

p
DN,m

N + 8
⇡✏+O(✏2) ,

g
0
⇤ =

�N + 4m+ 4�
p

DN,m

N + 8
⇡✏+O(✏2) ,

(3.12)

P3 :

8
>><

>>:

g⇤ =
3N � 4m+ 4�

p
DN,m

N + 8
⇡✏+O(✏2) ,

g
0
⇤ =

�N + 4m+ 4 +
p

DN,m

N + 8
⇡✏+O(✏2) ,

(3.13)

where DN,m is the discriminant defined by

DN,m ⌘ N
2 + 16m2

� 16Nm� 8N + 16 . (3.14)

Unlike P0 and P1, two fixed points P2 and P3 can be possibly complex depending on the sign

of DN,m. Indeed, we can easily check that for N  22, these two fixed points become complex

CFTs regardless of the value of m. Also, when m = N/2 for any even integer N , P2 and

P3 again describe complex CFTs. It is not until N � 23 that unitary CFTs appear for the

following values of m:

m = 1 , 2 , · · · ,

$
N

2
�

p
(3N � 4)(N + 4)

4

%
. (3.15)

Below, we will see the behaviors of RG flows around unitary and complex CFTs, respectively.

– 10 –

O(N) breaking pattern: O(N) -> O(m) * O(N-m) on the lineto the following symmetry breaking patterns on the sub-defect: O(N) ! O(m)⇥O(N �m).
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gIJ = diag ( g , g , · · · , g| {z }
m

, g
0
, g

0
, · · · , g

0
| {z }

N�m

) ,
(3.6)

and the beta functions become

�g = �✏ g +
1

2⇡
g
2 +

1

48⇡
(mg + (N �m)g0 + 2g)h+ · · · , (3.7)

�g0 = �✏ g
0 +

1

2⇡
g
02 +

1

48⇡
(mg + (N �m)g0 + 2g0)h+ · · · . (3.8)
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0
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0
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8� 2N

N + 8
⇡✏+O(✏2) , (3.11)
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8
>><

>>:

g⇤ =
3N � 4m+ 4 +

p
DN,m

N + 8
⇡✏+O(✏2) ,

g
0
⇤ =

�N + 4m+ 4�
p
DN,m

N + 8
⇡✏+O(✏2) ,

(3.12)
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8
>><

>>:
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p
DN,m

N + 8
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Beta functions:

Figure 5. Sub-defect RG flow of the composite defect model in the case of (N,m, ✏) = (300, 2, 0.05).
Black point corresponds to the trivial theory where a conventional surface defect CFT is realized. The
other three points are non-trivial conformal fixed points where composite defect CFTs are emergent.
Red point (P1) means the composite defect CFT where the O(300) symmetry is preserved, while green
and magenta points (P2 and P3) are ones where such a global symmetry is broken to its sub-group
O(298)⇥O(2) on the sub-defect. There exist some RG flows between O(300) symmetry preserving and
breaking phases.

and discuss on the two-dimensional (g, g̃)-plane. To explore RG behaviors at a little away

region from the complex CFT point (3.25), we perturb the two couplings g and g̃ in the

following way:

g = g⇤ + �g , g̃ = g̃⇤ + �g̃ , (3.29)

where g⇤ and g̃⇤ are the fixed point (3.25) defined by

g⇤ =
N + 4

N + 8
⇡✏ , g̃⇤ =

p
(3N � 4)(N + 4)

N + 8
⇡✏ . (3.30)

By using the beta functions (3.7) and (3.8), we can obtain the following di↵erential equations

up to leading term:

d�g
d logM

= J �g , �g ⌘

 
�g

�g̃

!
, (3.31)
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RG flows w/ fixed  

surface coupling

3 O(N) vector model with composite defects

In the previous section, we obtained the conformal fixed point which realizes the composite

defect CFT in a free scalar theory or the Ising CFT. In this section, we extend the analysis

to the O(N) vector model, and explore various features of the model.

3.1 Localized RG flows and analysis of fixed points

Clearly, we have a lot of symmetry breaking patterns on both the surface and line defects

unlike the Ising CFT. For simplicity, we pay our attention to the case where the O(N)

symmetry is preserved on the surface, but not necessary on the line. Then, the action of our

model in d = 3� ✏ can be written as

I ⌘
1

2

Z

Rd

ddx @µ�
I
@
µ
�
I +

h0

4!

Z

R2
d2ŷ

�
�
I
�
I
�2

+
g0,IJ

2

Z

R
dz̃ �I

�
J
. (3.1)

Here �
I is the O(N) vector field, and I, J run from 1 to N . Also, h0 and g0,IJ are bare

couplings for surface and line actions, respectively. In an analogous manner as the previous

section, we can compute the beta functions for these couplings at one-loop order,

8
><

>:

�h = �2✏h+
N + 8

48⇡
h
2 + (higher order) ,

�IJ = �✏ gIJ +
1

2⇡
(g2)IJ +

1

48⇡
(Trg �IJ + 2gIJ)h+ (higher order) ,

(3.2)

where h and gIJ are renormalized couplings, the beta functions �h and �IJ are defined by

�h ⌘ M
dh

dM
, �IJ ⌘ M

dgIJ
dM

. (3.3)

Conformal fixed points are obtained by solving the equations �h = �IJ = 0. The former

condition leads to the critical surface coupling h⇤ as follows

h⇤ =
96⇡

N + 8
✏+O(✏2) . (3.4)

Substituting this critical value to the equation �IJ = 0, it turns out that critical sub-defect

couplings (g⇤)IJ have to satisfy the following matrix quadratic equations

(N + 8)(g2⇤)IJ � 2(N + 4)⇡✏(g⇤)IJ + 4⇡✏Trg⇤ �IJ = 0 . (3.5)

From this equation, we can immediately see that Trg⇤ 6= 0 for any real symmetric matrix

(g⇤)IJ . We can easily prove this statement by contradiction. Suppose Tr(g⇤) = 0. By taking

trace with respect to O(N) indices in the quadratic equation (3.5), we then obtain Tr(g2⇤) = 0

in general. Since we now assume that g⇤ is a real symmetric matrix, this result implies that

only trivial solutions are possible. This completes the proof. Solving this quadratic equations

(3.5) is, however, a quite hard problem, hence we proceed our analysis by paying our attention
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O(N) symmetric

O(N) broken



Comments: 

• Four CCD fixed points, 2 * O(N) symmetric + 2 * O(N) broken 

• Unitarity (real couplings) requires N >= 23 

• Local RG analysis shows that the trivial one is the most UV among 

the four for N > 4.  We can perturb the coupling around the fixed 

point, obtaining the eigenvalues for the phase space (g,g’)
By substituting the explicit values of fixed points (3.10) – (3.13) to the eigenvalues �±, we

obtain

P0 : �+ =
N � 4

N + 8
✏ , �� = �

N + 4

N + 8
✏ , (3.21)

P1 : �+ = �
N � 4

N + 8
✏ , �� = �

3N � 4

N + 8
✏ , (3.22)

P2 : �± =
N ±

p
2
q
N2 + 8m2 � 8Nm� 4N + 8 + (N � 2m)

p
DN,m

N + 8
✏ , (3.23)

P3 : �± =
N ±

p
2
q
N2 + 8m2 � 8Nm� 4N + 8� (N � 2m)

p
DN,m

N + 8
✏ . (3.24)

Notice that the eigenvalues for P2 and P3 are all real for unitary theories, namely, N � 23

and m is in the range of (3.15), although it might be somewhat non-trivial. From these

expressions, it turns out that the local RG flows around P0 and P2 belong to the type 1 while

local flows around P3 (P1) do to the type 2 (type 3), respectively in figure 4. In figure 5, we

also plot the the RG flow in the (g, g0)-plane with the fixed surface defect coupling h = h⇤ and

setting (N,m, ✏) = (300, 2, 0.05). Interestingly, this figure implies that there exist non-trivial

RG flows between O(N) symmetry preserved and breaking phases. In section 4.2, we see that

this obtained RG flow is completely consistent with the sub-defect C-theorem.

Renormalization group flow around complex CFTs. As described previously, when

m = N/2 for arbitrary even integer N , the fixed points P2 and P3 become complex numbers.

In particular, one of them is given by

g⇤
⇡✏

=
N + 4

N + 8
+ i

p
(3N � 4)(N + 4)

N + 8
,

g
0
⇤

⇡✏
=

N + 4

N + 8
� i

p
(3N � 4)(N + 4)

N + 8
. (3.25)

We next explore the local RG flow around this complex CFT point. For this purpose, we

promote the originally real couplings g and g
0 to the complex ones as follows:

g ⌘ g + i g̃ , g
0
⌘ g0 + i g̃0 , (3.26)

where g, g̃, g0 and g̃0 are all real couplings. Correspondingly, we can define the beta functions

for each coupling as follows:

�g ⌘
dg

d logM
, �g̃ ⌘

dg̃

d logM
, �g0 ⌘

dg0

d logM
, �g̃0 ⌘

dg̃0

d logM
. (3.27)

We now have the four-dimensional coupling space, and it is hard to visualize RG flows on

such a space. Therefore, in the following, we completely fix the values of g0 and g̃0 to be the

critical points (3.25), namely we set

g0 = g0⇤ =
N + 4

N + 8
⇡✏ , g̃0 = g̃0⇤ = �

p
(3N � 4)(N + 4)

N + 8
⇡✏ , (3.28)
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�+�� < 0

type 1

�+ > 0, �� > 0

type 2

�+ < 0, �� < 0

type 3

Figure 4. Classification of local RG flows around the fixed points (depicted as red points) in the
(g2, g02) plane. The blue lines mean the RG flows, and the arrows lying on them point in the IR
direction. The local RG behaviors depend on the signs of eigenvalues �± of the Jacobi matrix J .

Renormalization group flow around unitary CFTs. We first discuss the sub-defect

RG flow in our composite defect system by focusing on the case where both fixed points P2

and P3 are unitary (namely, the discriminant DN,m is positive). To analyze the stability

around the conformal fixed points, we can perturb the sub-defect couplings around the fixed

points:

g = g⇤ + �g , g
0 = g

0
⇤ + �g

0
, (3.16)

with the surface defect coupling fixed to be h⇤. By plugging these expressions into (3.2), we

can then obtain the following linear di↵erential equations with respect to �g2 and �g
0
2:

d�g

d logM
= J �g , �g ⌘

 
�g

�g
0

!
, (3.17)

where J is the Jacobi matrix with the following form

J = ✏

 
�1 + g⇤

⇡✏
+ 2m+4

N+8
2N�2m
N+8

2m
N+8 �1 + g

0
⇤

⇡✏
+ 2N�2m+4

N+8

!
+O(✏2) . (3.18)

As described in figure 4, the local behaviors of RG flows around the fixed points can be

completely characterized by the eigenvalues �± of the above Jacobi matrix J , given as

�±(g⇤ , g
0
⇤) =

(N + 8)(g⇤ + g
0
⇤)� 8⇡✏±

p
D

2(N + 8)⇡
, (3.19)

where D is defined by

D ⌘ (N + 8)2(g⇤ � g
0
⇤)

2
� 4(N + 8)(N � 2m)(g⇤ � g

0
⇤)⇡✏+ 4N2

⇡
2
✏
2
. (3.20)
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A mixing of composite operators3.2.2 Anomalous dimensions of sub-defect composite operators

We next move on to the anomalous dimensions of sub-defect composite operators. In partic-

ular, we concentrate on the following scalar primaries with the canonical scaling dimension

one:

� ⌘
1

p
m

mX

↵=1

(�↵)2 ,  ⌘
1

p
N �m

NX

i=m+1

(�i)2 , (3.41)

which are the interacting terms localized on the line defect (3.1). Also, the normalization

factors are chosen for later convenience. We remark that these operators have the same

canonical dimensions, hence we can expect that � and  should mix to each other due to

the quantum corrections. The renormalized fields [�] and [ ] are related to the bare fields �

and  as
 
�

 

!
= ZS

 
[�]

[ ]

!
, (3.42)

where ZS is the wavefunction renormalization matrix whose size is two. By using this matrix,

we can compute the anomalous dimension matrix � which is defined by

� ⌘ Z
�1
S

d

d logM
ZS

����
fixed point

(3.43)

From the general grounds, we can write this matrix in the following manner:

ZS = 12⇥2 + �ZS , (3.44)

where 12⇥2 is the unit matrix. By requiring that the following three-point functions:

h [�I ](z̃1) [�
J ](z̃2) [�](0) i , h [�I ](z̃1) [�

J ](z̃2) [ ](0) i , (3.45)

should have no poles, we can fix the renormalization matrix as follows:

�ZS = �
1

96⇡✏

 
(m+ 2)h+ 96g

p
m(N �m)h

p
m(N �m)h (N �m+ 2)h+ 96g0

!
. (3.46)

(See appendix C for more details.) By plugging this into (3.43), we can obtain the anomalous

dimension matrix at the leading order:

� =
1

48⇡

 
(m+ 2)h⇤ + 48g⇤

p
m(N �m)h⇤p

m(N �m)h⇤ (N �m+ 2)h⇤ + 48g0⇤

!
+O(✏2) , (3.47)

where h⇤, g⇤ and g
0
⇤ are fixed points which are given in section 3.1. Notice that the above

anomalous dimension matrix is symmetric. This is the reason why we introduced the factors
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p
m and

p
N �m in (3.41).4 The eigenvalues �± of this matrix gives rise to the anomalous

dimensions of the two operators S± resulting from the mixing of operators � and  , which

are given by

�± =
48(g⇤ + g

0
⇤) + (N + 4)h⇤ ±

p
192�g(12�g +mh⇤)� 96N�gh⇤ +N2h2⇤

96⇡
, (3.48)

where �g ⌘ g⇤ � g
0
⇤. One notes that for the O(N) preserving case, �g = 0, the anomalous

dimensions for the two operators are independent on the partition m. Substituting the fixed

point values for P1, the anomalous dimensions gives

�±

���
P1

=
12�N ±N

8 +N
✏ . (3.49)

4 Towards a C-theorem in composite defect CFTs

For a theory with a defect D(p) of p dimensions, one can trigger an RG flow localized on D
(p).

In this circumstance, the defect C-theorem is conjectured to hold, which states the existence of

a function called the C-function that decreases under any localized RG flow [15]. Motivated

by the defect C-theorem conjecture, we extend it to the case with a composite defect and

propose the following:

Conjecture. In a unitary CFTd with a composite defect D(p1, ··· , pn) = [
n

i=1D
(pi) consisting

of n sub-defects of pi dimensions satisfying 0 < p1 < p2 < · · · < pn < d and D
(p1) ⇢ D

(p2) ⇢

· · · ⇢ D
(pn), let Z(p1, ··· , pn) ⌘ hD

(p1, ··· , pn) i be the partition function on a d-sphere. Then, the

function C defined by

C ⌘ sin
⇣
⇡p1

2

⌘
log

�����
Z

(p1, p2 , ··· , pn)

Z(p2, ··· , pn)

����� (4.1)

does not increase under any localized RG flow on the sub-defect D(p1) of the lowest dimension,

CUV � CIR . (4.2)

Note that our conjecture is a weak C-theorem which compares the values of the sub-

defect C-function (4.1) at the UV and IR fixed points connected by a localized RG flow.

While the C-function (4.1) is defined for the theories away from the fixed points, it may not

be monotonically decreasing function under the flow, hence be a weak C-function.5

4Equivalently, one can introduce these factors into the renormalization matrix factors instead of including

these factors in the definitions of � and  .
5There are three types of C-functions: weak, strong, and strongest ones [102, 103]. The function C satisfying

(4.2) is called the weak C-function while it is called the strong C-function when C is a monotonically decreasing

function under an RG flow. The function C is called the strongest C-function if an RG flow is its gradient flow.
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4Equivalently, one can introduce these factors into the renormalization matrix factors instead of including

these factors in the definitions of � and  .
5There are three types of C-functions: weak, strong, and strongest ones [102, 103]. The function C satisfying

(4.2) is called the weak C-function while it is called the strong C-function when C is a monotonically decreasing

function under an RG flow. The function C is called the strongest C-function if an RG flow is its gradient flow.
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We consider two composite operators of the same classical dimension on the 

line defect

Apparently, once the surface coupling is turned on, at the quantum level, the 

two operators stop to be orthogonal to be each other, as the wavefunction 

renormalization matrix acquires off-diagonal entries. We can define a matrix 

for the anomalous dimension

Its eigenvalues give rise to the anomalous dimensions of two new defect 

operators 

Considering the non-trivial O(N) symmetric fixed point,



Subdefect C-theorem



C - theorems

• Weak version: C-function is non-increasing compared at the UV and 

the IR fixed points connected by an RG flow; 

• Strong version: C-function is non-increasing along the RG flow; 

• Strongest version: the RG flow is a gradient flow of the C-function.

We can define a function, normally called a c-function after Zamolodchikov. 

This function has monotonic properties along the RG flow. In 2d, it coincides 

with the central charge s.t. it depicts the d.o.f. of the theory at different 

energy scales and UV has more d.o.f. than the IR. There are three versions of 

C-theorem



p
m and

p
N �m in (3.41).4 The eigenvalues �± of this matrix gives rise to the anomalous

dimensions of the two operators S± resulting from the mixing of operators � and  , which

are given by

�± =
48(g⇤ + g

0
⇤) + (N + 4)h⇤ ±

p
192�g(12�g +mh⇤)� 96N�gh⇤ +N2h2⇤

96⇡
, (3.48)

where �g ⌘ g⇤ � g
0
⇤. One notes that for the O(N) preserving case, �g = 0, the anomalous

dimensions for the two operators are independent on the partition m. Substituting the fixed

point values for P1, the anomalous dimensions gives

�±

���
P1

=
12�N ±N

8 +N
✏ . (3.49)
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(p1) ⇢ D

(p2) ⇢

· · · ⇢ D
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A conjecture of the sub-defect C - theorem

Rd

Sd
D

(p)

Figure 8. The stereographic projection of Sd to Rd. A p-dimensional spherical defect D(p) is mapped
to a planar defect on Rd.

where �̃(µ) is the e↵ective coupling at the energy scale µ:

�̃(µ) = �̃0 �
�̃
2
0

2

Z

µ
�1
UV<|x̃1�x̃2|<µ�1

dp1 x̃2
eC

|x̃1 � x̃2|
e�
+ · · ·
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2
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⇡
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2 eC

"�
�
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2

�
⇥
µ
�"

� µ
�"
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⇤
+ · · · .

(4.8)

By introducing the dimensionless couplings g̃(µ) = �̃(µ)µ�" and g̃0 = �̃0 µ
�"

UV, we obtain

g̃(µ) = g̃0

✓
µUV

µ

◆
"

� g̃
2
0

⇡
p1
2 eC

"�
�
p1
2

�
"✓

µUV

µ

◆2"

�

✓
µUV

µ

◆
"
#
+ · · · . (4.9)

The beta function for the dimensionless coupling becomes

�(g̃) = µ
dg̃

dµ
= �" g̃ +

⇡
p1
2 eC

�
�
p1
2

� g̃2 + · · · , (4.10)

which, if eC > 0, has the IR fixed point at

g̃⇤ =
�
�
p1
2

�

⇡
p1
2 eC

"+O("2) . (4.11)

By mapping the perturbed DCFT (4.3) on Rd to a d-sphere Sd of radius R (see figure

(8)) and expanding the sphere partition function Z
(p1, ··· , pn)

⇣
�̃0

⌘
around �̃0 = 0, we obtain

log Z
(p1, ··· , pn)

⇣
�̃0

⌘
= log Z

(p1, ··· , pn)(0) +
�̃
2
0

2
I2 �

�̃
3
0

6
I3 +O

⇣
�̃
4
0

⌘
, (4.12)
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Argument from conformal perturbation theory

4.1 Conformal perturbation theory on sub-defect

We examine the validity of our conjecture in the conformal perturbation theory with slightly

relevant perturbation. The following argument is a slight modification of the previous works

in [15, 39, 104–106].

Let I(p1, ··· , pn)DCFT be the action of a CFT with a composite defect D(p1, ··· , pn), and consider

an RG flow localized on the sub-defect D(p1) of lowest dimensions:

I
(p1, ··· , pn) = I

(p1, ··· , pn)
DCFT + �̃0

Z
dp1 x̃

p
g̃ eO(x̃) , (4.3)

where eO(x̃) is a slightly relevant primary operator of dimension e� = pi � " with small " on

D
(p1), and �̃0 is the bare coupling at the UV cuto↵ scale µUV.6 The two-point function at

the unperturbed DCFT is normalized on Rd as

h eO(x̃1) eO(x̃2) i0 =
1

|x̃1 � x̃2|
2e�

, (4.4)

while the three-point function is fixed by the residual conformal symmetry on D
(p1) as7

h eO(x̃1) eO(x̃2) eO(x̃3) i0 =
eC

|x̃1 � x̃2|
e� |x̃2 � x̃3|

e� |x̃3 � x̃1|
e�

, (4.5)

where eC is a constant. It follows from the correlation functions that the OPE of a pair of the

local operator eO is

eO(x̃1) eO(x̃2) =
x1!x2

1

|x̃1 � x̃2|
2e�

+ eC
eO(x̃1)

|x̃1 � x̃2|
e�
+ · · · . (4.6)

Now consider a correlation function h · · · i of the perturbed DCFT on Rd and expand it

as a function of �̃0 as

h · · · i = h · · · i0 � �̃0

Z
dp1 x̃1 h eO(x̃1) · · · i0

+
�̃
2
0

2

Z
dp1 x̃1

Z
dp1 x̃2 h eO(x̃1) eO(x̃2) · · · i0 + · · ·

= h · · · i0 � �̃0

Z
dp1 x̃1 h eO(x̃1) · · · i0

+
�̃
2
0

2

Z
dp1 x̃1

Z
dp1 x̃2

eC
|x̃1 � x̃2|

e�
h eO(x̃1) · · · i0 + · · ·

= h · · · i0 � �̃(µ)

Z
dp1 x̃1 h eO(x̃1) · · · i0 + · · ·

(4.7)

6We use " for the slightly relevant perturbations to distinguish from ✏ for the ✏-expansion.
7
h eO(x̃) i0 stands for the vev of the local operator eO(x̃) at the unperturbed DCFT.
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where I2 and I3 are the two- and three-point connected functions in the unperturbed theory

integrated over the sub-defect D(p1),

I2 =

Z
dp1 x̃1

p
g̃

Z
dp1 x̃2

p
g̃ h eO(x̃1) eO(x̃2) i0 , (4.13)

I3 =

Z
dp1 x̃1

p
g̃

Z
dp1 x̃2

p
g̃

Z
dp1 x̃3

p
g̃ h eO(x̃1) eO(x̃2) eO(x̃3) i0 . (4.14)

To evaluate I2 and I3, it is convenient to use the stereographic coordinates of the d-sphere:

ds2Sd = (2R)2
P

d

µ=1(dx
µ)2

(1 + |x|2)2
. (4.15)

The stereographic projection can be seen as a conformal mapping from Rd to Sd, where a

planar defect D
(p1) located at x

i = 0 (i = p1 + 1, · · · , d) is mapped to a spherical defect of

radius R. The two- and three-point functions after the conformal map take the same forms

as (4.4) and (4.5), respectively, with |x̃1 � x̃2| replaced with the chordal distance s(x̃1, x̃2) =

2R |x̃1 � x̃2|/
p

(1 + |x̃1|
2) (1 + |x̃2|

2) on Sp1 . Substituting them into (4.13) and (4.14) and

performing the integration on Sp1 of radius R, we obtain

I2 = 22"⇡p1R
2" �

�
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p1
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�
�
�
p1
2

�

� (p1) �(")
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⇡
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�
⇡p1
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�
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,

I3 = 8⇡
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2 R
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�
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3"�p1

2

⌘

�(p1)�
�
"+1
2

�3 C̃ .

(4.16)

On the other hand, the bare dimensionless couplings are related by

�̃0 (2R)" = g̃ +
⇡

p1
2 eC

"�
�
p1
2

� g̃2 +O(g̃) , (4.17)

where g̃ = g̃(µ) and we choose the energy scale as µ = 1/(2R) while letting µUV ! 1 [105].

With this relation, it follows from (4.12) that the deviation of the sphere partition function

from that at the UV fixed point (g̃ = 0) is

� log Z
(p1, ··· , pn) (g̃) ⌘ log Z

(p1, ··· , pn) (g̃)� log Z
(p1, ··· , pn) (0)

=
2⇡p1+1

sin
�
⇡p1
2

�
�(p1 + 1)

"
�
"

2
g̃
2 +

⇡
p1
2 C̃

3�
�
p1
2

� g̃3 +O(g̃4)

#
.

(4.18)

Substituting the IR value of the dimensionless coupling (4.11) and recalling the definition of

the C-function (4.1), we find

C(g̃⇤)� C(g̃ = 0) = �
⇡ �

�
p1
2

�2

3�(p1 + 1)

"
3

C̃2
+O("4) , (4.19)

which is negative as is consistent with our sub-defect C-theorem conjecture.
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Let us consider the following deformation localized on the submost defect,

Adopting the Wilsonian renormalization procedure, we can find the 

renormalized coupling,
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Figure 8. The stereographic projection of Sd to Rd. A p-dimensional spherical defect D(p) is mapped
to a planar defect on Rd.
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By introducing the dimensionless couplings g̃(µ) = �̃(µ)µ�" and g̃0 = �̃0 µ
�"

UV, we obtain
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The beta function for the dimensionless coupling becomes

�(g̃) = µ
dg̃

dµ
= �" g̃ +
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2 eC

�
�
p1
2

� g̃2 + · · · , (4.10)

which, if eC > 0, has the IR fixed point at
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⇡
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2 eC

"+O("2) . (4.11)

By mapping the perturbed DCFT (4.3) on Rd to a d-sphere Sd of radius R (see figure

(8)) and expanding the sphere partition function Z
(p1, ··· , pn)

⇣
�̃0

⌘
around �̃0 = 0, we obtain

log Z
(p1, ··· , pn)

⇣
�̃0

⌘
= log Z

(p1, ··· , pn)(0) +
�̃
2
0

2
I2 �

�̃
3
0

6
I3 +O

⇣
�̃
4
0

⌘
, (4.12)

– 19 –

Rd

Sd
D

(p)

Figure 8. The stereographic projection of Sd to Rd. A p-dimensional spherical defect D(p) is mapped
to a planar defect on Rd.

where �̃(µ) is the e↵ective coupling at the energy scale µ:

�̃(µ) = �̃0 �
�̃
2
0

2

Z

µ
�1
UV<|x̃1�x̃2|<µ�1

dp1 x̃2
eC

|x̃1 � x̃2|
e�
+ · · ·

= �̃0 � �̃
2
0

⇡
p1
2 eC

"�
�
p1
2

�
⇥
µ
�"

� µ
�"

UV

⇤
+ · · · .

(4.8)

By introducing the dimensionless couplings g̃(µ) = �̃(µ)µ�" and g̃0 = �̃0 µ
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The beta function for the dimensionless coupling becomes
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By mapping the perturbed DCFT (4.3) on Rd to a d-sphere Sd of radius R (see figure

(8)) and expanding the sphere partition function Z
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around �̃0 = 0, we obtain
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Expressing in terms of the dimensionless parameter

Then the difference of the partition functions up to third order 

where I2 and I3 are the two- and three-point connected functions in the unperturbed theory

integrated over the sub-defect D(p1),

I2 =

Z
dp1 x̃1

p
g̃

Z
dp1 x̃2
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To evaluate I2 and I3, it is convenient to use the stereographic coordinates of the d-sphere:

ds2Sd = (2R)2
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µ)2

(1 + |x|2)2
. (4.15)

The stereographic projection can be seen as a conformal mapping from Rd to Sd, where a

planar defect D
(p1) located at x

i = 0 (i = p1 + 1, · · · , d) is mapped to a spherical defect of

radius R. The two- and three-point functions after the conformal map take the same forms

as (4.4) and (4.5), respectively, with |x̃1 � x̃2| replaced with the chordal distance s(x̃1, x̃2) =
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2) on Sp1 . Substituting them into (4.13) and (4.14) and

performing the integration on Sp1 of radius R, we obtain
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On the other hand, the bare dimensionless couplings are related by

�̃0 (2R)" = g̃ +
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� g̃2 +O(g̃) , (4.17)

where g̃ = g̃(µ) and we choose the energy scale as µ = 1/(2R) while letting µUV ! 1 [105].

With this relation, it follows from (4.12) that the deviation of the sphere partition function

from that at the UV fixed point (g̃ = 0) is

� log Z
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Substituting the IR value of the dimensionless coupling (4.11) and recalling the definition of

the C-function (4.1), we find

C(g̃⇤)� C(g̃ = 0) = �
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�
p1
2
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3�(p1 + 1)

"
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+O("4) , (4.19)

which is negative as is consistent with our sub-defect C-theorem conjecture.

– 20 –

This gives rise to the C-function

4.1 Conformal perturbation theory on sub-defect

We examine the validity of our conjecture in the conformal perturbation theory with slightly

relevant perturbation. The following argument is a slight modification of the previous works

in [15, 39, 104–106].

Let I(p1, ··· , pn)DCFT be the action of a CFT with a composite defect D(p1, ··· , pn), and consider

an RG flow localized on the sub-defect D(p1) of lowest dimensions:

I
(p1, ··· , pn) = I

(p1, ··· , pn)
DCFT + �̃0

Z
dp1 x̃

p
g̃ eO(x̃) , (4.3)

where eO(x̃) is a slightly relevant primary operator of dimension e� = pi � " with small " on

D
(p1), and �̃0 is the bare coupling at the UV cuto↵ scale µUV.6 The two-point function at

the unperturbed DCFT is normalized on Rd as

h eO(x̃1) eO(x̃2) i0 =
1

|x̃1 � x̃2|
2e�

, (4.4)

while the three-point function is fixed by the residual conformal symmetry on D
(p1) as7

h eO(x̃1) eO(x̃2) eO(x̃3) i0 =
eC

|x̃1 � x̃2|
e� |x̃2 � x̃3|

e� |x̃3 � x̃1|
e�

, (4.5)

where eC is a constant. It follows from the correlation functions that the OPE of a pair of the

local operator eO is

eO(x̃1) eO(x̃2) =
x1!x2

1

|x̃1 � x̃2|
2e�

+ eC
eO(x̃1)

|x̃1 � x̃2|
e�
+ · · · . (4.6)

Now consider a correlation function h · · · i of the perturbed DCFT on Rd and expand it

as a function of �̃0 as

h · · · i = h · · · i0 � �̃0

Z
dp1 x̃1 h eO(x̃1) · · · i0

+
�̃
2
0

2

Z
dp1 x̃1

Z
dp1 x̃2 h eO(x̃1) eO(x̃2) · · · i0 + · · ·
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(4.7)

6We use " for the slightly relevant perturbations to distinguish from ✏ for the ✏-expansion.
7
h eO(x̃) i0 stands for the vev of the local operator eO(x̃) at the unperturbed DCFT.
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4.2 Perturbative test in O(N) vector model with composite defects

In the last subsection, we gave a general argument for the validity of the conjectured sub-

defect C-theorem in terms of the conformal perturbation theory. In the current subsection,

we examine that by considering the O(N) vector model studied in section 3, where a line

defect is embedded inside a surface defect, i.e., p2 = 2 and p1 = 1. In particular, we study the

case where two line deformations which preserves the O(m)⇥O(N �m) internal symmetry

are turned on, giving rise to three non-trivial IR fixed points. Using the usual perturbative

approach, we can compute the C-functions (or the modified free energy) at all the IR fixed

points. Adapting the definition of the C-function, in (4.1), we have

C = ln
Z(h0, g0, g00)

Z(h0, 0, 0)
= C2 + C3 + C

0
3 + (higher order) , (4.20)

where we keep the terms up to third order in the couplings, C2 and C3 denote the quadratic

and cubic terms in the line couplings, while C
0
3 denotes the mixed term between the surface

and the line coupling. The contributions purely from the surface defect is subtracted from

the partition function in the denominator with only the surface defect turned on.
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Figure 9. The three diagrams for the contributions to the sub-defect C function up to the third order
of the couplings, C2 and C3 denote the quadratic and cubic terms in the line couplings, while C

0
3

denotes the mixed term between the surface and the line coupling.

Normally, we evaluate the partition function on Sd to get rid of the IR divergences.

However, the ratio between the partition functions gives the same result if we map Sd to Rd,

as the IR divergences and the conformal anomaly induced by the surface defect cancel. In

order to understand the localized RG flow on the line defect, a further map is required for

the evaluation. The line defect is mapped to a circle S1 of radius R while the surface defect

is kept as the plane R2, then separately each term gives
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Gathering all the terms and keeping up to third orders in the coupling, we can write the

perturbative result for the sub-defect C-function using the beta functions:
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where the beta functions �g and �g0 are defined as in (3.7) and (3.8) respectively. One

can check to this order that the C-function is stationary at the conformal fixed points in the

following sense that the variations with respect to the renormalized couplings are proportional

to the corresponding beta functions,
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Now we can compare the di↵erent fixed points using the modified sub-defect free energy. For

the O(N) preserving phase, the di↵erence between the trivial (P0) and non-trivial (P1) fixed

points is
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of which the leading order is positive for N > 4. This can be compared with the gen-

eral analysis in (4.19) using the conformal perturbation theory. For that we need to take
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which indicates that the UV/IR properties of the two O(N) fixed points exchanges depending

on whether m > N/2. One can also compare the fixed points between the O(N) symmetric

and O(N) broken phases, it turns out that the non-trivial O(N) symmetric fixed point is

always the most UV among the four fixed points.

– 22 –

Perturbative test in the d = 3 -ε model
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where we keep the terms up to third order in the couplings, C2 and C3 denote the quadratic

and cubic terms in the line couplings, while C
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3 denotes the mixed term between the surface

and the line coupling. The contributions purely from the surface defect is subtracted from

the partition function in the denominator with only the surface defect turned on.
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Normally, we evaluate the partition function on Sd to get rid of the IR divergences.

However, the ratio between the partition functions gives the same result if we map Sd to Rd,

as the IR divergences and the conformal anomaly induced by the surface defect cancel. In

order to understand the localized RG flow on the line defect, a further map is required for

the evaluation. The line defect is mapped to a circle S1 of radius R while the surface defect

is kept as the plane R2, then separately each term gives
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The conjectured sub-defect C-function for our model becomes

Diagrammatically,  

Comments: 

• Stationary around the fixed points, 

• Agrees with Local RG analysis, comparing the two O(N) symmetric 

fixed points
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Gathering all the terms and keeping up to third orders in the coupling, we can write the

perturbative result for the sub-defect C-function using the beta functions:
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where the beta functions �g and �g0 are defined as in (3.7) and (3.8) respectively. One

can check to this order that the C-function is stationary at the conformal fixed points in the

following sense that the variations with respect to the renormalized couplings are proportional

to the corresponding beta functions,
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Now we can compare the di↵erent fixed points using the modified sub-defect free energy. For

the O(N) preserving phase, the di↵erence between the trivial (P0) and non-trivial (P1) fixed

points is
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of which the leading order is positive for N > 4. This can be compared with the gen-

eral analysis in (4.19) using the conformal perturbation theory. For that we need to take
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normalization) C̃ = 8NC
3
��
/

⇣
2NC

2
��

⌘3/2
=

p
8/N . For the DCFT model to be unitary, as
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which indicates that the UV/IR properties of the two O(N) fixed points exchanges depending

on whether m > N/2. One can also compare the fixed points between the O(N) symmetric

and O(N) broken phases, it turns out that the non-trivial O(N) symmetric fixed point is

always the most UV among the four fixed points.
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Gathering all the terms and keeping up to third orders in the coupling, we can write the
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where the beta functions �g and �g0 are defined as in (3.7) and (3.8) respectively. One

can check to this order that the C-function is stationary at the conformal fixed points in the

following sense that the variations with respect to the renormalized couplings are proportional

to the corresponding beta functions,
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Now we can compare the di↵erent fixed points using the modified sub-defect free energy. For

the O(N) preserving phase, the di↵erence between the trivial (P0) and non-trivial (P1) fixed
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of which the leading order is positive for N > 4. This can be compared with the gen-

eral analysis in (4.19) using the conformal perturbation theory. For that we need to take
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8/N . For the DCFT model to be unitary, as

put before, N � 23, this suggests that the non-trivial fixed point is always more UV than the

trivial one, which is consistent with the local RG flow analysis. For the O(N) broken phase,

the di↵erence between the two fixed points gives
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which indicates that the UV/IR properties of the two O(N) fixed points exchanges depending

on whether m > N/2. One can also compare the fixed points between the O(N) symmetric

and O(N) broken phases, it turns out that the non-trivial O(N) symmetric fixed point is

always the most UV among the four fixed points.
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Future questions:

• Other models supporting conformal composite defects ? In d=4 - 

ε, there is still room for other combinations 

• Introducing bulk interactions ? 

• Proofs for the sub-defect C-theorems, perhaps for 1,2,4 

dimensions ?

[Jensen & O’bannon ’15] 

[Cuomo, Komargodski & Raviv-Moshe ’18] 

[Wang ’21]




