How to Falsify String Theory at a Collider

Jonathan J. Heckman

University of Pennsylvania

Based On

hep-ph/2412.13192: w/ Baumgart, Christeas, Hicks

Of course it is.

EFTs via String Theory

From https://physics.aps.org/articles/v12/115

Q1: Is string theory verifiable?

Q1: Is string theory verifiable?

Q2: Is string theory falsifiable?

Q1: Is string theory verifiable?

Q1: Is string theory verifiable?

A1: On the right track; successes include:

- Long distance limit: GR + QM
- Many contributions to quantum gravity
- Motivated BSM scenarios
- Many QFT insights (esp. at strong coupling)

QQ1: So what should experimentalists look for?

QQ1: So what should experimentalists look for?

AA1: Perhaps too early to say, but...

• string-motivated pheno scenarios

• • • •

Q2: Is string theory falsifiable?

Q2: Is string theory falsifiable?

AA2: Perhaps too early to say, but...

- pheno scenarios which can't be realized
- $\Lambda_{cc} > 0$ (somewhat controversial)
- ¿¿¿Concrete collider scenarios???

Q2: Is string theory falsifiable?

AA2: Perhaps too early to say, but...

- pheno scenarios which can't be realized
- $\Lambda_{cc} > 0$ (somewhat controversial)
- ¿¿¿Concrete collider scenarios???

A String-Killer Scenario

Take the Standard Model and add ONE new field:

$$\mathcal{L}_{\text{BSM}} = \mathcal{L}_{\text{SM}} + \frac{1}{2}\overline{\chi}(i\gamma^{\mu}D_{\mu} - M)\chi$$

$$\chi = \chi^C$$
 in real $n \geq 5$ -dim rep of $SU(2)_L$

Not realized in ANY string scenario?!?!

Plan of the Talk

- Strings \cap "just *n*-plet" = {} (very likely)
- Pheno of the "just *n*-plet" scenario
- Experimental Limits
- Summary / Future

Plan of the Talk

- Strings \cap "just n-plet" = {} (very likely)
 - Pheno of the "just n-plet" scenario
 - Experimental Limits
 - Summary / Future

Strings \cap "just n-plet" = $\{\}$

Open Strings

Open Strings

Standard Model

Gauge Group: $SU(3)_C \times SU(2)_L \times U(1)_Y/\Gamma$

Matter in *small* reps:

	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_Y$
L	1	2	-1/2
e_R	1	1	-1
Q	3	2	1/6
$ u_R $	3	1	2/3
d_R	3	1	-1/3

Standard Model

Gauge Group: $SU(3)_C \times SU(2)_L \times U(1)_Y/\Gamma$

Matter in *small* reps:

	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_Y$
L	1		-1/2
e_R	1	1	-1
Q			1/6
$ u_R $		1	2/3
d_R		1	-1/3

Min. Quiver Standard Model

Berenstein Pinansky '06; many stringy quiver SMs

Strings & Quivers

One- & Two-Index Reps

Gauge Groups: SU(N), SO(N), Sp(N)

Representations:
$$\square$$
 \square \square \square \square

5-plet of
$$SU(2)$$
???

(Note: $SO(3) \neq SU(2)...$)

Open Strings

Closed Strings

Bound States

Heterotic Strings

A Common Model Building Route: E_8 Vector Bundles Approach of Candelas Horowitz Strominger Witten '85

$$E_8 \supset SU(5)_{\text{GUT}} \times SU(5) \supset SU(3) \times SU(2) \times U(1)/\mathbb{Z}_6 \times ...$$

$$248 \to (24,1) + (1,24) + (5,10) + (\overline{5},\overline{10}) + (10,\overline{5}) + (\overline{10},5)$$

Aldazabal Font Ibanez Uranga '94; Dienes Faraggi March-Russell '95; Dienes March-Russell '96; Dienes '96; ...

Free Fermion Models

An Older Route: Higher Kac-Moody Levels?!

$$SU(2)_k : c = \frac{3k}{k+2}$$

Spin-j primary:
$$h_j = \frac{j(j+1)}{k+2}$$

Massless: h = 1; Tachyon: h < 1

Dressing: $\mathcal{O}_{\text{full}} = \mathcal{O}_j \mathcal{O}_{\text{extra}}$

Success?

Spin-j primary:
$$h_j = \frac{j(j+1)}{k+2}$$

$$j=2, k=4 \Rightarrow h_j=1!$$

No Success

Spin-j primary:
$$h_j = \frac{j(j+1)}{k+2}$$

$$j=2, k=4 \Rightarrow h_j=1!$$

But...

 $l < j \Rightarrow h_l < h_j$. What about Spin-l states???

Very hard to remove these!!! (proof?)

Can Strong Coupling Help?

n-plet as a composite object?

$$\chi_{\text{m}} \sim \frac{1}{\Lambda_{\text{new}}^{11/2}} \psi_{\text{o}} \psi_{\text{o}} \psi_{\text{o}} \psi_{\text{o}} \psi_{\text{o}}$$

$$\Lambda_{
m IR}$$
 $\Lambda_{
m new}$

Example

Example

Example

Example

$$i\chi_{i_1...i_N} \sim \varepsilon_{g_1...g_N} \psi_{i_1}^{g_1}...\psi_{i_N}^{g_N}$$
?

Generic Issue: Pions!

$$\xi \chi_{i_1...i_N} \sim \varepsilon_{g_1...g_N} \psi_{i_1}^{g_1}...\psi_{i_N}^{g_N}?$$

$$\pi_i^j \sim \psi_i^g \widetilde{\psi}_g^j$$
 (generically lighter!)
(c.f. QCD inequalities)

Weingarten '83; Vafa Witten '84; + many

Stringy Routes to Matter

???

¿Just n-plet Scenario?

• Not in known string landscape

• Very difficult to build contrived models

• Sharp No-Go Theorem for all possibilities?

• Scenario is bad news for strings

¿Just n-plet Scenario?

• Scenario is bad news for strings

Plan of the Talk

• Strings \cap "just n-plet" = {} (very likely)

- ullet Pheno of the "just *n*-plet" scenario
 - Experimental Limits
 - Summary / Future

Pheno of "just n-plet"

Just n-plet Scenario

Take the Standard Model and add ONE new field:

$$\mathcal{L}_{\rm BSM} = \mathcal{L}_{\rm SM} + \frac{1}{2}\overline{\chi}(i\gamma^{\mu}D_{\mu} - M)\chi$$

$$\chi = \chi^C$$
 in real $n \geq 5$ -dim rep of $SU(2)_L$

Pheno Motivation

• Falsifying String Theory?!

• Minimal Dark Matter (n = 5)

• Dark Matter Scenarios with n > 5

• Why not?

Minimal Dark Matter

Marco Cirelli^a, Nicolao Fornengo^b, Alessandro Strumia^c.

- ^a Physics Department, Yale University, New Haven, CT 06520, USA
 - b Dipartimento di Fisica Teorica, Università di Torino and INFN, Sez. di Torino, via P. Giuria 1, I-10125 Torino, Italia
 - ^e Dipartimento di Fisica dell'Università di Pisa and INFN, Italia

Abstract

A few multiplets that can be added to the SM contain a lightest neutral component which is automatically stable and provides allowed DM candidates with a non-standard phenomenology. Thanks to coannihilations, a successful thermal abundance is obtained for well defined DM masses. The best candidate seems to be a SU(2)_L fermion quintuplet with mass 4.4 TeV, accompanied by a charged partner 166 MeV heavier with life-time 1.8 cm, that manifests at colliders as charged tracks disappearing in π^{\pm} with 97.7% branching ratio. The cross section for usual NC direct DM detection is $\sigma_{\rm SI} = f^2 \, 1.0 \cdot 10^{-43} \, {\rm cm}^2$ where $f \sim 1$ is a nucleon matrix element. We study prospects for CC direct detection and for indirect detection.

1 Introduction

The Dark Matter (DM) problem calls for new physics beyond the Standard Model (SM). Its simplest interpretation consists in assuming that DM is the thermal relic of a new stable neutral particle with mass $M \sim T_0^{1/2} G_N^{-1/4} \sim \text{TeV}$ where $T_0 \sim 3 \, \text{K}$ is the present temperature of the universe and G_N is the Newton constant. Attempts to address the Higgs mass hierarchy

Minimal Dark Matter

Marco Cirelli^a, Nicolao Fornengo^b, Alessandro Strumia^c.

- ^a Physics Department, Yale University, New Haven, CT 06520, USA
 - b Dipartimento di Fisica Teorica, Università di Torino and INFN, Sez. di Torino, via P. Giuria 1, I-10125 Torino, Italia
 - e Dipartimento di Fisica dell'Università di Pisa and INFN, Italia

Abstract

A few multiplets that can be added to the SM contain a lightest neutral component which is automatically stable and provides allowed DM candidates with a non-standard phenomenology. Thanks to coannihilations, a successful thermal abundance is obtained for well defined DM masses. The best candidate seems to be a SU(2)_L fermion quintuplet with mass 4.4 TeV, accompanied by a charged partner 100 MeV neavier with ine-time 1.8 cm, that manifests at colliders as charged tracks disappearing in π^{\pm} with 97.7% branching ratio. The cross section for usual NC direct DM detection is $\sigma_{\rm SI} = f^2 \, 1.0 \cdot 10^{-43} \, {\rm cm}^2$ where $f \sim 1$ is a nucleon matrix element. We study prospects for CC direct detection and for indirect detection.

1 Introduction

The Dark Matter (DM) problem calls for new physics beyond the Standard Model (SM). Its simplest interpretation consists in assuming that DM is the thermal relic of a new stable neutral particle with mass $M \sim T_0^{1/2} G_N^{-1/4} \sim$ TeV where $T_0 \sim 3 \,\mathrm{K}$ is the present temperature of the universe and G_N is the Newton constant. Attempts to address the Higgs mass hierarchy

Minimal Dark Matter

Marco Cirelli^a, Nicolao Fornengo^b, Alessandro Strumia^c.

- ^a Physics Department, Yale University, New Haven, CT 06520, USA
 - b Dipartimento di Fisica Teorica, Università di Torino and INFN, Sez. di Torino, via P. Giuria 1, I-10125 Torino, Italia
 - ^e Dipartimento di Fisica dell'Università di Pisa and INFN, Italia

Abstract

A few multiplets that can be added to the SM contain a lightest neutral component which is automatically stable and provides allowed DM candidates with a non-standard phenomenology. Thanks to coannihilations, a successful thermal abundance is obtained for well defined DM masses. The best candidate seems to be a $SU(2)_L$ fermion quintuplet with mass 4.4 TeV, accompanied by a charged partner 100 MeV

Thermal relics $\Rightarrow 13.6 \text{ TeV}...$

Mitridate Redi Smirnov Strumia '17 Bottaro Buttazzo Costa Franceschini Panci Redigolo Vittorio '22 Baumgart Rodd Slatyer Vaidya '23

-e

Focus: n = 5, 7, 9

Main Requirement: α_2^{-1} still perturbative

$$\frac{d\alpha_2^{-1}}{d\log\mu} = \frac{19/6}{2\pi} - \frac{1}{2\pi} \frac{(n+1)!}{(n-1)!3!}$$

Require $\Lambda_{\rm Landau} \gtrsim 5M \Rightarrow n \leq 9$

Enter the *n*-plet

 χ transforms in Symⁿ⁻¹ (fund)

Electric Charge: $U(1)_z \subset SU(2)_L$

$$\chi^{Q_{\text{max}}}, ..., \chi^{+}, \chi^{0}, \chi^{-}, ..., \chi^{-Q_{\text{max}}}$$

$$Q_{\max} = \frac{n-1}{2}$$

Enter the 5-plet

 χ transforms in Sym⁴ (fund)

Electric Charge: $U(1)_z \subset SU(2)_L$

$$\chi^{++}, \chi^{+}, \chi^{0}, \chi^{-}, \chi^{--}$$

$$Q_{\text{max}} = 2$$

Mass Splittings

$$M_Q - M_{Q'} \sim (Q^2 - Q'^2) \times 166 \text{ MeV}$$

 $\chi^{(0)}$ is the lightest state!

Decays

$$M_Q - M_{Q'} \sim (Q^2 - Q'^2) \times 166 \text{ MeV}$$

$$M_{\pi^{\pm}} \sim 140 \; \mathrm{MeV}$$

$$\tau(\chi^+ \to \chi^0 \pi^+) \sim \frac{44 \text{ cm}}{n^2 - 1} \sim 1 - 3 \text{ cm}$$

Example Process

Disappearing Tracks (ATLAS)

*SCT = Semiconductor Tracker

Improved Searches

Higher Luminosity LHC won't help that much...

Direct / Indirect DM Detection

"Precision" α_2 Measurements?

Muon Collider / FCC?

FUTURE LIMITS

1711.05499: S. Matsumoto, S. Shirai, M. Takeuchi

Stringent future constraints from modified Drell-Yan

(Courtesy of M. Baumgart)

Summary / Future

What Was This Talk About?

- Strings \cap "just n-plet" = {} (very likely)
- Recast wino limits for n = 5, 7, 9

- No-go theorem for perturbative strings?
- Other "string-killer" scenarios?