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Introduction

What is a black hole?

e solution of the Einstein equation
1

Ry — QRQ‘V +Agy, =0

e "a region
of space in which the gravitational
field is so powerful that nothing,
including electromagnetic radiation
(e.g. visible light), can escape
its pull after having fallen past its
event horizon” (from Wikipedia)

e [t seems to exist in our universe!



Introduction Kerr-Newman-(A)dS ASG and B.C EBH/CFT RN-AdS Summary

0O@0000000 00000000 000000000000 000000 [e]e]e} [e]e]e}

Hawking temperature

Consider a Schwarzschild black hole

dr? 2
ds? = - l——dt2+ pm) +r°dQ;5
1-— M

Near the horizon r = 2M + p?/8M (and after changing t — —it)

ds’ = dT +do? + (2M)2dQ3

To avoid a conical singlurality at p = O, we obtain the Hawking

temperature
1 1

U Ty = ——
Tt I H = 8rM

Then, we can consider the thermodynamics of the black holes!
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Black hole horizon and Entropy

If a small mass dM is added to the black hole, the entropy
increases

dMm
dSgH = — = d(4rM?) =  Sgy = 1(2M)?
H
Then the black hole has an entropy given by the
Bekensteln'HaWklng area laW (Hawking ‘74, Bekenstein '73)

Area(Horizon)

SeH = 7

This law is appliciable to the other black holes including Kerr
and Reissner-Nordstrom black holes
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How to interpret black hole entropy?

Naively, 2
e Black hole is P %

“one particular” solution
in general relativity
e Entropy is Bleck Hele
defined as log(degeneracy)
e Spgy=07??

- S

We
cannot see inside the black hole
= Is there fundamental degrees of freedom inside it?

e it is mysterious that the entropy is proportional to the area
of the black hole, not its volume

e its (microscopic) origin remains to be fully understood
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Various approach

For specific case, there are several explanations

° Courltll’lg BPS States (SUSY BH) (Strominger-Vafa "96)

° AttraCtOI' meChanlsm (EXtremal) (Ferrrara-Kallosh-Strominger ‘95, Sen 05

Goldstein-lizuka-Jena-Trivedi '05)
° Ang/CFTz (BTZ) (Strominger '97)
e Near horizon symmetry (carip 95 )
e OSV conjecture Zgy = |Ztc,p|2 (Ooguri-Strominger-Vafa '04)

L] Entanglement el’ltI‘Opy (EXtremal) (Azeyanagi-TN-Takayanagi '07)

Remarkably, the extremality plays an important role even
though the approaches are quite different
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The Kerr/CFT correspondence

Recently, a new duality called the Kerr/CFT correspondence
was proposed between the extreme Kerr black hole in
four-dimension and a two-dimensional CFT

(Guica-Hartman-Song-Strominger '08)

The prescription to obtain the dual CFT is

@ take the near horizon limit of the extremal Kerr black hole

® determine the asymptotic "boundary condition” in order
that the ”Virasoro” algebra appears

® evaluate the central charge c of this Virasoro algebra

O define the dual temperature T, analogous to the
Hartle-Hawking vacuum
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Sketch of the folowing discussion

Boundary Condition

The boundary
condition determines the
family of the geometries

Lg~0
& © Asymptotic Symmetry Group

We require
e ASG includes
the Virasoro algebra
(not too strong)

e Conserved charge is
finite (not too week)




Introduction
000000000

Purpose

We will see that the statistical entropy computed by using the
Cardy formula agrees with the black hole entropy
72
ScrT = ECTL = SgH

We can obtain the (in a sence) microscopic interpretation of the
black hole entropy

The natural question is

Why Kerr ? Can we apply this strategy to more general
black holes ?

The answer is yes, and we can construct the dual CFT thanks

to the extremality
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Generalization to Kerr-Newman-(A)dS black hole

To illustrate the construction of the dual CFT to the extremal
black hole, we consider the Kerr-Newman-(A)dS black hole

This is the most general solution in the four-dimensional
Einstein-Maxwell theory

1 . 6 1_,
S_Efdx\/_g(R+ﬁ ZF)

Notice that

e Once we set the electric and magnetic charges to zero, we
obtain the Kerr black hole

e Also we obtain the Reissner-Nordstrom black hole in the
limit of zero angular momentum
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Kerr-Newman-(A)dS black hole
The metI'lC IS gIVen by (Caldarelli-Cognola-Klemm "99)
A (.~ a . N2 P2
d = - (dt ~ 2 9d¢) + P2
p flalt Ar
2 Ng . . f2+a? . 2
+ P de? 4 —29 S|n29(adt - d¢>)
Ay Ie,
with
22 2 P2 ) a’
A =(F +a)(1+€—2)—2Mr+q , Agzl—ﬁcosze,
2
p?=f?+afcofh, E=1-— o = g+

Summary
[e]e]e}
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Thermodynamic quantities

The angular velocity of the horizon and the entropy are

[1]

a r? +a?

= —) =7
(r§ +a?)

— K
—

- a a(l+r2/6%)

r2 +a2
The Hawking temperature is
Cre(L+a?/e? + 32 /02 — (a2 + o) /r?)
- A (r? + a?)

The physical mass, angular momentum, and electric and
magnetic charges are

Mapm =

[I]| =

b
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Gauge field

Now we consider the Einstein-Maxwell theory, there is a
gauge field

The gauge field and field strength are

- 2
Ao el (dt asm20d¢) qmc;asa( ad - 2+ a d¢)
p? = p
A _ 2 ~
o Qe(f?-a cos?i) + 20mfa cosy (df asm2 d¢) N
o =
02 _ .2 _om £ 2 )
. gm(f? — a? cog i) 20efa cosd Sinada A (adf— F2 ta d¢)
Yo, =
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Extreme limit

In the extreme limit (Ty — 0), the inner and outer horizons
degenerate to a single horizon at r.,

The extremality condition is

22 = rA(L+3r2/0%) -

1-r2/¢2
@+ 12672 - o7
- 1-12/¢2

M

and the entropy at extremality is

m(2r4 /6?2 + 2r2 — )

S(Th = 0) =
T =0= 1% e st mr @
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Near horizon limit
To take the near horizon limit, we introduce new coordinates

(Bardeen-Horowitz '99)

F=r,+efor, f=tro/e, b=0¢+Qy—
€

In the limit of € — 0, the metric becomes

2
ds =TI(6)|-r?de + O:—rz + (0)d6?| + y(6)(d¢ + krdt)?

where
22 .
and we have defined
P2 =r2+alcodh, ri= (rf + &)1 - 12/ %) (o 2anErg

1+6r2/2-3r4/04 — /2" (r2+a2)?
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Near horizon limit: gauge field

The field strength becomes
F = f(O)kdr A dt+ (6)(d6 A do + krdd A dt)

and the near horizon gauge field is

|A= f(6)(dg + krd) |

with

(r? + @)[0e(r? — a®cog ) + 2gmar, cosd]
2=ar,

f(0) =
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Isometry

e The Kerr-Newman-(A)dS black hole has the complicated
metric

e But it becomes fairly simple form once we take the near
horizon limit of the extremal black hole

e The isometry is U(1) x SL2,R) (U(1) : ¢, SL2,R) : AdS;
part)

We will calculate the central charge for this general form for
simplicity

Surprisingly, this simple form appears as the near horizon
limit of the extreme black hole in the fairly general gravity
theory as we will see later
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Asymptotic Symmetry Group and Boundary
Conditions

The asymptotic symmetry group (ASG) of a spacetime is

e A symmetry which obeys the boundary conditions in the
diffeomorphism
2 r2 2 arz 2,
Example: AdS3 ds = —(l + |_2)d + r% + |—2d¢
|
Choose the boundary COI‘Idlthl’l AS (Brown-Henneaux '86)

1 1r2 1 J

1/r2 1/r?
1

hy ~O

e This allows the BTZ black hole
e The ASG is SL(2,R). x S (2, R)r Virasoro algebras
e The central charges are ¢, = cr = 3l/2
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How to choose boundary conditions?

For the general form

ds?
A

2
r'(6) |-r?dt + O:—rz + (0)d6? | + y(6)(d¢ + krdt)?

£(6)(d + krdt)

we choose the boundary condition by demanding that
e the ASG includes the Virasoro algebra
e the charges is finite

like the Brown-Henneaux’s case

The appropriate boundary conditions determine the family of
the geometries in which the charges are finite
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Boundary conditions

Such a boundary condition is (in the basis (t, ¢,6,r))

r2 1 1r 1/r?

1 1/r 1r
My ~ O r 1/r?
1/r8

For the gauge field we impose the boundary condition
a, ~O(r, 1/r,1,1/r% .

(This condition is important to obtain the Virasoro symmetry
uniquely)
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ASG

The most general diffeomorphisms which preserve the
boundary conditions are

e = €(¢)dy — €' ($)0r

The gauge field transforms under /. as
6.A = fe'(dg — krdt)

This does not satisfy the boundary condition, so we must add
a compensating U(1) gauge transformation to restore

5As = O(1/r)

A= -T09)]

Under the combined gauge + diffeomorphism transformation,

A = —kr F(6)€ (¢)dt — £/(6)e(#)do
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Conserved charge

We focus on the Einstein-Maxwell theory. There are two
symmetries under which the action is invariant

e Diffeomorphism: 6,0y = LeQu, 6:A = LA,
e U(1) gauge symmetry: 6pAA, = 0,A

The associated charge Q,  is defined by

_ 1 gravy,. gaug
6Qea = §L(k§ [h; o] + K3 9Th, a; g, A])

where we denote the infinitesimal field variations by a, = §A,
and hy, =69,
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Conserved charge

The contribution from the Einstein action is (Barmich-Brandt 01)
1
kgrav[h gl = eaﬁw[g D*h - "D N + £, D"
1 1
+ EhD"g’” - D, + éh‘”’(D“g’U + Ds2M)]dXT A dx?
The Maxwell CO].’ItI‘lbuthl’l 1S (Barnich-Compere '05)

ke Y166, 6] = eaﬁpv[(——hF”” +2Fh ) — SF)(ZPA, + A)
- F’”e’pap — 2F™ 3, — (LA + 8V A)]|dX A A

where 6F* = 9P (0,85 — 0g3a) (00 = 6(Quv> Au) = (Nuy, &)
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Conserved charge

The algebra of the ASG is the Dirac bracket algebra of the
charges themselves

{Qca- Qzi)oB = (67 + 6X)Qza
= Qqea) ¢ &y + (central term)

(central term) = 81 f (kgrav[.ﬂgg gl + kgaugs[.ﬁgg, .[ZgA+ dA; g, A])

where (g, A_\) denote the background solution

The central term give us the central charge for dual CFT as we
will see in the following
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Virasoro algebra

We expa_nd the arbitrary function e(¢) by the fourier mode
€ = —e"¢ and define

¢n = Len An = A(e = &)

Combining the diffeomorphism and gauge transformation as
(¢n» An), this becomes the Virasoro algebra

i[(Zns An)s (&ms Am)] = (0 = M)(Znrms Antm)

without the central charge

But when we calculate the Dirac bracket between the
symmetry generators Q; a, we will obtain the central charge
from the central term
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Central charge

The Dirac brackets between symmetry generators are

{Qz.n> Qz 108 = 1Qy, A)(2.A)]

- = f dode “(ﬁ)(g)(g) (r(e)e’z" +¥(0)e€ + F(O) [A + F(O)e] &

gravity gauge

—(e,A o €, /~\))

The algebra of the ASG is the Virasoro algebra generated by
(4n, An) with charges Q,

{Qm, Qnlpe = (M= N)Qmin + 1£2(m3 — BM)dmeno

where B is a constant that can be absorbed by a shift in Qg
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Central charge

The central charge has contributions from k9" and k9249¢

C = Cyrav t Cgauge

We find

o = 3¢ [ 40 V@)

Cgauge= 0

For the Kerr-Newman-(A)dS black hole

12r, \/(Srﬁ/fz +12 — ) (1-r2/2)
C 1+ 6r2/2 3404 — g2/ L2
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Temperature

The extremality constraint requires that any fluctuations
satisfy

0=TwdS = dMapm — (QndJ + Ped Qe + P d Q)
For such constrained variations we may write

L, 4Q  dQm
dlgr =dS = TL Te T
Like GKP-W relation, we identify the density matrix of the
bulk with that of the boundary

Pgravity = PCFT

—|
Pgravity = € ¥, PpCET =€ TL Te Tm

Then we obtain the temperature T of dual CFT
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Entropy
For Kerr-Newman-(A)dS case
B (L+6r2/02 - 3r4 /6% — ?/2)[2r2 (L + 12 /%) — ¢
- 4rr [(1+12/02)(1 - 3r2/6?) + @/ 2] (1 - 12/ 2)Bri /€2 + 12 — @)

Assuming the Cardy formula, we obtain the statistical entropy
of the CFT
n® n(2rd /62 + 2r% — )

S = —cCT. =
T T BTN T I 2 3t eh ez

This agrees in precise with the Bekenstein-Hawking entropy of
the Kerr-Newman-(A)dS black hole!

Notice that the temperature is rewritten as the surprisingly
simple form

1
T = —
L= 2nk
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The Extreme Black Hole/CFT correspondence

We treated the KNAdS black hole as the following general
form

2
ds =TI(6) [—rzdtz + dr—rz + (0)d6?| + y(6)(d¢ + krdt)?

It was shown that the above form is obtained as the near
horizon geometry of the extremal black hole constructed in the
fOHOWlng aCthn (Kunduri-Lucietti-Reall "07)

1 1 1
S= 16 [ AXVBR 5 el ® - V(x) - 380 (0FLF)
+ % fhu(X)Fl A FJ
The near horizon scalar fields and gauge fields have the form

=20, A = f'(0)(de + krdb)
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Construct dual CFT
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The Bekenstein-Hawking entropy of such a black hole is

Syav= [ VE@NE)

We would like to explain the black hole entropy as the
statistical entropy of dual CFT
e the calculation of the central charge is the same as before

e but we must take the contribution of the non-gravitational
part such as the scalar fields into account

We derive the expression for the conserved charges of the
general action following the (improved) covariant phase
method (Wald "93, Iyer-Wald '94, Barnich-Compere '07)



Introduction Kerr-Newman-(A)dS ASG and B.C EBH/CFT RN-AdS
000000000 00000000 000000000000 00e000 000

Conserved charge
The final resuts are
1 1
grav _ _ = (4D-2 VIHR _ &Y o VIO T Ve v 4
k= x)w{.f V= £V 4 £, VI 4 SHV S — 1Y ¢
1
ZheY(VH u
+ (Ve + V.8
Kn = o @ 20|~ KantF¥ o + 2k (0 F
~Ka(OF* — 2k (P J(ae + A"
— ki () F™a e — 26k (x)F " a)
— Ka(0a" g (LA, + 9,0
kiR = Targ 0% A X (aG)F;, 00" + hu()sFy, (A + A')
— 2hyy ()l V, (Al + AJ)] ,

k’;_f 871G (dD ZX)/JV fv fAB(/\/)VlJ 85/\/
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Central charge

We can calculate the central charge as before

e In KNAJS case (or the Einstein-Maxwell theory), we
checked that the gauge field does not contribute to the
central charge

e Remarkably, even in the presence of the non-gravitational
fields, the central charge is always given by o appear)

¢ = Gy = 3 [ 0T D

as before
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Entropy
We saw that the temperature of the KNAJS is given by
T 1
L= =
2nk

This does not depend on the specific form of the metric, then
we naively apply this formula to the general cases!

Using the Cardy formula

2

ScrT = ?CgravTL

n (" Area(horizon)

> do T (0)a(8)y(0) = —
0

in agreement with the Bekenstein-Hawking entropy!

IRecently, this conjecture has been checked in five-dimensinal case
(Chow-Cvetic-Lu-Pope)
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Relation to higher dimension

¢ The four-dimensional action we study is very general in
its own right (but we exclude the non-abelian gauge field)

* Once we reduce the higher dimensional action by torus
compactification, it always takes that form

¢ The interesting example is that we can explain indirectly

the entropy of the nontrivial solutions such as the black
rings and saturns in five-dimension
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Reissner-Nordstrom-AdS black hole: limit of KNAdS

In the limit of J — 0 of the Kerr-Newman-AdS black hole, we
obtain the Reissner-Nordstrom-AdS black hole, and reproduce
the Bekenstein-Hawking entropy

_ 2
SRN—ﬂ'I’+

This is a satisfactory result, but we should notice the subtleties
e the central charge approaches zero
e the temperature goes to infinity

e these singular behaviors cancel against each other to
reproduce the finite entropy

Below we propose a dual description which does not require a
singular temperature and central charge
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Another description: embedding into 5D space

We assume that we can embed the Kerr-Newman-AdS black
hole into 5D space by combining the U(1) gauge bundle with
the geometry as

ds’ = dsgy, + (dy + A)?

We shift a gauge field A as follows in order to choose it
non-singular in the a — 0 limit

Qel +
A—- A 3 d¢

Settinga =0
r2
A = Ger 2 dt + G COSHd)
r

+
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Another description: entropy

Once we embed the RN black hole into 5D dimension
e choose boundary conditions appropriately
e the Virasoro algebra from the gauge fiber direction

(Y = e)ay — e () .
e we can calculate its central charge similar to 4D case
Co) =60 (7 = rolao)

e the temperature conjugate to the electric charge is defined
by TedS = dQe and we find

r2

Te =
e Zﬂqefg

¢ Using Cardy formula

7T2 2
ScFt = Ec(y)Te =nary = SgH



Summary

e The entropy of the Kerr-Newman-(A)dS black hole is
reproduced as the statistical entropy of dual CFT

e If we assume the formula for the temperature of CFT, we
can apply this idea to the fairly general four-dimensional
extremal black holes

e The Reissner-Nordstrome black hole also can be treated,
but there is a dual description by embedding it into 5D
space

Summary
®00
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Futher generalization

We can generalize the Kerr/CFT correspondence to the
hlgher dlmenSlon (Lu-Mei-Pope, Azeyanagi-Terashima-Ogawa, Nakayama,

Chow-Cvetic-Lu-Pope "08)

Summary
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There are several cycles along which we can construct the

Virasoro algebra
The Central Charge is eXaCtly (Compere-TN-Murata, to appear)

3K;
G = 26N

Areahorizon

The temperature associated with i-th cycle is

1

Ti:27'[_ki

The entropy of the “general” extreme black hole in five
dimension can be interpreted as that of dual CFT
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Open problem

e We can explain the entropy of the extremal black holes by
the Cardy formula in dual CFTs

e but we don’t know the complete spectrum of dual CFT
which accounts the statistical entropy

e It is important to embed the extremal black holes into the
string theory in order to understand the CFTs

(Azeyanagi-Ogawa-Terashima "08)
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