Comparing Hydrodynamic Models with Observations of Type II Plateau Supernovae

Melina Cecilia Bersten

IPMU, 2011 February 1st

Outline

Introduction

- Hydrodynamical Code
- Data Sample: Bolometric Corrections
- Analysis of our Sample of SNe II-P

Supernovae

- **Solution** Kinetic energy: $\sim 10^{51}$ erg = 1 foe = 1 B
- **P** Radiated energy: 1-10% E_k during weeks/months (~ $10^{10}L_{\odot}$)
- Velocities: $v_{exp} \sim 10^4 \text{ km s}^{-1} \Rightarrow \sim 10^5 \text{ R}_{\odot}$ (few weeks)
- Temperature: $\sim T_{\odot} \Rightarrow R = (L/L_{\odot})^{1/2} R_{\odot} \sim 10^5 R_{\odot}$ (few weeks)

SN 1987A

Supernova Classification

Type II-P Supernovae

- Spectroscopy: prominent P-Cygni Balmer lines
- **Photometry**: long plateau phase (L \sim const. for \sim 100 days)
- Spectropolarimetry: explosion approximately spherical
- Most common type of SN (59% of CCSNe)

Type II-P Supernovae

- Good distance indicators
 - Expanding photospheric method (EPM)
 - Spectral fitting expanding atmosphere method (SEAM)
 - Standard candle method (SCM)
- Connection with final stages of stellar evolution

Physical properties of the progenitor

SN II-P Progenitors

- Wide range of plateau luminosity (L_p), plateau durations (Δt_p) and expansion velocities (v_p) \implies Different progenitors properties
- Light curve + spectral modelling $\implies M_{\rm ej}, R$, $E_{\rm exp}$ and $M_{\rm Ni}$
- Pre-supernova imaging + stellar evolution models $\implies M_{\text{ZAMS}}$

Type II-P Supernovae

- Good distance indicators: EPM, SEAM and SCM
- Connection with final stages of stellar evolution Physical properties of the progenitor:
 - Red supergiant structure with H-rich envelope (Van Dyk et al. 2003)
 - Stellar evolution: M_{ZAMS} : 8 25 M_{\odot} (Heger et al. 2007)
 - Pre-SN imaging: M_{ZAMS} : 8 17 M_{\odot} (Smartt et al. 2009)
 - Hydrodynamical modelling favors high mass range (Utrobin & Chugai 2008)
- Availability of a large of SN II-P

Sample of SNe II-P

- ~30 nearby SNe II-P: Calán/Tololo, SOIRS and CATS (1986-2003)
- High-quality, well-sampled BVRI light curves and spectra
- The CSP is providing even more objects (\sim 80 SNe II-P)

Type II-P Supernovae

- Good distance indicators: EPM, SEAM and SCM
- Connection with final stages of stellar evolution Physical properties of the progenitor:
 - Red supergiant structure with H-rich envelope (Van Dyk et al. 2003)
 - Stellar evolution: M_{ZAMS} : 8 25 M_{\odot} (Heger et al. 2007)
 - Pre-SN imaging: M_{ZAMS} : 8 17 M_{\odot} (Smartt et al. 2009)
 - Hydrodynamical modelling favors high mass range (Utrobin & Chugai 2008)
- Availability of a large data of SN II-P
- Development of our own code to compare with our database of SNe II-P

Code

Theoretical model of LC \implies numerical integration of the hydrodynamic equations + radiative transfer

Assumptions:

- Spherically symmetric explosion \implies One-dimensional code
- Diffusion approximation with flux-limited prescription
- Computation of shock wave using an artificial viscosity term
- Explosion simulated by a sudden release of energy near the core
- Energy released by radioactive decay

Equations

$V = \frac{4\pi}{3} \frac{\partial r^3}{\partial m}$	\implies Mass conservation
$\frac{\partial r}{\partial t} = u$	\Longrightarrow Velocity
$\frac{\partial u}{\partial t} = -4\pi r^2 \frac{\partial}{\partial m} (P + \mathbf{q}) - \frac{Gm}{r^2}$	\implies Momentum conservation
$\frac{\partial E}{\partial t} = \epsilon_{\rm Ni} - \frac{\partial L}{\partial m} - (P + q) \frac{\partial V}{\partial t}$	\implies Energy conservation
$L = -(4\pi r^2)^2 \frac{\lambda ac}{3\kappa} \frac{\partial T^4}{\partial m}$	\implies Radiative energy transport
+	

Initial and boundary conditions, and constituent equations

Code

Method of finite differences: space-time grid

- Explicit scheme for the hydrodynamics ($\Delta t \leq t_{\text{Courant}}$) and implicit for the temperature
- Gamma-ray deposition from ⁵⁶Ni-⁵⁶Co-⁵⁶Fe decay
 - transfer equation in grey approximation: $\frac{dI}{d\tau} = -I + S$
 - arbitrary spherically symetric distribution of ⁵⁶Ni

•
$$\frac{dE}{dm} = \kappa_{\gamma} \int I d\Omega; \ \kappa_{\gamma} = 0.03 \text{ cm}^2 \text{ g}^{-1}$$

Initial models

- Polytropic models: single and double
- Evolutionary calculations

Initial models

- Polytropic models: single and double
- Evolutionary calculations

Double Polytrope

Initial models

- Polytropic models: single and double
- Evolutionary calculations

Evolutionary models

RESULTS

Theoretical Bolometric LC

Model with E = 1.3 foes, $R_0 = 800 R_{\odot}$, $M_0 = 19 M_{\odot}$

Evolutionary phases

Before breakout

Model with E = 1.3 foes, $R_0 = 800 R_{\odot}$, $M_0 = 19 M_{\odot}$

Before breakout

Model with E = 1.3 foes, $R_0 = 800 R_{\odot}$, $M_0 = 19 M_{\odot}$

Velocity profiles at different times

After breakout

• Model with E = 1.3 foes, $R_0 = 800 R_{\odot}$, $M_0 = 19 M_{\odot}$

_

Profiles of the fraction of ionized Hydrogen

After breakout

 \checkmark Model with E = 1.3 foes, $R_0 = 800 R_{\odot}$, $M_0 = 19 M_{\odot}$

Temperature profiles

Light curves for different energies

SNII-P Light Curves - p.20/39

Light curves for different radii

SNII-P Light Curves - p.20/39

Light curves for different masses

SNII-P Light Curves - p.20/39

Light curves for different ⁵⁶Ni mass

Light curves for different ⁵⁶Ni distribution

DATA SAMPLE

Bolometric Correction

Bolometric Correction

- Three well-observed supernovae: SN 1987A, SN 1999em, and SN 2003hn
- Integration of all the available broadband data
- Estimation of the missing flux in UV and IR: blackbody (BB) fit
- Calculation of BC for two atmosphere models: Eastman et al. (1996) and Dessart & Hillier (2005)

Bolometric Correction

 $BC = m_{bol} - [V - A_V], \quad rms = 0.11 \text{ mag}$

Sample of SNe II-P

- Calculation of bolometric LCs for our sample of SNe II-P $\log L[\operatorname{erg s}^{-1}] = -0.4 [BC(color) + V - A_{total}(V) - 11.64] + \log(4 \pi D^2)$
- Olivares et. al (2010): D, $A_{host}(V)$

Sample of SNe II-P

- Calculation of bolometric LCs for our sample of SNe II-P
- Estimation of parameters to characterize the LCs:
 - L_p : plateau luminosity
 - Δt_p : plateau duration
 - $\Delta \log L$: luminosity drop
 - $M_{\rm Ni}$: ⁵⁶Ni mass

Analysis of observed parameters

Slope during Plateau

- Bi-modal tendency
- slope > -1 mag/100 d \rightarrow "normal plateau"
- slope < -1.25 mag/100 d \rightarrow "intermediate-plateau"

Bolometric Luminosity Range

Weighted average $\langle L_p \rangle = 1.26 \times 10^{42} \text{ erg s}^{-1}$

- $M_{\rm Ni}$ sensitive to adopted explosion time
- Assumed local deposition of gamma rays
- \checkmark Weighted average $\langle M_{\rm Ni} \rangle = 0.024 M_{\odot}$
- $M_{\rm Ni} < 0.1 M_{\odot}$,

except for SN 1992am ($M_{\rm Ni} > 0.26 M_{\odot}$)

Model vs. Observation

Hydro-Model of SN 1999em

- Proto-type SN II-P
- One of the best-oberved SNe II-P
- Determination of physical parameters $(M_0, R_0, E \text{ and } M_{Ni})$ by comparing
 - bolometric light curve
 - photospheric velocity evolution

Hydro-Model of SN 1999em

- Extended ⁵⁶Ni mixing
- Very good agreement with observations
- Physical parameters similar to previous hydrodynamical studies (Baklanov et al. 2005; Utrobin 2007)
- Low-mass models are not favored

Grid of Hydrodynamical Models

- Set of 46 hydrodynamical models:
 - $M_0 =$ 10, 15, 20 and 25 M_{\odot}
 - E = 0.5, 1, 2 and 3 foe
 - $R_0 = 500$, 1000, and 1500 R_{\odot}
 - \blacksquare $\, M_{\rm Ni} =$ 0.02, 0.04 and 0.07 M_\odot
- For each model: L_p , Δt_p , ΔL , M_{Ni} and v_{-30} are measured consistently with observations
 - Dependence of observable parameters on physical quantities
 - Study of correlations between observable parameters

Model dependences

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Plateau luminosity

43 Δ Strong correlation with explosion energy ⁻₂ 42.5 Δ lerg \sim 0.4 dex of dispersion $\overline{\Box}$ 9 Log L_p mainly related to 42 M_0 and R_0 $M_{\rm Ni}$ (fixed mixing) is not very influential 41.5 2 3 1 0 4 E [foe]

Model dependences

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)
Plateau duration

200 Weaker correlation with 150 explosion energy С [days] M_0 seems the most 100 0 important factor but $M_{\rm Ni}$ Δt_p also produces an effect \bigcirc 50 0 8 R_0 produces a minor effect 0 2 З ()4

E [foe]

- The Standard Candle Method (SCM):
 - Correlation between luminosity and expansion velocity during the plateau phase found by Hamuy & Pinto (2002)
 - Detailed study of this correlation for our sample of SNe II-P given by Olivares et. al (2010) leading to a precision of 13% in distance
 - Study of this correlation using our hydrodynamical models

Symbol Colors: different explosion energies (E)

- Models reproduce very well the obverved trend
- \blacksquare *E* is the main driver
- Shift between models and observations

SCM

- Symbol Colors: different explosion energies (E)
 - Shift between models 43 filled symbols: models and observations: open symbols: observations 42.5 Adopted H₀ [erg s⁻¹] **Extinction correction** 42 Measurement ⁴ Т 80 Л 80 Л inconsistencies High-mass models 4140.5 3.2

2.8

З

SCM

3.4

Log v_{-30} [km s⁻¹]

3.6

3.8

Symbol Colors: different explosion energies (E)

- Models show slight correlation previously noted by Kasen & Woosley (2009)
- Observations show no correlation
- Lowest E and high M are not favored

Kasen & Woosley 2009

■ Grid hydro Models using pre-SN models from stellar evolutionary calculations: E=0.5-4 foe, M= 10.9-15.8 M_{\odot} and R= 625-1349 R_{\odot}

Symbol Colors: different explosion energies (E)

- Models show slight correlation previously noted by Kasen & Woosley (2009)
- Observations show no correlation
- Lowest E and high M are not favored

Summary

- We implemented a robust method to estimate BC from BVI photometry for SNe II-P with typical scatter of ~0.1 mag
- We studied SN 1999em in detail obtaining a very good agreement with observations when extended mixing of ⁵⁶Ni is used
- We calculated a set of observable parameters $(L_p, \Delta t_p, \Delta L$ and $M_{Ni})$ for our data sample and for a grid of hydrodynamical models:
 - Parameter distribution:
 - Bi-modal tendency of the slope during plateau
 - 1.15-dex range in plateau luminosities
 - \blacksquare $M_{\rm Ni} < 0.1 M_{\odot}$, except for SN 1992am with $M_{\rm Ni} > 0.26 M_{\odot}$
 - Dependence on physical quantities (E, R_0 , M_0 and M_{Ni})
 - Correlations using models and observations
 - Models confirm the SCM relation
 - Lowest E and high M are not favored

Plateau Lengths

- Weighted average $\langle \Delta t_p \rangle = 90.47$ days
- Most SNe with $\langle \Delta t_p \rangle$ between 75 and 105 days
- Bi-modal trend in the distribution (secondary peak at \sim 60 days)

Luminosity drop: $\Delta \log L$

Weighted average $\langle \Delta \log L \rangle = 0.783 \text{ dex}$

Model dependences

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Luminosity drop

E [foe]

2 Some dependence on 1.5 \mathbf{S}^{-1} 0 explosion energy O Δ [erg 8 Δ Strong correlation 8 with $M_{\rm Ni}$ Г Log 8 Some dependence on \triangleleft 0.5 R_0 but not on M_0 0 2 З 0 1 4

Model dependences

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Expansion velocity

- Strong correlation with explosion energy
- M_0 is the main driver of the dispersion
- Slight dependence on $M_{\rm Ni}$ but not on R_0

Symbol Colors: different explosion energies (E)

- No correlation
- Ni mass affects tail luminosity but not the plateau

Comparison with STELLA Code

- STELLA code (Blinnikov et al. 1998):
 - implicit hydrodynamics + multi-group radiative transfer
 - includes the effect of the line opacities
- STELLA calculations by N. Tominaga

