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I. Introduction



Successes of Lattice QCD
‣Hadron masses and their interactions
‣Physics@T≠0
‣The SM parameters
‣Weak matrix elements
‣...
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This calculation demonstrates the utility of the HISQ
formalism for studying b quarks on lattices that are com-
putationally accessible today. This represents a break-
through for b physics on the lattice since far greater pre-
cision becomes possible when all quarks are treated us-
ing the same formalism, and that formalism is relativis-
tic and has a chiral symmetry. Even better would be
to work right at the b mass, as opposed to extrapolat-
ing from nearby; this would require a lattice spacing of
order 0.03 fm.
Both of our new c and b masses agree well with

non-lattice determinations from vector-current correla-
tors and experimental e+e− collisions. A recent analysis
of the continuum data gives [7]

mc(3GeV, nf = 4) = 0.986(13)GeV (49)

mb(mb, nf = 5) = 4.163(16)GeV

which compare well with our values of 0.986(6)GeV and
4.164(23)GeV, respectively. This provides strong evi-
dence that the different systematic errors in each calcu-
lation are understood.
Function z(µ/mh,mηh

) is a by-product of our anal-
ysis. It relates the MS quark mass mh(µ) to the
ηh mass (Eq. (7)). We show our result again in Figure 6
for µ=3mh, as well as for µ=mh and µ=mh/2, which
we obtain by evolving perturbatively from µ=3mh. The
latter two curves are relatively flat, and the last surpris-
ingly close to 1 for most masses.
Questions have been raised about the way perturba-

tion theory is used in analyzing the perturbative parts
of the moments [27]. Like [7] we favor using larger
scales than mc for c-quark correlators, but, as we have
shown, our results are quite insensitive to µ over a broad
range. Furthermore, the fact that our results, from
pseudoscalar-density correlators, agree so well with the
continuum results, from vector-current correlators, is also
compelling evidence that perturbation theory is being
handled correctly. We also find consistent results from
several different moments, which is only possible if per-
turbation theory is working well. Compare, for example,
Figure 7 for the moments, as a function of mηh

, with
the plots of Rn/rn in Figure 1. Figure 7 shows very dif-
ferent mηh

behavior, at the 10–20% level, for different
moments Rn; Figure 1, where the perturbative part rn
is divided out, shows behavior that is almost moment-
independent.
An additional check on our use of perturbation theory

comes from the close agreement between our perturbative
result for the ratio mb/mc of MS masses (Eq. (36)) and
our nonperturbative result for the ratio of HISQ masses
(Eq. (45)). These should be and are equal to within
our 1% errors. Taken together they suggest a composite
result of:

mb(µ, nf )

mc(µ, nf )
= 4.51(4) (composite). (50)

The validity of our perturbative analyses is fur-
ther supported by the close agreement between the

FIG. 8: The 5-flavor QCD coupling α
MS

at the Z mass as
determined by a variety of different methods. The non-lattice
numbers used here are from the review in [28].

QCD coupling we get from the heavy-quark correlators,
αMS(MZ) = 0.1183(7), and that obtained from Wilson
loops, 0.1184(6). These are radically different methods
for determining the coupling. The first relies upon a con-
tinuum quantity, extrapolated to a= 0, and continuum
perturbation theory. The second relies upon quantities
that are highly sensitive to the UV cutoff (π/a) but are
analyzed to all orders in the cutoff using lattice pertur-
bation theory. Systematic errors are almost completely
different in the two cases. The fact that they agree to
within our 0.6% uncertainties is highly nontrivial evi-
dence that perturbative and other potential errors are
understood.
Our coupling values also agree well with determina-

tions from non-lattice methods. Figure 8 summarises re-
cent results that were included in a world average by
Bethke [28]. The world average result, 0.1184(7), was
dominated by our previous determination from the Wil-
son loop analysis. The average excluding our result was
0.1186(11), which also agrees well. Including our new
results into a new error-weighted world average gives
αMS(MZ)=0.1184(4).
Our new c mass is the most accurate currently avail-

able. With it we can improve slightly on our recent de-
termination of light quark masses using an accurate value
for mc/ms, 11.85(16), derived completely nonperturba-
tively from lattice calculations [11]. Our new c mass,
which becomes 1.093(6)GeV when converted to nf = 3
at 2GeV, implies:

ms(2GeV, nf = 3) = 92.2(1.3)MeV, (51)

md(2GeV, nf = 3) = 4.77(15)MeV,

mu(2GeV, nf = 3) = 2.01(10)MeV.

Our results for all 5 quark masses are compared with the
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Lattice calculations truly reliable.

Apply to Something different
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Vacuum polarization

1 Introduction

Once one obtained the vacuum polarization function, one can evaluate various interesting quantities through
the followings:

f2
π = lim

Q2→0
Q2

[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

, (1)

lim
Q2→∞

(Q2)2
[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

→ 0, (2)

S = −4π
d

dQ2

[

Q2
(

Π(1)
V (Q2) − Π(1)

A (Q2)
)]

|Q2=0, (3)

∆m2
π =

3αem

4πf2
π

∫ ∞

0
dQ2Q2

[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

, (4)

aLO,had
l = 4(e2

u + e2
d)α

2
em

∫ ∞

0
dQ2fl(Q

2)(Π(1)
V (Q2) − Π(1)

V (0)). (5)

In this work, we try to evaluate S-parameter (or equivalently L10) and the pion EM splitting. The pion
EM splitting is usefule to determine mu + md using the experimentally observed charged and neutral pion
splitting. These quantities are especially interesting from the viewpoint of new physics search. Eqs. (1) and

(2) are used to evaluate eqs. (3) and (4) rather than checked. We can also use Π(1)
V (Q2) and Π(1)

A (Q2) to
evaluate αs(Q2) and the leading hadronic contribution to the lepton’s anomalous magnetic moment. These
results will be given somewhere else.

Figure 1: Vacuum porlarization graph.

2 Lattice parameters and action

Simulation parameters are summarized in Tab. 1.
The overlap-Dirac operator is given by

Dov =
(

m0 +
mq

2

)

+
(

m0 −
mq

2

)

γ5sgn [Hw(−m0)] (m0 = 1.6). (6)

The action is invariant under

δψ(x) = iεaT aγ5(1 − aDov)ψ, δψ̄(x) = iψ̄γ5ε
aT a, (7)
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An simple example of TC.

LTC = ŪLiD/ UL + ŪRiD/ UR + D̄LiD/ DL + D̄RiD/ DR (7)

Qa
L =

(

U
D

)a

L

(Y = 0), Ua
R (Y = 1), Da

R (Y = −1) (8)

gµν − qµqν/q2

q2
[

1 − g2
2 Π(q2)

]

=⇒
SχSB gµν − qµqν/q2

q2

[

1 − g2
2

(

F 2
TC

4q2

)] =
gµν − qµqν/q2

q2 −
(

g2 FTC

2

)2 (9)

Once one obtained the vacuum polarization function, one can evaluate various interesting quantities
through the followings:

f2
π = lim

Q2→0
Q2

[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

, (10)

lim
Q2→∞

(Q2)2
[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

→ 0, (11)

S = −4π
d

dQ2

[

Q2
(

Π(1)
V (Q2) − Π(1)

A (Q2)
)]

|Q2=0, (12)

∆m2
π =

3αem

4πf2
π

∫ ∞

0
dQ2Q2

[

Π(1)
V (Q2) − Π(1)

A (Q2)
]

, (13)

aLO,had
l = 4(e2

u + e2
d)α

2
em

∫ ∞

0
dQ2fl(Q

2)(Π(1)
V (Q2) − Π(1)

V (0)). (14)

In this work, we try to evaluate S-parameter (or equivalently L10) and the pion EM splitting. The pion
EM splitting is usefule to determine mu + md using the experimentally observed charged and neutral pion
splitting. These quantities are especially interesting from the viewpoint of new physics search. Eqs. (10) and

(11) are used to evaluate eqs. (12) and (13) rather than checked. We can also use Π(1)
V (Q2) and Π(1)

A (Q2) to
evaluate αs(Q2) and the leading hadronic contribution to the lepton’s anomalous magnetic moment. These
results will be given somewhere else.

2 Lattice parameters and action

Simulation parameters are summarized in Tab. 1.
The overlap-Dirac operator is given by

Dov =
(

m0 +
mq

2

)

+
(

m0 −
mq

2

)

γ5sgn [Hw(−m0)] (m0 = 1.6). (15)

The action is invariant under

δψ(x) = iεaT aγ5(1 − aDov)ψ, δψ̄(x) = iψ̄γ5ε
aT a, (16)

3 Definition of vacuum polarization

3.1 in the continuum

The vacuum polarization functions in Minkowski space for vector and axial-vector currents is defined by

i
∫

d4x eiq·x〈 0 |T
[

Jµ(x)Jν†(0)
]

| 0 〉 =
(

q2gµν − qµqν
)

Π(1)
J (−q2) − qµqνΠ(0)

J (−q2), (17)

where Jµ(x) is

V µ(x) = q̄1(x)γµq2(x) or Aµ(x) = q̄1(x)γµγ5 q2(x), (18)
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results will be given somewhere else.

2 Lattice parameters and action

Simulation parameters are summarized in Tab. 1.
The overlap-Dirac operator is given by

Dov =
(

m0 +
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2

)

+
(

m0 −
mq

2

)

γ5sgn [Hw(−m0)] (m0 = 1.6). (15)

The action is invariant under

δψ(x) = iεaT aγ5(1 − aDov)ψ, δψ̄(x) = iψ̄γ5ε
aT a, (16)

3 Definition of vacuum polarization

3.1 in the continuum

The vacuum polarization functions in Minkowski space for vector and axial-vector currents is defined by

i
∫

d4x eiq·x〈 0 |T
[

Jµ(x)Jν†(0)
]

| 0 〉 =
(

q2gµν − qµqν
)

Π(1)
J (−q2) − qµqνΠ(0)

J (−q2), (17)

where Jµ(x) is

V µ(x) = q̄1(x)γµq2(x) or Aµ(x) = q̄1(x)γµγ5 q2(x), (18)
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‣Ultimate goal : dynamical generation of Yukawa hierarchy
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Alternative to the Higgs sector in the SM
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Vacuum polarization

1 Introduction

Once one obtained the vacuum polarization function, one can evaluate various interesting quantities through
the followings:
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V (0)). (5)

In this work, we try to evaluate S-parameter (or equivalently L10) and the pion EM splitting. The pion
EM splitting is usefule to determine mu + md using the experimentally observed charged and neutral pion
splitting. These quantities are especially interesting from the viewpoint of new physics search. Eqs. (1) and

(2) are used to evaluate eqs. (3) and (4) rather than checked. We can also use Π(1)
V (Q2) and Π(1)

A (Q2) to
evaluate αs(Q2) and the leading hadronic contribution to the lepton’s anomalous magnetic moment. These
results will be given somewhere else.

Figure 1: Vacuum porlarization graph.

2 Lattice parameters and action

Simulation parameters are summarized in Tab. 1.
The overlap-Dirac operator is given by

Dov =
(

m0 +
mq

2

)

+
(

m0 −
mq

2

)

γ5sgn [Hw(−m0)] (m0 = 1.6). (6)

The action is invariant under

δψ(x) = iεaT aγ5(1 − aDov)ψ, δψ̄(x) = iψ̄γ5ε
aT a, (7)
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An simple example of TC.

LTC = ŪLiD/ UL + ŪRiD/ UR + D̄LiD/ DL + D̄RiD/ DR (7)
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R (Y = −1) (8)
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evaluate αs(Q2) and the leading hadronic contribution to the lepton’s anomalous magnetic moment. These
results will be given somewhere else.
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!Problems in traditional TC models.
- FCNC & heavy quark mass

- S-parameter

!Walking Technicolor (WTC) may 

resolve/ease the problems. Holdom(1981),  Yamawaki, 

Bando, Matsumoto(1986), Appelquist, Karabali, Wijewardhana(1986)

Introduction

EQUATIONS

N. YAMADA

C(µ) = exp
(∫ METC

µ
dµ′γ(µ′)

µ′

)
= exp

(∫ g2(METC)

g2(µ)
dg′2

γ(g′2)
β(g′2)

)
(1)

1

g2
ETC

M2
ETC

(F̄F )(f̄f)→ g2
ETC

M2
ETC

C(µ)(F̄F )(f̄f)At ! < METC,                                            &

g2
ETC

M2
ETC

(F̄γµf)(f̄γµF ) =
g2

ETC

M2
ETC

(F̄F )(f̄f) + · · · ,

g2
ETC

M2
ETC

(f̄γµf �)(f̄ �γµf)

quark/lepton mass FCNC

If C(MEW) >> 1, the SM fermion mass can be enhanced while FCNC  

is suppressed.

Look for theory with !(g2) ! 0, i.e. walking g2.

3

EQUATIONS

N. YAMADA

〈O(0)〉 = Z−1
∫

[DA] O(0) det[D[A]]Nf e−
R

d4x Sg [A(x)]

∑

!y∈V

〈O(ty, !y)O†(0)〉 = Z−1
∫

[DAµ]
∑

!y∈V

O(ty, !y)O†(0) det[D[Aµ]]Nf e−
R

d4x Sg [Aµ(x)]

=
1

Nconf

Nconf
∑

Aµ

∑

!y

(

O(ty, !y)O†(0)
)

Aµ

−→
1

2MV
|〈0|O(0) |M〉|2 e−M ty

ETC fermion = (F , · · ·, F , f, f ′, · · · )

g2
ETC

M2
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(F̄ Γµ f) (f̄ Γµ F ) →
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M2
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(F̄L FR) (f̄R fL) + · · ·
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(1)
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0
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SF,L/a

=

Date: October 28, 2009.

1

Extended TC and its Breaking
TC must be extended to give mass to the SM fermions.

⇒ New gauge interaction ETC (unspecified)
Lane and Eichten (‘80), Dimopoulos and Susskind (‘79)

ETC breaking@METC ⇒ various four-ferm ops. induced

ETC 

ETC fermion multiplet: FETC=(F1, ..., FNTC, fSM3, fSM2, fSM1)
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Lane and Eichten (‘80), Dimopoulos and Susskind (‘79)

ETC breaking@METC ⇒ various four-ferm ops. induced

METC constrained by
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∑
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Δm in K0-K0, D0-D0, ...
_         _

and

ETC 

ETC fermion multiplet: FETC=(F1, ..., FNTC, fSM3, fSM2, fSM1)
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!Problems in traditional TC models.
- FCNC & heavy quark mass

- S-parameter

!Walking Technicolor (WTC) may 

resolve/ease the problems. Holdom(1981),  Yamawaki, 

Bando, Matsumoto(1986), Appelquist, Karabali, Wijewardhana(1986)
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quark/lepton mass FCNC

If C(MEW) >> 1, the SM fermion mass can be enhanced while FCNC  

is suppressed.

Look for theory with !(g2) ! 0, i.e. walking g2.
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!Problems in traditional TC models.
- FCNC & heavy quark mass

- S-parameter

!Walking Technicolor (WTC) may 

resolve/ease the problems. Holdom(1981),  Yamawaki, 

Bando, Matsumoto(1986), Appelquist, Karabali, Wijewardhana(1986)
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quark/lepton mass FCNC

If C(MEW) >> 1, the SM fermion mass can be enhanced while FCNC  

is suppressed.

Look for theory with !(g2) ! 0, i.e. walking g2.

3
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µ
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)
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dg′2

γ(g′2)

β(g′2)

)

〈ψ̄ψ〉(1/a)/F 3|Nf=6

〈ψ̄ψ〉(1/a)/F 3|Nf=2

(1)
g2
0

g2
SF,L/a

=

Date: October 28, 2009.

1

Problem 1: FCNC & mq

≫1 & METC ≫ MTC must be satisfied.

Determination of the running coupling in Nf =10 QCD with Plaquette gauge and Wilson quark actions · · · March 20, 2010

9 ZP

If the anomalous dimensio of mass is almost independent of mu, the Wilson coefficient of scalar bilinear
operator becomes

C(MTC) ∼
(

METC

MTC

)γ

(131)

The normalization constant ZP of the pseudoscalar constant density is defined by

ZP (g2
0, L/a) = c

√
3 f1

fP (L/a)
at mq = 0, (132)

where c is chosen so that ZP = 1 at tree level. The values of c for our SF setup are tabulated in Tab. 9.

ΣP (u, s, a/L) =
ZP (g2

0, s L/a)
ZP (g2

0, L/a)
at mPCAC

q = 0, g2
SF(L) = u. (133)

m ψ̄RψR. = Zm(L)m0 ZS(L)ψ̄0ψ0 = m0 ψ̄0ψ0 (134)

Thus,

Zm(L) =
1

ZS(L)
=

1
ZP (L)

. (135)

σP (u, s) =
ZP (sL)
ZP (L)

∣∣∣∣
g2
SF(L)=u

. (136)

Recall

τ(g2(L)) =
L

m(L)
∂ m(L)

∂L
= d1 g2(L) + d2 g4(L) + d3 g6(L) + · · · , (137)

then

L

m(L)
∂ m(L)

∂L
=

L

Zm(L)
∂ (Zm)

∂L
= − L

ZP (L)
∂ZP

∂L
= τ(g2), (138)

L

ZP (L)
∂ZP (L)

∂L
= − L

m(L)
∂m(L)

∂L
= −τ(g2(L)). (139)

Phenomenologically relevant quantity is

〈FF 〉(1/METC) =
ZP (1/METC)
ZP (1/MTC)

〈FF 〉(1/MTC) (140)

In the leading approximation,

τ ∼ d1 g2 =
8

(4π)2
g2 = 0.05066 g2, (141)

which is tiny as long as g2 ∼ O(1). Then

L

ZP (L)
∂ZP (L)

∂L
= −τ(g2(L)) = − 8

(4π)2
g2(L) + O(g4(L)), (142)

ZP (L1)
ZP (L2)

=
(

u1

u2

)− d1
b1

=
(

u1

u2

)− 8

2(11− 2
3 Nf )

=
(

u1

u2

)− 12
13

, (143)

σP (u, s) =
(

σ(u, s)
u

)− 12
13

. (144)
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!Problems in traditional TC models.
- FCNC & heavy quark mass

- S-parameter

!Walking Technicolor (WTC) may 

resolve/ease the problems. Holdom(1981),  Yamawaki, 

Bando, Matsumoto(1986), Appelquist, Karabali, Wijewardhana(1986)
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quark/lepton mass FCNC

If C(MEW) >> 1, the SM fermion mass can be enhanced while FCNC  

is suppressed.

Look for theory with !(g2) ! 0, i.e. walking g2.

3
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Problem 1: FCNC & mq

μMETC METC

g2(μ)

g2SχSB

MTC

g2initial

Classic TC or
QCD-like theory

Walking TC

≫1 & METC ≫ MTC must be satisfied.
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If the anomalous dimensio of mass is almost independent of mu, the Wilson coefficient of scalar bilinear
operator becomes
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)γ
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The normalization constant ZP of the pseudoscalar constant density is defined by

ZP (g2
0, L/a) = c

√
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where c is chosen so that ZP = 1 at tree level. The values of c for our SF setup are tabulated in Tab. 9.
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Walking Technicolor (WTC)
Holdom(1981); Yamawaki, Bando, Matsumoto(1986); Appelquist, Karabali, Wijewardhana(1986);

Akiba, Yanagida(1986); Bando, Morozumi, So, Yamawaki(1987)

No tunable parameter!
e.g.) SU(3) gauge theory with 2 or 3-flavors of techni-quarks
        (i.e. scaled-up QCD) does not respect the condition.

➡ Such a self-serving GT really exists?

≫1 & METC ≫ MTC must be satisfied.
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If the anomalous dimensio of mass is almost independent of mu, the Wilson coefficient of scalar bilinear
operator becomes
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The normalization constant ZP of the pseudoscalar constant density is defined by

ZP (g2
0, L/a) = c

√
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at mq = 0, (132)

where c is chosen so that ZP = 1 at tree level. The values of c for our SF setup are tabulated in Tab. 9.
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∂L
= − L

ZP (L)
∂ZP

∂L
= τ(g2), (138)

L

ZP (L)
∂ZP (L)

∂L
= − L

m(L)
∂m(L)

∂L
= −τ(g2(L)). (139)

Phenomenologically relevant quantity is

〈FF 〉(1/METC) =
ZP (1/METC)
ZP (1/MTC)

〈FF 〉(1/MTC) (140)

In the leading approximation,

τ ∼ d1 g2 =
8

(4π)2
g2 = 0.05066 g2, (141)

which is tiny as long as g2 ∼ O(1). Then

L

ZP (L)
∂ZP (L)

∂L
= −τ(g2(L)) = − 8

(4π)2
g2(L) + O(g4(L)), (142)

ZP (L1)
ZP (L2)

=
(

u1

u2

)− d1
b1

=
(

u1

u2

)− 8

2(11− 2
3 Nf )

=
(

u1

u2

)− 12
13

, (143)

σP (u, s) =
(

σ(u, s)
u

)− 12
13

. (144)
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Theory
METC
gTC2(METC)

Dynamics determines everything
C(MTC), MTC/METC, ΣTC (mq,l), fTC, 
S, mσ, mρ, ....

Inputs
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Figure 1: (left) ∆χ2 profile as a function of MH for the global fit of the electroweak SM with Gfitter including
the results of the direct Higgs searches at LEP and Tevatron. The regions currently excluded with 95% CL by
LEP and Tevatron are indicated by the shaded areas. (right) Fit result of the oblique parameters: Shown are the
68%, 95% and 99% CL allowed regions in the (S, T )-plane with U = 0 for a reference SM with MH = 120GeV

and mt = 173.2GeV. The gray/dark area illustrates the SM prediction for various values of MH and mt.

experimental and theoretical progress. In the following the most important aspects of the fit are
quickly repeated and results of recent changes – mainly updates of the experimental data used
in the fit, e.g. MW , mt and the direct Higgs searches at the Tevatron – are reported.

The SM predictions for the electroweak precision observables measured by the LEP, SLC,
and Tevatron experiments are fully implemented in Gfitter. State-of-the-art calculations have
been used, in particular the full two-loop and the leading beyond-two-loop corrections for the
prediction of the W mass and the effective weak mixing angle 2, which exhibit the strongest
constraints on the Higgs mass. In the Gfitter SM library the fourth-order (3NLO) perturbative

calculation of the massless QCD Adler function 3 is included which allows to fit the strong
coupling constant with unique theoretical uncertainty.

The experimental data used in the fit include the electroweak precision data measured at
the Z pole 4, the latest world average 5 of the W mass MW = (80.399 ± 0.023) GeV, and width
ΓW = (2.098 ± 0.048) GeV, which include the recent run-2 mass measurement reported by D0,

and the newest average 6 of the Tevatron top mass measurements mt = (173.1 ± 1.3)GeV. For

the electromagnetic coupling strength at MZ we use the ∆α(5)
had value reported in 7 which does

not include the recent ISR measurements of the e+e− → π+π− cross-section from Babar and
Kloe since an updated ∆α(5)

had value including both measurements is not yet available. Also

included in the fit is the information from the direct Higgs searches at LEP 8 and Tevatron 9,
where we use the latest combination. b

The free fit parameters are MZ , MH , mt, mb, mc, ∆α(5)
had and αS(M2

Z) where only the latter
parameter is fully unconstrained since no direct experimental measurement of αS(M2

Z) is used.
The minimum χ2 value of the fit with (without) using the information from the direct Higgs
searches amounts to 17.8 (16.4) which corresponds to a p-value for wrongly rejecting the SM of
0.22 (0.23). None of the pull values exceeds 3σ. The 3NLO result of αS(M2

Z) obtained from
the fit is given by αS(M2

Z) = 0.1193± 0.0028± 0.0001, where the first error is the experimental
fit error and the second is due to missing QCD orders. Among the most important outcomes
of the fit is the estimation of the mass of the Higgs boson. Without using the information
from the direct Higgs searches we obtain a χ2 minimum at MH = 82.8+30.2

−23.3 GeV with a 2σ

bFor the purpose of combination with the electroweak fit we transform the one-sided confidence level CLs+b

reported by the experiments into a two-sided confidence level CL2−sided
s+b and calculate the contribution to the χ2

estimator via δχ2 = 2 · [Erf−1(1 − CL2−sided
s+b )]2. A more detailed discussion of the combination method can be

found in 1. The alternative direct use of the test statistics −2 lnQ in the fit leads to similar results.

J. Haller [the Gfitter group}
(www.cern.ch/gfitter), hep-ph/1006.0003‣ Rescaled QCD (S≳0.45) excluded

‣ Walking dynamics ⇒ S-parameter 
different from QCD (due to parity 
doubling?)

‣ Non-perturbative mathod is 
necessary.

‣ We know how to calculate S on 
the Lattice!
JLQCD (08):two-flavor QCD
c.f. RBC & UKQCD(10):three-flavor QCD
      LSD(10): six-flavor QCD
      T. DeGrand (10):sextet QCD

Problem 2: S-parameter
Peskin & Takeuchi (90,92)
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Prediction phase (2013?-)
Perform large-scale lattice simulation of candidate theories  to 
find the precise values for fπ,  mρ, (mσ), Σ, S-parameter, ...

Searching phase (-2012?)

Strategy on the lattice

Now is in Searching phase.
Prediction phase on the Next-Generation supercomputer?

Calculate hadron spectrum to see 
whether SχSB takes place or not.

Calculate running coupling and 
anomalous dimension directly 
on the lattice.



So far, the following SU(Nc) gauge theories have been intensively studied.

Candidates for WTC

Nc Nf Rep. Running g2 spectroscopy

Large Nf QCD
Large Nf two-color 

QCD

Sextet QCD
Two-color adjoint QCD

3 6~16 fund. 8 < Ncf <12 Ncf >12
Ncf <12

2 6, 8 fund. Ncf <6  -

3 2 sextet conformal conformal 
confinment

2 2 adjoint conformal conformal

Currently, many contradictions and little consensus



II. Lattice calculation of 
running coupling



Machines used

- Supercomputer@KEK (SR11K, BG/L)
- GPGPU & CPU servers@KEK
- INSAM GPU cluster@Hiroshima
- GPGPU, GCOE cluster system@Nagoya
- B-factory computer system
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Figure 1: M vs g2
SF for larger β’s.

5 Perturbative Analysis

What have been known from perturbative analysis of the running coupling in continuum SU(Nc) gauge theory
are summarized below.

β function is defined by

β(g2(L)) = L
∂ g2(L)

∂L
(57)

= b1 g4(L) + b2 g6(L) + b3 g8(L) + b4 g10(L) + · · · , (58)

where L is a length scale. The first two coefficients are scheme independent and given by

b1 =
2

(4π)2

[

11 −
2

3
Nf

]

, (59)

b2 =
2

(4π)4

[

102 −
38

3
Nf

]

. (60)
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5 Perturbative Analysis

What have been known from perturbative analysis of the running coupling in continuum SU(Nc) gauge theory
are summarized below.

β function is defined by

β(g2(L)) = L
∂ g2(L)

∂L
(57)

= b1 g4(L) + b2 g6(L) + b3 g8(L) + b4 g10(L) + · · · , (58)

where L is a length scale. The first two coefficients are scheme independent and given by

b1 =
2

(4π)2

[

11 −
2

3
Nf

]

, (59)

b2 =
2

(4π)4

[

102 −
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3
Nf

]

. (60)
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Figure 2: The same as Fig. 1 but for smaller β’s.

The scheme-dependent, higher order coefficients are

bMS
3 =

2

(4π)6

[

2857

2
−

5033

18
Nf +

325

54
N2

f

]

, (61)

bMS
4 =

2

(4π)8
[

29243.0 − 6946.30 Nf + 405.089 N2
f + 1.49931 N3

f

]

, (62)

bSF
3 = bMS

3 +
b2 cθ

2

2π
−

b1 (cθ
3 − cθ

2
2
)

8π2
. (63)

The coefficients cθ
2 and cθ

3 depend on the spatial boudary condition in the SF setup, i.e the value of θ. The

values of cθ=π/5
2 and cθ=0

2 are both known, while only the value of cθ=π/5
3 is known. Their values are

cθ
2 =

{

1.25563 + 0.039863 Nf for θ = π/5
1.25563 + 0.022504 Nf for θ = 0

, (64)

cθ
3 =

{

cθ
2
2
+ 1.197(10) + 0.140(6)Nf − 0.0330(2)N2

f for θ = π/5
? for θ = 0

. (65)

The following analysis is done with the values for θ = π/5. Since we take θ = 0 in our numerical simulations,
the analysis should not be taken seriously.

There are some warnings. The third coefficient of the β function in eq. (61) is different from eq. (8) in
Ref. [6] by factor 2, but the same as eq. (3) in Ref. [7]. Probably eq. (8) in Ref. [6] is wrong. In addition, the
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SU(3) gauge theory with Nf fundamental Dirac fermions:

← universal and positive for Nf≤16

← universal

( c2θ, c3θ : coefficients depending on SF setup)



Perturbation
SU(3) gauge theory with Nf fundamental Dirac fermions:
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Nf 4 6 8 10 12 14 16
2-loop universal 27.74 9.47 3.49 0.52

3-loop SF 43.36 23.75 15.52 9.45 5.18 2.43 0.47
3-loop MS 159.92 18.40 9.60 5.46 2.70 0.50
4-loop MS 19.47 10.24 5.91 2.81 0.50

Table 7: The IRFP from perturbative analysis.

The relation of the two couplings in the SF and MS schemes is given by

g2
MS

= g2
SF +

cθ
2

4π
g4
SF + O(g6

SF), (66)

cθ
2 = c2,0 + Nf cθ

2,1 = 1.25563 + Nf (−4π)(P cSW
3 + rcSW,θ

0 ), (67)

rcSW,θ
0 =















−0.034664940(4) for cSW = 1, θ = π/5,
−0.009868186(4) for cSW = 0, θ = π/5,
−0.03328359(1) for cSW = 1, θ = 0,
−0.00848683(1) for cSW = 0, θ = 0

(68)

P cSW
3 =

{

0.031493 for cSW = 1,
0.006696 for cSW = 0,

(69)

cθ
2,1 = − 4π

(

P cSW
3 + rcSW,θ

0

)

=

{

0.039863(2) for θ = π/5,
0.022504(2) for θ = 0

. (70)

Notice that both of P cSW
3 and rcSW,θ

0 depend on cSW, but in the sum the dependence cancels and hence cθ
1,1

is independent of cSW. Using eq. (66), we then obtain the ratio of the Λ-parameters in two schemes as

Λθ
SF

ΛMS

= exp

(

−
c2,0 + Nf cθ

2,1

4 π b1

)

(71)

Fig. 8 shows the ratio of the Λ-parameters defined in the SF and MS schemes, where θ = 0 and π/5 are taken
in the SF scheme.

7 Very Preliminary Results

In this subsection, I push the argument forward based on a few reasonable assumptions. First let me define
“a running coupling in finite lattice spacing” as follows. That is defined by carrying out the step scaling
procedure in two l = L/a data. In other words, this coupling is obtained by usual step scaling but without
taking continuum limit. To be specific, set the initial coupling u0 = g2

l1l2
(L1), find the value of g2

0 in the
l1 = L1/a data which satisfies

gfit
SF,l1

2
(g2

0) = u0. (72)

Then read the value of the coupling for the l2 = L2/a data at g2
0, i.e. gfit

l2

2
(g2

0), and label this as ul1l2
1 =

g2
l1l2

(rL1) where r = l2/l1. If one repeats this procedure n times, we obtain a series of ul1l2
N = g2

l1l2
(rNL1)

(N=0, 1, 2, · · · , n). As an example, set the initial coupling to u0 = 0.8, choose a pair of (l1, l2) to be (4,

6) and making a step scaling, we then obtain u(6/4)
N , which is plotted agains ln [(L/L1)] in Fig. 9 (red). The

results from two other pairs, (l1, l2)=(4, 8) and (6, 8), are also shown. Notice that since any of two data
obtained in our simulation intersect ul1l2

N necessarily stops running.
For later use, I introduce the discrete β function (DBF) [9]

Bl1l2(u, r) =
1

g2
l1l2

(rL)|u
−

1

u
. (73)
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Perturbative IRFP for SU(3) gauge theory with fermions in fund. rep.

Perturbation
SU(3) gauge theory with Nf fundamental Dirac fermions:
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−0.034664940(4) for cSW = 1, θ = π/5,
−0.009868186(4) for cSW = 0, θ = π/5,
−0.03328359(1) for cSW = 1, θ = 0,
−0.00848683(1) for cSW = 0, θ = 0

(68)

P cSW
3 =

{

0.031493 for cSW = 1,
0.006696 for cSW = 0,

(69)

cθ
2,1 = − 4π

(

P cSW
3 + rcSW,θ

0

)

=

{

0.039863(2) for θ = π/5,
0.022504(2) for θ = 0

. (70)

Notice that both of P cSW
3 and rcSW,θ

0 depend on cSW, but in the sum the dependence cancels and hence cθ
1,1

is independent of cSW. Using eq. (66), we then obtain the ratio of the Λ-parameters in two schemes as

Λθ
SF

ΛMS

= exp

(

−
c2,0 + Nf cθ

2,1

4 π b1

)

(71)

Fig. 8 shows the ratio of the Λ-parameters defined in the SF and MS schemes, where θ = 0 and π/5 are taken
in the SF scheme.

7 Very Preliminary Results

In this subsection, I push the argument forward based on a few reasonable assumptions. First let me define
“a running coupling in finite lattice spacing” as follows. That is defined by carrying out the step scaling
procedure in two l = L/a data. In other words, this coupling is obtained by usual step scaling but without
taking continuum limit. To be specific, set the initial coupling u0 = g2

l1l2
(L1), find the value of g2

0 in the
l1 = L1/a data which satisfies

gfit
SF,l1

2
(g2

0) = u0. (72)

Then read the value of the coupling for the l2 = L2/a data at g2
0, i.e. gfit

l2

2
(g2

0), and label this as ul1l2
1 =

g2
l1l2

(rL1) where r = l2/l1. If one repeats this procedure n times, we obtain a series of ul1l2
N = g2

l1l2
(rNL1)

(N=0, 1, 2, · · · , n). As an example, set the initial coupling to u0 = 0.8, choose a pair of (l1, l2) to be (4,

6) and making a step scaling, we then obtain u(6/4)
N , which is plotted agains ln [(L/L1)] in Fig. 9 (red). The

results from two other pairs, (l1, l2)=(4, 8) and (6, 8), are also shown. Notice that since any of two data
obtained in our simulation intersect ul1l2

N necessarily stops running.
For later use, I introduce the discrete β function (DBF) [9]

Bl1l2(u, r) =
1

g2
l1l2

(rL)|u
−

1

u
. (73)
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‣Nfc depends on scheme in perturbation theory
‣Schwinger–Dyson analysis suggests that SχSB occurs 
at g2 ~ π 2.
‣PT analysis suggests that Nf =8~12 are interesting!

Perturbation
SU(3) gauge theory with Nf fundamental Dirac fermions:



Ex) anomalous dimension in SF scheme:

With gFP2 for 3-loop β-function in SF scheme,

Perturbation
SU(3) gauge theory with Nf fundamental Dirac fermions:

Perturbation is not reliable.
Use Lattice method!

EQUATIONS

N. YAMADA

g2
lat(sL, a) = g2(sL) + c

( a

sL
− a

L

)
+ O(a2/L2)(1)

γSF =
8

(4 π)2
g2

{
1 + (0.1251 + 0.0046Nf ) g2

}

γSF
FP =






2.14 for Nf= 8
1.08 for Nf=10
0.47 for Nf=12

∼ O(1)

γSF < 0.6 Sextet QCD with 2-f [DeGrand et al., arXiv:1006.0707v1]
0.05 < γSF < 0.56 2-color adj. QCD with 2-f [Bursa et al., arXiv:0910.4535v1]
0.135 < γSF < 1.03 2-color QCD with 6-f [Bursa et al., arXiv:1007.3067v1]

lim
s→1+

BSF(u, s)

ln(s)
= −β(u)

u2
(2)

g2
0

g2
li

=
1 − ali,1 g4

0

1 + pli,1 g2
0 +

∑N
n=2 ali,n g2n

0

(3)

1

uSF
=

1

u0
+ BSF(u0, r)(4)

Blat(u0, lj, li) = BSF(u0, rji) + c(u0) ×
(

1

li
− 1

rjili

)
(5)

for (i, j)=(1,2), (1,3), (2,3)

ln(r21)

ln(rji)
Blat(u0, lj, li) =

ln(r21)

ln(rji)
BSF(u0, rji) +

ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)

≈ BSF(u0, r21) +
ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)

ln(r21)

ln(rji)
Blat(u0, lj, li) = BSF(u0, r21) +

ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)
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2.76183 for Nf= 8
1.25265 for Nf=10
0.50772 for Nf=12

∼ O(1)

γSF < 0.6 Sextet QCD with 2-f [DeGrand et al., arXiv:1006.0707v1]
0.05 < γSF < 0.56 2-color adj. QCD with 2-f [Bursa et al., arXiv:0910.4535v1]
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‣Consider SU(Nc) GT in a cylinder 
with L4

‣Boundary conditions in time are 
fixed such that bulk fields have a 
non-vanishing color-electric 
background.
‣Then effective action:

where

‣g(L)2 : non-perturbative & gauge-
invariant
‣Scale of g2 is given by L.

Various L ⇒ Running of g2(L)

Schrödinger functional scheme
Luscher, Weisz, Wolff, NPB(1991), and subsequent many papers

time
(Dirichlet)

space L
(periodic upto exp(iθ)）

0

L EQUATIONS

N. YAMADA

ζ, ζ, W(1)

ζ ′, ζ ′, W ′(2)

li = Li/a(3)

g2
0/g2

l(4)

g2
l1 = g2

l1(g
2
0)(5)

g2
l2 = g2

l2(g
2
0), g2

l′
1

= g2
l′
1

(g2
0), g2

l′
2

= g2
l′
2

(g2
0)(6)

ui = g2
l1(g

∗,2
0 ) ⇒ g∗,20 (ui, l1)(7)

ui = g2
l′
1

(g∗,20 ) ⇒ g∗,20 (ui, l
′
1)(8)

g2
l2(g

∗,2
0 ) = g2

l2(ui, l1, l2) = ui+1(ui, r, l1)(9)

g2
l′
2

(g∗,20 ) = g2
l′
2

(ui, l
′
1, l

′
2) = ui+1(ui, r

′, l′1)(10)

r =
l2
l1

(11)

BSF(u, r) =
ln(r)

ln(r′)
BSF(u, r′)(12)

BSF(u, r) =
ln(r)

ln(r′)
BSF(u, r′)(13)

〈O(0)〉 = Z−1
∫

[DA] O(0) det[D[A]]Nf e−
R

d4x Sg [A(x)]

∑

!y∈V

〈O(ty, "y)O†(0)〉 = Z−1
∫

[DAµ]
∑

!y∈V

O(ty, "y)O†(0) det[D[Aµ]]Nf e−
R

d4x Sg [Aµ(x)]

=
1

Nconf

Nconf
∑

Aµ

∑

!y

(

O(ty, "y)O†(0)
)

Aµ

−→
1

2MV
|〈0|O(0) |M〉|2 e−M ty
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FIG. 1: Sketched phase diagram of the lattice theory in finite
volume, as found for both thin links [12] and fat links (this
paper). For quantitative information see Figs. 2 and 3. The
κc(β) curve (solid), where mq = 0, exists only in the non-
confining phase; it meets the phase boundary (dashed) at
(β1,κ1). The dotted curve indicates the extension of κc(β)
into the confining phase via the metastable non-confining
state.

of boundary conditions. As noted in the context of other,
similar gauge theories (e.g., [17]), this phase diagram is
different from that of QCD and it is hard to see how it
can tend to a confining theory in the continuum limit.
Such considerations, however, are far from conclusive.

Turning to the SF calculation, we find that the cou-
pling constant runs more slowly than two-loop perturba-
tion theory would predict. This is such slow running that
we are unable to chain together results from different sets
of bare parameters to construct a picture of g(L) running
over decades of the length scale L. The range of couplings
that we can investigate is limited by the strong-coupling
phase transition. The beta function might cross zero at
the strongest coupling that we can reach, but we cannot
make a strong claim to this effect. Our calculation of
the anomalous dimension, on the other hand, has much
smaller uncertainty than the calculation of Ref. [13] and
confirms its result: γm is small over our observed range
of couplings.

The outline of the paper is as follows: In Sec. II we re-
view our lattice action and the techniques we use to mea-
sure the beta function and γm. In Sec. III we describe our
studies of the boundary between the strong- and weak-
coupling phases. Sections IV and V contain our results
for the running coupling constant and mass anomalous
dimension. We summarize the calculation in Sec. VI, and
place it in context of other lattice calculations. The ap-
pendix contains data that support our determination of

the phase boundary as presented in Sec. III.

II. METHODOLOGY

A. Lattice action and simulation

We study the SU(3) gauge theory with two flavors of
dynamical fermions in the sextet representation of the
color gauge group. The lattice action is given by the
single-plaquette gauge action and a Wilson fermion ac-
tion with added clover term [18]. The gauge connections
in the fermion action employ the differentiable hypercu-
bic smeared link of Ref. [19], from which the symmetric-
representation gauge connection for the fermion opera-
tor is constructed. The parameters that are inputs to
the simulation are the bare gauge coupling β = 6/g2 and
the fermion hopping parameter κ, related to the bare
mass m0 by κ = (8 + 2m0)−1. Unlike our earlier cal-
culation with the thin-link fermion action, no tadpole
improvement is necessary here and thus we set the clover
coefficient to its tree-level value (i.e., unity). The smear-
ing parameters for the links are the same as in Ref. [19]:
α1 = 0.75, α2 = 0.6, α3 = 0.3.
The molecular dynamics integration is accelerated with

an additional heavy pseudo-fermion field as suggested by
Hasenbusch [20], multiple time scales [21], and a second-
order Omelyan integrator [22]. Lattice sizes range from
64 to 164 sites; some data for the phase diagram were
obtained with lattices of 12× 63.

B. Schrödinger functional and the running coupling

The Schrödinger functional (SF) is an implementation
of the background field method that is especially suited
for a lattice calculation. Taking the simulation volume to
be a 4-cube of dimension L, one imposes fixed boundary
conditions on the gauge field at t = 0 and t = L while
imposing periodic boundary conditions in the spatial di-
rections. The classical field that minimizes the Yang–
Mills action subject to the fixed boundary conditions is a
background color-electric field. By construction the only
distance scale that characterizes the background field is
L, so the n-loop effective action Γ ≡ − logZ gives the
running coupling via

Γ = g(L)−2Scl
YM , (10)

where

Scl
YM =

∫

d4xF 2
µν (11)

is the classical action of the background field. When Γ
is calculated non-perturbatively, Eq. (10) gives a non-
perturbative definition of the running coupling at scale
L.
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FIG. 1: Sketched phase diagram of the lattice theory in finite
volume, as found for both thin links [12] and fat links (this
paper). For quantitative information see Figs. 2 and 3. The
κc(β) curve (solid), where mq = 0, exists only in the non-
confining phase; it meets the phase boundary (dashed) at
(β1,κ1). The dotted curve indicates the extension of κc(β)
into the confining phase via the metastable non-confining
state.

of boundary conditions. As noted in the context of other,
similar gauge theories (e.g., [17]), this phase diagram is
different from that of QCD and it is hard to see how it
can tend to a confining theory in the continuum limit.
Such considerations, however, are far from conclusive.

Turning to the SF calculation, we find that the cou-
pling constant runs more slowly than two-loop perturba-
tion theory would predict. This is such slow running that
we are unable to chain together results from different sets
of bare parameters to construct a picture of g(L) running
over decades of the length scale L. The range of couplings
that we can investigate is limited by the strong-coupling
phase transition. The beta function might cross zero at
the strongest coupling that we can reach, but we cannot
make a strong claim to this effect. Our calculation of
the anomalous dimension, on the other hand, has much
smaller uncertainty than the calculation of Ref. [13] and
confirms its result: γm is small over our observed range
of couplings.

The outline of the paper is as follows: In Sec. II we re-
view our lattice action and the techniques we use to mea-
sure the beta function and γm. In Sec. III we describe our
studies of the boundary between the strong- and weak-
coupling phases. Sections IV and V contain our results
for the running coupling constant and mass anomalous
dimension. We summarize the calculation in Sec. VI, and
place it in context of other lattice calculations. The ap-
pendix contains data that support our determination of

the phase boundary as presented in Sec. III.

II. METHODOLOGY

A. Lattice action and simulation

We study the SU(3) gauge theory with two flavors of
dynamical fermions in the sextet representation of the
color gauge group. The lattice action is given by the
single-plaquette gauge action and a Wilson fermion ac-
tion with added clover term [18]. The gauge connections
in the fermion action employ the differentiable hypercu-
bic smeared link of Ref. [19], from which the symmetric-
representation gauge connection for the fermion opera-
tor is constructed. The parameters that are inputs to
the simulation are the bare gauge coupling β = 6/g2 and
the fermion hopping parameter κ, related to the bare
mass m0 by κ = (8 + 2m0)−1. Unlike our earlier cal-
culation with the thin-link fermion action, no tadpole
improvement is necessary here and thus we set the clover
coefficient to its tree-level value (i.e., unity). The smear-
ing parameters for the links are the same as in Ref. [19]:
α1 = 0.75, α2 = 0.6, α3 = 0.3.
The molecular dynamics integration is accelerated with

an additional heavy pseudo-fermion field as suggested by
Hasenbusch [20], multiple time scales [21], and a second-
order Omelyan integrator [22]. Lattice sizes range from
64 to 164 sites; some data for the phase diagram were
obtained with lattices of 12× 63.

B. Schrödinger functional and the running coupling

The Schrödinger functional (SF) is an implementation
of the background field method that is especially suited
for a lattice calculation. Taking the simulation volume to
be a 4-cube of dimension L, one imposes fixed boundary
conditions on the gauge field at t = 0 and t = L while
imposing periodic boundary conditions in the spatial di-
rections. The classical field that minimizes the Yang–
Mills action subject to the fixed boundary conditions is a
background color-electric field. By construction the only
distance scale that characterizes the background field is
L, so the n-loop effective action Γ ≡ − logZ gives the
running coupling via

Γ = g(L)−2Scl
YM , (10)

where

Scl
YM =

∫

d4xF 2
µν (11)

is the classical action of the background field. When Γ
is calculated non-perturbatively, Eq. (10) gives a non-
perturbative definition of the running coupling at scale
L.
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How to calculate “running”?

u0=gR2(L)

gR2

g02g12

L/a=6 L/a=12

u1=gR2(2 L)

u2=gR2(22 L)

gbare2

EQUATIONS

N. YAMADA

g2
lat(sL, a) = g2(sL) + c

( a

sL
− a

L

)
+ O(a2/L2)(1)

γSF =
8

(4 π)2
g2

{
1 + (0.0271 + 0.0105Nf ) g2

}

γSF
FP =






2.14 for Nf= 8
1.08 for Nf=10
0.47 for Nf=12

∼ O(1)

γSF < 0.6 Sextet QCD with 2-f [DeGrand et al., arXiv:1006.0707v1]
0.05 < γSF < 0.56 2-color adj. QCD with 2-f [Bursa et al., arXiv:0910.4535v1]
0.135 < γSF < 1.03 2-color QCD with 6-f [Bursa et al., arXiv:1007.3067v1]

lim
s→1+

BSF(u, s)

ln(s)
= −β(u)

u2
(2)

g2
0

g2
li

=
1 − ali,1 g4

0

1 + pli,1 g2
0 +

∑N
n=2 ali,n g2n

0

(3)

1

uSF
=

1

u0
+ BSF(u0, r)(4)

Blat(u0, lj, li) = BSF(u0, rji) + c(u0) ×
(

1

li
− 1

rjili

)
(5)

for (i, j)=(1,2), (1,3), (2,3)

ln(r21)

ln(rji)
Blat(u0, lj, li) =

ln(r21)

ln(rji)
BSF(u0, rji) +

ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)

≈ BSF(u0, r21) +
ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)

ln(r21)

ln(rji)
Blat(u0, lj, li) = BSF(u0, r21) +

ln(r21)

ln(rji)
c(u0) ×

(
1

li
− 1

rjili

)
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Continuum limit 
required to remove 
lattice artifacts.



Example:2-flavor QCD
ALPHA Collaboration(2005)

Figure 2: Continuum extrapolation of the step scaling function.
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Figure 4: Running of the strong coupling in the Schrödinger functional scheme.

Figure 5: Non-perturbative β-function in the Schrödinger functional scheme.
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8 & 12 flavor QCD
Appelquist, Fleming, Neil, PRL100:171607, 2008; PRD79:076010, 2009

Nf = 8 Nf = 12

2-loop univ.

3-loop SF

0 10 20 30 40

2

4

6

8

10

Log�L�L0�

g2�L�

FIG. 6: Continuum running for Nf = 12. L0 is the scale corresponding to the starting value of

g2(L). Results shown for running from below the infrared fixed point (purple triangles) are based

on g2(L0) = 1.6. Also shown is continuum backwards running from above the fixed point (light

blue squares), based on g2(L0) = 9.0. Two-loop and three-loop perturbation theory curves are

shown for comparison.

C. Comparison with Other Lattice Work

1. Schrödinger functional studies

Lattice simulations for the SU(3) Schrödinger functional running coupling have been per-

formed for Nf = 16 [30], for the quenched theory [31], and for Nf = 2 [4]. For Nf = 16

[30], the perturbative infrared fixed point is very weak. In this case, the simulations were

done for values of the lattice coupling in the weak-coupling (chirally symmetric and decon-

fined) phase but leading to values of g2(L) well above the perturbative fixed point. Evidence

was presented that g2(L) decreases with increasing L, consistent with the approach to the

fixed point from above as expected with a continuum infrared fixed point. A continuum

extrapolation via the step-scaling procedure was, however, not implemented.

21

2-loop univ.

3-loop SF
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FIG. 3: Continuum running for Nf = 8. Purple points are derived by step-scaling using the

constant continuum-extrapolation of Fig. 2. The error bars shown are purely statistical, and are

derived as described in Appendix A. Two-loop and three-loop perturbation theory curves are shown

for comparison.

Publication Service [28]. In Fig. 4, data points are shown for g2(L) as a function of β,

together with the interpolating functions for each of L/a = 6, 8, 10, 12, 16, 20.

The data and the interpolating curves already suggest the existence of an infrared fixed

point for Nf = 12. For small β, the general trend is that g2(L) decreases with increasing L.

This behavior and the fact that for larger β, g2(L) increases with increasing L, is reflected

in a crossover behavior in the interpolating curves. We first implement the step-scaling

procedure choosing an initial u = g2(L) well below a possible fixed-point value so that a

continuum limit is guaranteed to exist, as discussed in Sec. IV B.

A constant continuum extrapolation (a weighted average of the available values of

Σ(2, u, a/L)) is again employed for each u. Now, since we have data at L = 20, it is a

weighted average of three points corresponding to the steps 6→ 12, 8→ 16, and 10→ 20.

Examples of such a continuum extrapolation are shown in Fig. 5. The systematic error is
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g2IRFP ~ 5 consistent with PT prediction

Conclusion: Nf=12 is too large while Nf=8 is too small. 
(12-flavor QCD is still under debate.)
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Extrapolation to the continuum limit shows sign-flip 
before gSF2 reaches about 10. gFP2 = 3.3 ~ 9.35

Discrete beta function:
Y. Shamir, B. Svetitsky and T. DeGrand, 
PRD78(2008)031502

10 flavor QCD (This work)
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FIG. 3: Linear extrapolation of B1 (filled squares) and constant fit of B′
2 (filled diamonds) to the

continuum limit. The extrapolation and fit use the data with s′ = 2 (filled symbols). The data

with s′ != 2 (open symbols) are also shown to see whether they align or not. The values of (s′, l)

of the data shown are (4/3, 6), (2, 6), (8/3, 6), (3/2, 8), (2, 8), and (4/3, 12) from right to left.

The data points are slightly shifted in horizontal direction for clarity. The perturbative predictions

including the 2-loop (plus) and 3-loop (star) effects are also shown.

open diamond at ξ = 0) turns out to give the consistent limit as shown in the figure.

From the alignment of B′
1, we infer that both δB and non-linear scaling violation re-

main small. This is consistent with the fact that the continuum DBF obtained by linear

extrapolation of B1 is consistent with zero and thus δB should be small as well.

The deviation of the coarsest data from the linear behavior indicates that the linear

discretization error no longer dominates others in the data with (s′, l)=(4/3, 6). Since in

general non-linear scaling violation can be large for small l, the data with l = 6 may suffer
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respectively.

with the perturbative calculations. It is seen that the running starts to slow down at

around 1/u ∼ 0.5, and eventually the coupling constant reaches a fixed point in the range

of 0.107 < 1/u ∼< 0.3. When the DBF is positive, it is non-trivial for the continuum limit

to exist. Thus we omit the positive DBF data from the figure.
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negative consistent with zero positive
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‣σP = ZP(s L) / ZP(L)
‣With 3.3 < g2FP < 9.35,

 0.28 < γm < 1.0 !
‣Precise value of g2FP is 

necessary.

Anomalous dimension
Calculation of γm is possible and in progress!

Preliminary



‣Lattice can also calculate γ. In progress!

Not precise yet.

‣If theory is in conformal window, the existence of IRFP is 
scheme-independent. Calculations from different schemes 
may give independent check.
   Itoh et al. and Holland et al. : 12-flavor QCD

Comments

EQUATIONS

N. YAMADA

γSF =
8

(4 π)2
g2

{
1 + (0.0271 + 0.0105Nf ) g2

}

γSF
FP =






2.14 for Nf= 8
1.08 for Nf=10
0.47 for Nf=12

∼ O(1)

γSF < 0.6 Sextet QCD with 2-f [DeGrand et al., arXiv:1006.0707v1]
0.05 < γSF < 0.56 2-color adj. QCD with 2-f [Bursa et al., arXiv:0910.4535v1]
0.135 < γSF < 1.03 2-color QCD with 6-f [Bursa et al., arXiv:1007.3067v1]
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III. Summary and outlook



Summary and outlook
✓Lattice technique can be used to search for realistic 

WTC models and to see whether the long-standing 
(~30 yrs) problems in TC are really resolved by WTC.
✓As a first step, we started with the study of running 

coupling of 10-flavor QCD to identify conformal 
window in SU(3) GT.
✓The result shows evidence of IRFP in 3.3 < g2FP < 9.4.
⇒ 8< Nfc <10
✓0.28 < γm < 1.0 is obtained from preliminary analysis. 

Pinning down γm requires precise value of the IRFP.
✓Next important task is to calculate S-parameter.


