Super-massive Black Holes Across the Cosmic History

Credit: Treister & Natarajan

Ezequiel Treister Einstein Fellow (IfA, Hawaii)

Collaborators: Meg Urry, Priya Natarajan, Kevin Schawinski (Yale), Carie Cardamone (MIT), Eric Gawiser (Rutgers), Dave Sanders (IfA), Marta Volonteri (Michigan)

Credit: Galactic Center Group at the University of Cologne

All (Massive) Galaxies have Super-Massive Black Holes

The First Black Holes

Credit: NASA / WMAP Science Team

How to grow a SMBH? The seeds:

Volonteri (2010)

Volonteri (2010)

Further SMBH Growth: Active Galactic Nuclei (AGN)

Black hole: 10⁶-10¹⁰ M_{sun}

Accretion disk: • ~10⁻⁴-10⁻² pc (from variability)

Torus:

- 10⁵-10⁷ M_{sun}
- ~few parsec
 (from IR spectrum)
- Geometry unknown
- Source of nuclear obscuration

Black hole-Galaxy Connection

All (massive) galaxies have black holes

- \checkmark Tight correlation of M_{\rm BH} with σ
- Common BH/SFR Evolution
- AGN feedback important

Black hole-Galaxy Connection

- All (massive) galaxies have black holes
- ✓ Tight correlation of M_{BH} with σ
 ✓ Common BH/SFR Evolution
 ✓ A CNL feedback important
- AGN feedback important

M-o Relation

Gueltekin et al. (2009)

Black hole-Galaxy Connection

- All (massive) galaxies have black holes
- \checkmark Tight correlation of $\rm M_{BH}$ with σ
- **Common BH/SFR Evolution**
- AGN feedback important

Marconi et al. 2004

Black hole-Galaxy Connection

- All (massive) galaxies have black holes
- \checkmark Tight correlation of $\rm M_{BH}$ with σ
- Common BH/SFR Evolution
- AGN feedback important

AGN Feedback

Springel et al. 2005

Obscured Accretion

- Critical stage of BH-galaxy connection.
- Occurs when galaxies form most of their stars.
- Can represent up to 50% of matter accretion onto the central black hole.

How do we know that?

 \rightarrow Local AGN Unification

Credit: Treister & Natarajan

Explain Extragalactic X-ray "Background"

Observed X-ray "Background"

Treister et al. 2009

AGN in X-rays

AGN in X-rays

Photoelectric absorption affect mostly low energy emission making the observed spectrum look harder.

AGN in X-rays

Compton Thick AGN

Defined as obscured sources with N_H>10²⁴ cm⁻².
Very hard to find (even in X-rays).
Observed locally and needed to explain the Xray background.

• Number density highly uncertain.

X-ray Background

XRB well explained using a combination of obscured and unobscured AGN.

Setti & Woltjer 1989
Madau et al. 1994
Comastri et al. 1995
Gilli et al. 1999,2001
Ueda et al. 2003
Treister & Urry 2005
Gilli et al. 2007
And others...

Only 0.1% of the XRB comes from CT AGN in the local Universe.

XRB not useful to constrain CT AGN at z>1

Local Universe (z~0) Swift INTEGRAL

Log N-Log S

CT AGN fraction ~7%

Significantly lower than previous XRB pop. synthesis models

Consistent with more recent measurement 4.6% (Burlon+10)

Treister et al. 2009

Intermediate Redshifts (z~1-3) Mid-IR Selection

- ~4 σ detection in each band
- f_{soft} =2.1x10⁻¹⁷erg cm⁻²s⁻¹. f_{hard} = 8x10⁻¹⁷erg cm⁻²s⁻¹
- Sources can be detected individually in ~10 Msec

Rest-Frame Stacking

 N_{H} =10²⁴cm⁻² Γ =1.9 Γ =1.9 (reflected) Thermal kT=0.7 keV HMXBs

Combination of heavilyobscured AGN and starformation

The Merger-Quasar Connection

Morphologies

Merger-Quasar Connection

Obscured quasars are the product of the merger of two massive gas-rich galaxies. After a time Δt the quasar becomes unobscured

The Merger-Quasar Connection

The obscured phase represents ~30% of total accretion onto supermassive black holes

Quasars outflows can get rid of most of the surrounding material

Lower Luminosity Obscured AGN

CDF-S 4 Msec data X-ray stacking of IR-selected galaxies

Harder X-ray spectrum for more luminous sources -> More AGN in these samples

Rest-frame Spectral Analysis

Combination of thermal emission, X-ray binaries and obscured AGN

Much flatter evolution -> different triggering mechanism?

Energy Range	6-80 keV
Angular resolution	40"
Field of View	12'x12'
Flux Limit	~2x10 ⁻¹⁴ in 1 Msec
Launch Date	February 2012
PI	Fiona Harrison

The Future: ASTRO-H

http://astro-h.isas.jaxa.jp

High Energy Observations

NuSTAR and astro-H will directly detect a large number of heavily-obscured AGN up to z~1-2

AGN Number Counts

High Redshift (z>6) Lyman Break Selection

Bouwens et al. 2010

X-Ray Stacking

z~6

- ~5 σ detection in the soft (3.5-14 keV rest frame) band
- ~7 σ detection in the hard (14-56 keV) band
- Flux ratio ~9
- Need N_H~1.6x10²⁴cm⁻² to explain it
- Vast majority of sources heavily obscured (4 π obscuration)
- No detection in any band at $z\sim7$ and $z\sim8$ (or combined)

Accreted Mass vs Redshift

Accreted Mass vs Redshift

Hydrogen Re-ionization

AGN cannot re-ionize the Universe at z>6

This is because of heavy obscuration. If unobscured, enough UV photons to reionize the Universe

Summary

• Most BH accretion up to $z\sim3$ identified in X-rays, either directly or via stacking.

 Vast majority of accretion, ~70%, is obscured. ~20% of BH accretion is Compton Thick.

• Future X-ray missions (NuSTAR, Astro-H) will be critical to study this population of CT AGN.

• Self-regulation appears to be important for BHs at all redshifts. M- σ relation at all redshifts?

• Stacked detection at z~6 in hard band implies very high obscuration in most sources -> 4π obscuration.

• Due to their high obscuration, these sources do not re-ionize the Universe.