LVC + Blueshift

An Origin of Their Observational Diversities? Keiichi Maeda Inst. for the Phys. and Math. of the Universe (IPMU),

University of Tokyo

Observational Characteristics of Supernovae

- > 500 discoveries a year (557 for 2006, 584 for 2007).
 - -Only a part (nearby) observed in detail.
- Distance > ~ 10 Mpc (extragalactic).

-Point sources.

- Typical maximum mag. $V > \sim 16 \text{ mag} (roughly)$.
- Most of obs. = Optical.
 - Imaging + spectra (time-dep.)
 Interpretation

Supernova Physics (e.g., exp. mech.)

Spectroscopic Typing⇒Progenitor

Emission Process in SNe Ia (and Ib/c)

• Power source: ${}^{56}Ni \Rightarrow {}^{56}Co \Rightarrow {}^{56}Fe.$ 8.8 day 113 day $\Rightarrow ~ 1 \text{ MeV } \gamma (+ e+)$

Type Ia Supernovae and cosmology

- Thermonuclear runaway of a white-dwarf (WD).
 - An explosion of a Chandrasekhar-mass WD.
 - No central remnant left.
- "Homogeneous" light curves→standard candles.
 - − Light curve time scale ∞ Luminosity \leftarrow ⁵⁶Ni mass.

Asymetry Theory, Observation, then Unification?

- Off-set SN Ia model.
 - KM+, 2010, ApJ, 712, 624.

- observational evidence.
 - KM+, 2010, ApJ, 708, 1703.

Observational diversities.

- KM+, 2010, Nature, 466, 82.
- KM+, 2011, MNRAS, in press

Asymmetric explosions?

- Details of the exp. not yet clarified.
- "spherical" explosion is standard, but it does not have to be in theories.

Dipole Convection in progenitor WD (Kuhlen+ 06)

Kasen, Roepke, Woosley, 2009

 Δm_{15} (Light curve time scale)

But NO observational evidence

- Theorists have started thinking about the "asymmetric" explosion in these days.
 - Roepke+07, Jordan+08, Kasen+09.
- **Big** problem here.
 - (Some) models may explain some observations, which can however be explained by SPHERICAL models as well.
- We need direct evidence, which contradicts any spherical models.

Where to look into? High-density Ash!

• Example: Ignition at an **offset** (near the center). Fe-peak elements

Deflagration

time

Def. Ash = STABLE Fe+Ni, High Density

Det. Ash = ⁵⁶Ni (SN power!), Low Density

KM, Roepke, Fink, Hillebrandt, Travaglio, Thielemann, 2010, ApJ, 712, 624

How? Late-time spectra

- Simple, but not easy... faint (radioactive decay⇒~ 21 23 mag)
- Successful for SNe Ib/c to show their asymmetric nature.
 - KM, Kawabata, Mazzali+, 2008, Science, 319, 1220.
 - Modjaz+08, Taubenberger+09.

KM, Taubenberger, Sollerman+, 2010, ApJ, 708, 1703

Thermal Balance

Doppler shift diagnostics for SNe la

Ionization / particle

 $\frac{4\pi J_{\gamma}\sigma_{\gamma}}{\chi_{eff}} = \alpha n_e \frac{n_{i+1}}{n_i} \Rightarrow \frac{n_{i+1}}{n_i} \propto n_e^{-1} J_{\gamma} \qquad \qquad L_{line} \propto n_e n_0 \exp\left(-\frac{T_{ex}}{T_e}\right)$

⁵⁶Ni/Co/Fe: radioactive input

Excitation T of a line

- STABLE Fe+Ni, high density... "Def. Ash"
 - Low ionization(+1), low temperature (~ 5000K).
 - Representative = [Fe II]7155, [Ni II]7378.
- ⁵⁶Ni, low density... "Det. Ash"

- High ionization(+2), high temperature (~ 10000K).

• Representative = **[Fe III]4701**.

KM, Taubenberger, Sollerman+, 2010, ApJ, 708, 1703

It is there! The first evidence of asymmetry

[Fe III

Evidences... NOt model dependent.

• Purely observational statements.

No correlation w/ epoch.
The shift does not evolve for each SN.
Large variation of the Doppler shift.
→ Offset + viewing angle.

Correlation w/ epoch. The shift evolves with time. Little variation for given epoch. → Radiation transfer. Spherical. Obs. from Motohara+06, Gerardy+07, Leloudas+ 09

⁵⁶Ni, low p

Toy model

A strong case: 2003hv

Looks like **spherical**, if you look at only this line! (as people did.)

U

Steble Fe+Ni, high ρ

• Two categories in lines.

- No shift.
- blue-shift.
 - The shift behavior
 as expected.

Computation by 3D nebular code by KM+ 2006

Tackling Observational Diversities

• Expectation.

- SNe Ia look different for different viewing direction.

- Any implications in Observations?
 - Spectral Evolution Diversity.
 - Peak Color Diversity.

Spectral evolution diversity

Velocity of absorbing materials decreases with time. The way different for different SNe.

HVG/LVG = High/Low Velocity Gradient

Spectral evolution diversity

Si II absorption velocity

Si II absorption velocity / day

Days Light curve time scale = Luminosity indicator

- Spectral evolution does **not correlate** with the "luminosity".
 - The no-correlation noticed by Benetti+05, raising a challenge to the concept of "SNe Ia = uniform class = good standard candles"

KM, Benetti, Stritzinger+, 2010, Nature, 466, 82

Just a viewing angle!

Speed of the spectral evolution (Velocity Gradient)

Prob. for chance coincidence
 = 0.06%

HVG all viewed at the directionOPPOSITE to the deflagration ash.

Wavelength Shift of [Fe II]7155+[Ni II] 7378 = **viewing angle**

"typical" SN Ia configuration

Distribution of wavelength shift

Shift = -3,500 km s⁻¹ × cos θ LVG: -3,000 < θ < 1,000 km s⁻¹ HVG: 1,000 < θ < 3,000 km s⁻¹ θ_0 = acos(-1000/3500)

HVG + Redshift

Number ratios HVG/LVG

One assumption:

- Off-set = 3,500 km s⁻¹ for the deflagration ash is generic.
- Two **independent** information points to the **same** config.
 - **105-110°** for the transition angle.

HVG:LVG = 1:2 (numbers) 1- $\cos\theta_0/1+\cos\theta_0$ = LVG/HVG = 2 KM, Leloudas, Stritzinger+, 2011, MNRAS, in press

Diversity in Color?

- Why does it matter? Essential in SN cosmology.
- Observed color + magnitude → distance.
 - extinction = observed color intrinsic color.
 - distance = obs. mag. absolute mag. extinction
- Intrinsic color depends on
 Light curve shape.
 - -+alpha \rightarrow color diversity.

KM, Leloudas, Stritzinger+, 2011, MNRAS, in press

Intrinsic color variation from asymmetry

- "low-reddening SNe" → observed color ~ intrinsic.
 Either in E/S0 or in the outskirts.
- "Viewing direction" \rightarrow intrinsic color variation (?).

- C.f., HVGs are red (Pignata+ 08, Wang+09). Observed color w/ LC correction

Host extinction: Real or Artifact?

- A part (not all) of the previously derived "host extinction" may be due to "intrinsic color".
 - Host extinction should be revised.

"Low-reddening" SNe (host morphology)

No selection for reddening

Asymmetry → Observational Diversities

LVG + Blueshift + Bluer color

HVG + Redshift + Redder color

Conclusions

Asymetry Is a generic feature.

- Late-time spectra have provided the **first evidence**.
 - Strong support for the "one-sided" nature.

-Solves a part of "diversities" in SNe Ia.

- A simple answer to the diversities in **spectral evolution/color**.
- Would **not** introduces **z-dependent systematic errors** in cosmology (it is a random effect).
- However, might affect the extinction. May introduce some (zindependent) systematics?
- Unification of further diversities?