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THE GEOMETRIC ENTROPY IN THIS PAPER

 Geometric entropy is related to the entanglement

entropy by double Wick rotation. (cf. the 
condensed matter physics)

M. Fujita, T. Nishioka, T. Takayanagi ``08

 Geometric entropy is the von-Neumann 
(information) entropy associated with the 
coordinate space.

 We want to find the order parameter for the 
deconfinement transition in the SYM theory on 
S3

(~ YM with LQCD)  Geometric entropy on S3



D=4 N=4 SYM THEORY

 The matter contents are six real scalars Φ, 

one gauge boson Aμ,  four Weyl fermions Ψ.

SUSY → The degrees of freedom of the bosons 

(6+2) are equal to those of the fermions (4x2). 

 Superconformal field theory with vanishing beta-

function

Broken by S1*S3 compactification to mimic QCD

 We can analyze the strong coupling N=4 SYM by using

Gauge/Gravity Correspondence. (large N

limit)



D=4 N=4 SYM ON THE ORBIFOLD S3/ZN
 S1×S3 compactification of N=4 SYM 

 Orbifold includes the parity symmetry.

 Examples     fixed line     The deficit  angle

(fixed point)             2π(1-1/n)
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THE GEOMETRIC ENTROPY: DEFINITION

 Z(n):  the partition function of the N=4 SYM on S3/Zn

In particular Z(1) is the partition function on S3.  

 The identifiction:

ρ:  the density matrix

H: Hamiltonian along  operated by orbifold action

 Define the geometric entropy as follows:
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DECONFINEMENT TRANSITION AT WEAK

COUPLING

 Free N=4 SU(N) SYM on S3 can go through the 

Confinement/Deconfinement phase transition.

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. V. Raamsdonk ``03

 N=4 SU(N) SYM on S3 (radius R) ~ SU(N) YM with

LQCD~ R1

 In the small R limit (asymptotic free case), we can see 

the confinement/deconfinement transition at weak 

(zero) coupling.



THE GEOMETRIC ENTROPY AND

CONFINEMENT/DECONFINEMENT

TRANSITION

 We can integrate out the matter fields and  

reduce along S3 to a unitary matrix model. 

・Only polyakov loop U=exp(i A0) is dynamical.

 The unitary matrix model describing the free 
N=4 SYM on S1xS3
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THE GEOMETRIC ENTROPY AND

CONFINEMENT/DECONFINEMENT TRANSITION

 The  expectation value  of the Polyakov loop                                                        

Confinement phase       L =0        for T < Tc (=0.379LQCD)                          

Deconfinement phase       L =1/2π  for T～Tc (T > Tc )

 The geometric entropy is another order parameter; 

 High temerature limit       
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“DECONFINEMENT TRANSITION” IN A DUAL

DESCRIPTION (HAWKING-PAGE TRANSITION)

 Deconfinement (Hagedorn) transition = Hawking-Page
transition

Low temperature           High temperature

Thermal AdS AdS black hole

Smaller Ssugra is chosen

 First-order phase transition
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DECONFINEMENT TRANSITION AT STRONG

COUPLING

(GAUGE/GRAVITY CORRESPONDENCE)
 IIB supergravity (dual to strongly coupled SYM)

 The geometric entropy is given by  
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GEOMETRIC ENTROPY AND

HAGEDORN/DECONFINEMENT TRANSITION

 Below, we compare the geometric entropy from gravity 

(strong-coupling) with that of the free Yang-Mills (weak-

coupling)

Geometric entropy as an order parameter.

SUGRA result Free Yang-Mills result

MF-Nishioka-Takayanagi (2008)



CONCLUSION

 In the N=4 SYM, the geometric entropy can be used as an 

order parameter of the confinement/deconfinement  

transition at weak coupling.

 In the dual gravity description, the geometric entropy is 

also the order parameter of the Hagedorn (Hawking-Page)

transition, i.e. the confinement/deconfinement transition

at strong coupling.

 As future extensions we can introduce the matter field.
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The geometric entropy in the 

condensed matter physics 

 System whose total Hilbert space is a direct product:

 Entanglement Entropy (EE) is defined using the density 

matrix ρ by

 If A and B are a spatial bipartion

of the system, EE is called geometric entropy!
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the geometric entropy in this paper

 Geometric entropy is related to the entanglement

entropy by double Wick rotation. (cf. the 
condensed matter physics)

M. Fujita, T. Nishioka, T. Takayanagi ``08

 Geometric entropy is the von-Neumann 
(information) entropy associated with the 
coordinate space.

 We want to find the order parameter for the 
deconfinement transition in the SYM theory on S3

(~YM with LQCD)  Geometric entropy on S3



Motivation for the geometric entropy

in QCD like theories

 In QCD, an order parameter is needed. 

Example: 

(a) Polyakov loop,  the chiral condensate (in the    

chiral limit) 

(b) EE is an order parameter for the deconfinement

transition in the Yang-Mills theory.  

T. Nishioka, T. Takayanagi, ``06,                

I. Klebanov, D. Kutasov,  and A. Murugan,``07

(c) Geometric entropy in this paper is more convenient to 

search the finite temperature system.

→ We analyze the phase structure of the guage theory     

with matter fields on S1×S3 using geometric entropy.





A D=4 N=2 SYM theory with flavor

 N=2 vector multiplet + Nf N=2 hypermultiplet

 The matter contents of N=2 vector multiplet

Two real scalars Φ, one gauge boson Aμ,  2 Weyl fermions Ψ.

 +Nf Flavor:  The matter contents of N=2 hypermultiplet

Four real scalars,  2 Weyl fermions

 Vanishing beta-function for 2N=Nf

Broken by S1*S3 compactification to mimic QCD



Orbifold gauge theory on S3/Zn

 We use the Replica method in terms of n in the orbifold.

 We consider the orbifold gauge theory on S1×S3/Zn.

 Z(n):  the partition function of the gauge theory on S1×S3/Zn

In particular, Z(1) is the partition function on S1×S3

)arbitrary  action;orbifold(
2

020

)sin(sin 222222

3

n
n

dddd












The geometric entropy Ⅱ

 The identification

H: Hamiltonian along φ 

ρ:  the density matrix

 Definition of geometric entropy on S1×S3
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Deconfinement Transition at Weak

Coupling

 Free N=2 U(N) SYM on S1*S3 can go through the 

Confinement/Deconfinement phase transition as third order 

phase transition.
H. J. Schnitzer ``04

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. V. Raamsdonk ``03

 N=2 U(N) SYM with flavor on S3 (radius R) ~ U(N) QCD like    

theories with LQCD~ R1

 In the small R limit (asymptotic free case), we can see the 

confinement/deconfinement transition at weak (zero) coupling.



Partition function of d=4 gauge 

theories with matter on an orbifold 

S3/Zn

 The matter contents of our theory become a N =2 vector multiplet and 

Nf hypermultiplet

 We can integrate out the matter fields and reduce along S3 to a unitary matrix 

model (possible for orbifold S3/Zn) → Dynamical field is only Polyakov loop 

exp(iβA0). 

v(x), f(x):  the single particle partition functions for the 

adjoint fields and the fundamental fields, respectively
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Review for the derivation of v(x), f(x)

 The single-particle partition function on S3/Zn is given by

 To derive above formulas, we can consider a conformal transformation:

The states of the field theory on R*S3 local operators on R4

The energy of the states  (     )                     conformal dimension of local

operators  (          )

 Embedding S3/Zn in C2 with the coordinates (z1,z2)

orbifold action   
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Review for the derivation of v(x), f(x)

 Zn action on the scalar operator Φ in C2

 For n=3,  the invariant operators are given by

 The single-particle partition function is computed as follows:
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Review for the derivation of v(x), f(x)

 For the gauge fields and Weyl fermions,  the computation is 

similar to the scalar field:

 For gauge field,

 For Weyl fermion, 

 Then,  v(x) =2zv+2zB – 2zF and  f ’= 4zB-2zF

Imposing the Gauss law constraint,

xμAμ=0



Free energy

 Approximation:  only the first winding state in the time 

direction 

valid for not sufficiently high  

temperature region

 Rewriting the partition function:

 where 
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Free energy and third order phase 

transition

 Asymptotic expansion of K(g) in the large N limit:

H. Liu, ``04

 We search the saddle point in Z(v,f)

When v<1 and f < f0 =1-v,  

D.  Gross,  E.  Witten, ``80

Third order phase 

When v<1 and f > f0 or v>1,                                        transition 

 The critical temperature is determined from the formula



Free energy and Polyakov loop

 The plot of free energy N2F = -logZ / β

 Polyakov loop vev

 It will be interesting if we compare our result 

with results of Lattice and soft wall AdS/QCD.
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Comment on related works: 

Polyakov loop in Soft-wall AdS/QCD

 It is possible to compute the expectation value of the 

Polyakov loop by using the gauge/gravity correspondence.

(Andreev 2009).

 The soft-wall model can holographically describe strongly 

coupled SU(N) QCD.

 The metric of the soft-wall model :
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Expectation value of the Polyakov loop

・Nambu-Goto action:

・After subtracting divergent parts

・Polyakov loop
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Numerical results of the matrix model

(ours) and the soft-wall AdS/QCD

 Solid blue curve: 

soft-wall AdS/QCD results

 Dots:

lattice simulations (SU(3)

QCD)

 Solid green curve:

Our free SYM results

Andreev (2009)

overlaid with our plot

QCD is more like strong coupling limit (AdS/QCD) !



Geometric entropy and Third order  

Transition

 Geometric entropy in terms of the free energy F

Plot of Geometric entropy S G and dS G /dT 

 Geometric entropy can capture the third order phase  

transition of the Gross-Witten model.



High temperature limit

 The behavior of single particle partition function at high temperature limit  

x    0 (β 0)

 We define the geometric entropy SP
G 

with fermions obeying the periodic

b.c. in the time direction.

 The free energy and ΔSG=SG - SP
G  

at high temperature limit 

The behavior 

related with the 

usual entropy



Introducing chemical potential

 The Lagrangian of the hypermultiplet

 We  introduce the chemical potential conjugate to the following global 

symmetry

 Subgroup of R-symmetry U(1)J   SU(2)R

 Baryonic U(1)F  subgroup in U(Nf) flavor symmetry





Geometric entropy at finite density

 We use the approximation neglecting the higher order of 

winding states (m>1)

 For U(1)J case, single particle partition function is 

replaced by

 Stability bounds  Δ>μQ (Q=1) mean μ <1



Geometric entropy at finite density

at μ=1/2

 Geometric entropy can capture the third order phase transition.

SG becomes positive value if the 

temperature is low and Nf is large.

Plots of Geometric entropy S G and dS G /dT 



Geometric entropy at finite density

 Plots of geometric entropy at T=0.3 as a function of μ



Mass deformation for flavor

 single particle partition functions of bosons/fermions must be 

replaced by

 An useful expression,  Abel-Plana formula

then, 
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Chiral condensate for N=2 SYM with 

flavor 

F
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The chiral symmetry is restored in the massless limit or in m ∞

limit (T    0 limit )

Reslut of probe D7brane analysis

Nf << N
T=1



Conclusion

 We analyzed the phase structure d=4 large N QCD like 

theory using the geometric entropy.

 We can capture the deconfinement phase transition as the 

third order phase transition using the geometric entropy.

 We enlarged our analysis for the finite density system. For 

the case 2N~NF, geometric entropy has interesting behavior.


