#### GEOMETRIC ENTROPY AND CONFINEMENT/DECONFINEMENT TRANSITION IN D=4 QCD LIKE THEORIES

Mitsutoshi Fujita (Tokyo U. IPMU)

Collaborator: Tatsuma Nishioka, Hiroshi Ohki, and Tadashi Takayanagi

Based on JHEP0809:016,2008 [arXiv: 0806.3118[hep-th]] and JHEP1008:056,2010 [arXiv: 1006.0344[hep-th]]

#### CONTENTS

#### • Short introduction to the geometric entropy

• Application for the deconfinement transition in d=4  $\mathcal{N}=4$  SYM on  $S^1 \times S^3$  (to mimic finite-T QCD)

- Weak coupling limit
- Strong coupling limit

(by using the AdS/CFT correspondence)

#### • Conclusion

#### THE GEOMETRIC ENTROPY IN THIS PAPER

• Geometric entropy is related to the entanglement entropy by double Wick rotation. (cf. the condensed matter physics)

M. Fujita, T. Nishioka, T. Takayanagi ``08

- Geometric entropy is the von-Neumann (information) entropy associated with the coordinate space.
- We want to find the order parameter for the deconfinement transition in the SYM theory on  $S^3$

 $(\sim \text{YM with } \Lambda_{\text{QCD}}) \rightarrow \text{Geometric entropy on } S^3$ 

## $D=4 \mathcal{N}=4 \text{ SYM THEORY}$

 The matter contents are six real scalars Φ, one gauge boson A<sub>µ</sub>, four Weyl fermions Ψ.
 SUSY → The degrees of freedom of the bosons (6+2) are equal to those of the fermions (4x2).

- Superconformal field theory with vanishing betafunction Broken by  $S^{1*}S^3$  compactification to mimic QCD
- We can analyze the strong coupling N=4 SYM by using Gauge/Gravity Correspondence. (large N limit)



## THE GEOMETRIC ENTROPY: DEFINITION Z(n): the partition function of the 𝒩=4 SYM on S<sup>3</sup>/Z<sub>n</sub> In particular Z(1) is the partition function on S<sup>3</sup>.

The identification:

$$\frac{Z(n)}{Z(1)^{1/n}} = \operatorname{Tr} e^{-\frac{2\pi}{n}H} = \operatorname{Tr} \rho^{\frac{1}{n}}$$

 $\rho$ : the density matrix

*H*: Hamiltonian along  $\phi$  operated by orbifold action

Define the geometric entropy as follows:

$$S_{G} = -\operatorname{Tr} \rho \log \rho = -\frac{\partial}{\partial n} \log \left[ \frac{Z(n)}{Z(1)^{1/n}} \right]_{n=1}$$

Von-Neumann entropy

## DECONFINEMENT TRANSITION AT WEAK COUPLING

• Free  $\mathcal{N}=4$  SU(N) SYM on  $S^3$  can go through the Confinement/Deconfinement phase transition.

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. V. Raamsdonk ``03

- $\mathcal{N}=4$  SU(N) SYM on  $S^3$  (radius R) ~ SU(N) YM with  $\Lambda_{\rm QCD} \sim R^{-1}$
- In the small *R* limit (asymptotic free case), we can see the confinement/deconfinement transition at weak (zero) coupling.

#### THE GEOMETRIC ENTROPY AND CONFINEMENT/DECONFINEMENT TRANSITION

- We can integrate out the matter fields and reduce along  $S^3$  to a unitary matrix model.
  - •Only polyakov loop  $U=\exp(iA_0)$  is dynamical.
- The unitary matrix model describing the free  $\mathcal{N}=4$  SYM on  $S^1 x S^3$  $\sum_{n=1}^{\infty} \frac{1}{(z_n(x^m)+z_n(x^m)+(-1)^{m+1}z_n(x^m))} \operatorname{Tr}(U^m) \operatorname{Tr}(U^{\dagger m})$

$$Z(n) = \int [dU] e^{\sum_{m=1}^{\infty} \frac{1}{m} (z_s(x^m) + z_v(x^m) + (-1)^{m-1} z_f(x^m)) \operatorname{Ir}(U^m) \operatorname{Ir}(U^m)}$$

$$x = e^{-1/TR} \left( \sim e^{\Lambda_{\text{QCD}}/T} \right)$$
  
$$z_s(x) = 6 \frac{x(1+x^n)}{(1-x)^2(1-x^n)}, \ z_v(x) = \frac{2x^2(1+2x^{n-1}-x^n)}{(1-x)^2(1-x^n)}, \ z_f = \frac{16x^{\frac{n}{2}+1}}{(1-x)^2(1-x^n)}$$

THE GEOMETRIC ENTROPY AND CONFINEMENT/DECONFINEMENT TRANSITION

• The expectation value of the Polyakov loop  $L = \frac{\text{Tr}(U)}{N}$ 

Confinement phaseL = 0for  $T < T_c$  (=0.379 $\Lambda_{\rm QCD}$ )Deconfinement phase $L = 1/2\pi$  for  $T \sim T_c$  ( $T > T_c$ )

Breaking the  $Z_N$  symmetry

The geometric entropy is another order parameter;

 $S_G = O(1)$  (for confinement phase)  $S_G = O(N^2)$  (for deconfinement phase)

• High temerature limit

$$S_G = -\frac{\pi^2 N^2}{3} TR$$
 (c.f.  $S_G^{\text{weak}} = \frac{2}{3} S_G^{\text{strong}}$ )

# "DECONFINEMENT TRANSITION" IN A DUAL DESCRIPTION (HAWKING-PAGE TRANSITION)

 Deconfinement (Hagedorn) transition = Hawking-Page transition

Low temperature Thermal AdS

$$ds^{2} = \left(\frac{r^{2}}{b^{2}} + 1\right)dt^{2} + r^{2}d\Omega_{3}^{2} + \left(\frac{r^{2}}{b^{2}} + 1\right)^{-1}dr^{2}$$

Smaller  $S_{sugra}$  is chosen  $\rightarrow$  First-order phase transition High temperature AdS black hole

$$ds^{2} = \left(\frac{r^{2}}{b^{2}} + 1 - \frac{M^{2}}{r^{2}}\right) dt^{2}$$
$$+ r^{2} d\Omega_{3}^{2} + \left(\frac{r^{2}}{b^{2}} + 1 - \frac{M^{2}}{r^{2}}\right)^{-1} dr^{2}$$

## DECONFINEMENT TRANSITION AT STRONG COUPLING (GAUGE/GRAVITY CORRESPONDENCE)

IIB supergravity (dual to strongly coupled SYM)

$$S_{sugra}(n) = -\frac{1}{16\pi G_N^{(5)}} \int \sqrt{g} R + ... = -\frac{\operatorname{Area}(\gamma)}{4G^{(5)}} \left(1 - \frac{1}{n}\right) + ...$$
• The geometric entropy is given by
$$S_G = -\frac{\partial}{\partial n} \log \left[\frac{Z(n)}{Z(1)^{1/n}}\right] \Big|_{n=1} = -\frac{\partial S_{sugra}(n)}{\partial n} - S_{sugra}(1)$$

$$S_G = \frac{\operatorname{Area}(\gamma)}{4G_N^{(5)}} \rightarrow -\frac{N^2}{2}\pi^2 Tb$$

$$T \sim \frac{\sqrt{bM}}{4\pi b^2}$$
High temperature
Same formula as
Hawking-Bekenstein entropy!
Orbifold
fixed point
S^1

#### GEOMETRIC ENTROPY AND HAGEDORN/DECONFINEMENT TRANSITION

Below, we compare the geometric entropy from gravity (*strong-coupling*) with that of the free Yang-Mills (*weak-coupling*) SUGRA result
Free Yang-Mills result



Geometric entropy as an order parameter.

MF-Nishioka-Takayanagi (2008)

#### CONCLUSION

- In the *N*=4 SYM, the geometric entropy can be used as an order parameter of the confinement/deconfinement transition at weak coupling.
- In the dual gravity description, the geometric entropy is also the order parameter of the Hagedorn (Hawking-Page) transition, i.e. the confinement/deconfinement transition at strong coupling.
- As future extensions we can introduce the matter field.

## Geometric Entropy and confinement/deconfinement transition in d=4 QCD like theories

#### Mitsutoshi Fujita

(Tokyo U. IPMU)

Collaborator: Tatsuma Nishioka, Hiroshi Ohki, and Tadashi Takayanagi

Based on JHEP0809:016,2008 [arXiv: 0806.3118[hep-th]] and JHEP1008:056,2010 [arXiv: 1006.0344[hep-th]]

#### Contents

- The geometric entropy in condensed matter physics
- Motivation for the geometric entropy in QCD like theories
- Application for the deconfinement transition in free  $\mathcal{N}=2$  SYM with flavor on  $S^1 \times S^3$ 
  - (to mimic finite-T QCD)
    - Breaking supersymmetry
    - Finite density system
- Conclusion

The geometric entropy in the condensed matter physics

System whose total Hilbert space is a direct product:

 $H = H_A \otimes H_B$ 

- Entanglement Entropy (EE) is defined using the density matrix  $\rho$  by  $S_A = -Tr_A(\rho_A \log \rho_A)$  $\rho_A = Tr_B(\rho)$
- If A and B are a spatial bipartion of the system, EE is called geometric entropy!

### the geometric entropy in this paper

 Geometric entropy is related to the entanglement entropy by double Wick rotation. (cf. the condensed matter physics)

M. Fujita, T. Nishioka, T. Takayanagi ``08

- Geometric entropy is the von-Neumann (information) entropy associated with the coordinate space.
- We want to find the order parameter for the deconfinement transition in the SYM theory on S<sup>3</sup> (~YM with  $\Lambda_{QCD}$ )  $\rightarrow$  Geometric entropy on S<sup>3</sup>

## Motivation for the geometric entropy in QCD like theories

In QCD, an order parameter is needed.

Example:

- (a) Polyakov loop, the chiral condensate (in the chiral limit)
- (b) EE is an order parameter for the deconfinement transition in the Yang-Mills theory.

T. Nishioka, T. Takayanagi, ``06,

I. Klebanov, D. Kutasov, and A. Murugan, ``07

- (c) Geometric entropy in this paper is more convenient to search the finite temperature system.
- → We analyze the phase structure of the guage theory with matter fields on  $S^1 \times S^3$  using geometric entropy.

#### A D=4 $\mathcal{N}=2$ SYM theory with flavor

•  $\mathcal{N}=2$  vector multiplet +  $N_f \mathcal{N}=2$  hypermultiplet

- The matter contents of *N*=2 vector multiplet
   Two real scalars Φ, one gauge boson A<sub>µ</sub>, 2 Weyl fermions Ψ.
- + $N_f$  Flavor: The matter contents of  $\mathcal{N}=2$  hypermultiplet Four real scalars, 2 Weyl fermions
- Vanishing beta-function for 2N=N<sub>f</sub>
   Broken by S<sup>1</sup>\*S<sup>3</sup> compactification to mimic QCD

## Orbifold gauge theory on $S^3/Z_n$

We use the Replica method in terms of n in the orbifold.

- We consider the orbifold gauge theory on  $S^{1} \times S^{3}/Z_{n}$ .  $d\Omega_{3}^{2} = d\theta^{2} + \sin^{2}\theta (d\psi^{2} + \sin^{2}\psi d\phi^{2})$  $0 \le \phi \le 2\pi \rightarrow 0 \le \phi \le \frac{2\pi}{n}$  (orbifold action; *n* arbitrary)
- Z(n): the partition function of the gauge theory on  $S^1 \times S^3/Z_n$ In particular, Z(1) is the partition function on  $S^1 \times S^3$

The geometric entropy II

The identification

$$\frac{Z(n)}{Z(1)^{1/n}} = \operatorname{Tr} e^{-\frac{2\pi}{n}H} = \operatorname{Tr} \rho^{\frac{1}{n}} \qquad H: \text{ Hamiltonian along } \varphi$$
  

$$\rho: \text{ the density matrix}$$

φ

• Definition of geometric entropy on  $S^1 \times S^3$ 

$$S_{G} = -\text{Tr} \rho \log \rho = -\frac{\partial}{\partial n} \log \left[ \frac{Z(n)}{Z(1)^{1/n}} \right]_{n=1}$$
  
Definition of Von-Neumann entropy

## Deconfinement Transition at **Weak Coupling**

Free N=2 U(N) SYM on S<sup>1</sup>\*S<sup>3</sup> can go through the Confinement/Deconfinement phase transition as third order phase transition.

H. J. Schnitzer ``04

O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M.V. Raamsdonk ``03

- $\mathcal{N}=2 \text{ U(N)}$  SYM with flavor on S<sup>3</sup> (radius R) ~ U(N) QCD like theories with  $\Lambda_{\text{QCD}} \sim R^{-1}$
- In the small R limit (asymptotic free case), we can see the confinement/deconfinement transition at weak (zero) coupling.

## Partition function of d=4 gauge theories with matter on an orbifold $S^3/Z_n$

- The matter contents of our theory become a  $\mathcal{N}$  =2 vector multiplet and  $N_f$  hypermultiplet
- We can integrate out the matter fields and reduce along  $S^3$  to a unitary matrix model (possible for orbifold  $S^3/Z_n$ )  $\rightarrow$  Dynamical field is only Polyakov loop  $exp(i\beta A_0)$ .

$$Z(v, f) = \int [dU] \exp \left[ \sum_{m=1}^{\infty} \frac{1}{m} \left( v(x^m) \operatorname{Tr} U^m \operatorname{Tr} U^{m\dagger} + \frac{1}{2} N f(x^m) (\operatorname{Tr} U^m + \operatorname{Tr} U^{m\dagger}) \right) \right]$$
$$x = e^{-1/TR} \quad (\sim e^{\Lambda_{\text{QCD}}/T})$$

v(x), f(x): the single particle partition functions for the adjoint fields and the fundamental fields, respectively

## Review for the derivation of v(x), f(x)

• The single-particle partition function on  $S^3/Z_n$  is given by

$$v(x^{m}) = v_{B}(x^{m}) + (-1)^{m+1}v_{F}(x^{m}),$$

$$v_{B}(x) = 2\frac{x^{2}(1+2x^{n-1}-x^{n})}{(1-x)^{2}(1-x^{n})} + 2\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$f'(x^{m}) = f'_{B}(x^{m}) + (-1)^{m+1}f'_{F}(x^{m}),$$

$$f'(x) = 4\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$f'_{B}(x) = 4\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$f'_{F}(x) = 8\frac{x^{n/2+1}}{(1-x)^{2}(1-x^{n})},$$

$$f'_{B}(x) = 4\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$f'_{F}(x) = 8\frac{x^{n/2+1}}{(1-x)^{2}(1-x^{n})},$$

$$f'(x) = 4\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$f'(x) = 8\frac{x^{n/2+1}}{(1-x)^{2}(1-x^{n})},$$

To derive above formulas, we can consider a conformal transformation:
 The states of the field theory on R\*S<sup>3</sup> ( local operators on R<sup>4</sup>

The energy of the states 
$$(\partial_r)$$
  $\iff$  conformal dimension of local operators  $(r \cdot \partial_r)$ 

• Embedding S<sup>3</sup>/Z<sub>n</sub> in C<sup>2</sup> with the coordinates  $(z_1, z_2)$  $\rightarrow$  orbifold action  $i\frac{2\pi}{z_1} \approx z_1 e^{-i\frac{2\pi}{n}}$  Review for the derivation of v(x), f(x)

•  $Z_n$  action on the scalar operator  $\Phi$  in  $C^2$ 

$$\begin{split} \phi(z_1, \bar{z}_1, z_2, \bar{z}_2) &\sim \phi(e^{i\frac{2\pi}{n}} z_1, e^{-i\frac{2\pi}{n}} \bar{z}_1, z_2, \bar{z}_2), \\ \partial_1^2 \phi(z_1, \bar{z}_1, z_2, \bar{z}_2) &\sim e^{i\frac{4\pi}{n}} \partial_1^2 \phi(e^{i\frac{2\pi}{n}} z_1, e^{-i\frac{2\pi}{n}} \bar{z}_1, z_2, \bar{z}_2), \end{split} \quad \partial_i &= \partial / \partial z_i \ (i = 1, 2) \end{split}$$

▶ For n=3, the invariant operators are given by

 $\phi, \partial_2 \phi, \bar{\partial}_2 \phi, \partial_2 \partial_2 \phi, \partial_2 \bar{\partial}_2 \phi, \bar{\partial}_2 \bar{\partial}_2 \phi, \partial_1 \partial_1 \partial_1 \phi, \bar{\partial}_1 \bar{\partial}_1 \bar{\partial}_1 \phi, \dots$ 

The single-particle partition function is computed as follows:  $z(x) = \sum_{local op.} x^{\Delta} = \sum_{k=1}^{\infty} k x^{k} (1 + 2\sum_{l=1}^{\infty} x^{n})$   $= \frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})}$   $\partial_{1}^{n}, \quad \partial_{1}^{n}$ depending the orbifold Review for the derivation of v(x), f(x)

For the gauge fields and Weyl fermions, the computation is similar to the scalar field:

For gauge field,  $z_{v}(x) = 2x \sum_{k=1} kx^{k}(1+2\sum_{l=1} x^{nl-1})$   $= \frac{2x^{2}(1+2x^{n-1}-x^{n})}{(1-x)^{2}(1-x^{n})}.$ For Weyl fermion,  $z_{f} = 4x^{\frac{n}{2}} \sum_{k=1} kx^{k}(1+\sum_{l=1} x^{nl})$   $= \frac{4x^{1+\frac{n}{2}}}{(1-x)^{2}(1-x^{n})},$ 

For the term  $v(x) = 2z_v + 2z_B - 2z_F$  and  $f' = 4z_B - 2z_F$ 

### Free energy

- Approximation: only the first winding state in the time direction
  - $v(x^m) = f(x^m) = 0 \ (m \ge 2)$  valid for not sufficiently high temperature region
- Rewriting the partition function:

$$\begin{split} Z(v,f) &= \frac{N^2}{8\pi v} \int [dU] d\lambda \bar{d}\lambda \exp\left[-\frac{N^2}{4v} (\lambda - f)(\bar{\lambda} - f) + \frac{N}{2} (\lambda \mathrm{Tr}U + \bar{\lambda} \mathrm{Tr}U^{\dagger})\right] \\ &= \frac{N^2}{4\pi v} \int_0^\infty g dg \int_{-\pi}^{\pi} d\theta \exp\left[-\frac{N^2}{4v} (g^2 - 2gf\cos\theta + f^2)\right] \cdot \\ &\quad \cdot \int [dU] \exp\left(\frac{Ng}{2} (\mathrm{Tr}U + \mathrm{Tr}U^{\dagger})\right) \\ &= \frac{N^2}{2v} \int_0^\infty g dg e^{-N^2\beta F(v,f,g)}, \end{split}$$

 $N^{2}\beta F(v,f,g) = -\log I_{0}\left(\frac{N^{2}gf}{2v}\right) + \frac{N^{2}}{4v}(f^{2}+g^{2}) - N^{2}K(g) \qquad e^{N^{2}K(g)} = \int [dU]\exp\frac{1}{2}Ng\left(\mathrm{Tr}U + \mathrm{Tr}U^{\dagger}\right).$ 

## Free energy and third order phase transition

• Asymptotic expansion of K(g) in the large N limit:

$$K(g) = \begin{cases} \frac{g^2}{4} + O(1/N^3) & (g < 1) \\ g - \frac{1}{2}\log g - \frac{3}{4} + O(1/N^2) & (g > 1) \end{cases} \qquad \textbf{H. Liu, ``04}$$

We search the saddle point in Z(v,f)

When v < I and  $f < f_0 = I - v$ ,

$$g_{0} = \frac{f}{f_{0}} < 1, \quad \beta F(v, f, g_{0}) = -\frac{f^{2}}{4(1-v)}.$$
D. Gross, E. Witten, ``80  
When v<1 and f > f\_{0} or v>1,  

$$g_{0} = v + \frac{f}{2} + \sqrt{\left(v + \frac{f}{2}\right)^{2} - v}, \quad \beta F(v, f, g_{0}) = -\frac{g_{0}}{2} - \frac{fg_{0}}{4v} + \frac{1}{2} + \frac{1}{2}\log g_{0} + \frac{f^{2}}{4v}.$$

The critical temperature is determined from the formula

 $v(x) + f(x) = 1, \quad g_0 = 1.$ 

#### Free energy and Polyakov loop

- The plot of free energy  $N^2F = -\log Z / \beta$
- Polyakov loop vev

$$L = \left\langle \frac{\mathrm{Tr}(U)}{N} \right\rangle = \partial (NK(g)) / \partial g$$

 It will be interesting if we compare our result with results of Lattice and soft wall AdS/QCD.



Comment on related works: Polyakov loop in Soft-wall AdS/QCD

- It is possible to compute the expectation value of the Polyakov loop by using the gauge/gravity correspondence. (Andreev 2009).
- The soft-wall model can holographically describe strongly coupled SU(N) QCD.
- The metric of the soft-wall model :

 $ds^{2} = G_{mn}dx^{m}dx^{n} = \frac{e^{\frac{4}{3}cz^{2}}}{z^{2}}\left(fdt^{2} + dx^{2} + \frac{1}{f}dz^{2}\right)$  $f(z) = 1 - \left(\frac{z}{z_{T}}\right)^{4} \qquad \begin{array}{c} c \sim \text{typical scale of QCD}\left(\Lambda_{\text{QCD}}\right)\\ z_{T} \sim \text{temperature} \end{array}$ 

Expectation value of the Polyakov loop •Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int dt dz \sqrt{\det G_{mn} \partial_{\alpha} X^n \partial_{\beta} X^m}$$

After subtracting divergent parts

$$S = \left(\sqrt{\pi} \frac{T_c}{T} Erfi\left(\frac{T_c}{T}\right) + 1 - e^{(T_c/T)^2}\right) + \text{const.} \quad T_c \sim \frac{\sqrt{c}}{\pi}$$

Polyakov loop

$$L(T) = \exp(-S)$$

Numerical results of the matrix model (ours) and the soft-wall AdS/QCD



- Solid blue curve: soft-wall AdS/QCD results
- Dots: lattice simulations (SU(3) QCD)
- Solid green curve:
   Our free SYM results

Andreev (2009) overlaid with our plot

QCD is more like strong coupling limit (AdS/QCD) !

### Geometric entropy and Third order Transition

Geometric entropy in terms of the free energy F

$$S_G = -\frac{\partial}{\partial(1/n)} \left( \log Z(n) - \frac{1}{n} \log Z(1) \right) \bigg|_{n=1} = -\frac{\partial}{\partial n} \left( (\beta F)(n) - \frac{1}{n} (\beta F(1)) \right).$$

Plot of Geometric entropy  $S^{G}$  and  $dS^{G}/dT$ 



 Geometric entropy can capture the third order phase transition of the Gross-Witten model.

## High temperature limit

- The behavior of single particle partition function at high temperature limit  $\mathbf{x} \neq \mathbf{0} \ (\beta \neq \mathbf{0})$   $z_c(x^m) = \frac{4}{m^3 n \beta^3} + \frac{n^2 - 1}{3mn\beta} + O(\beta),$   $z_v(x^m) = \frac{4}{m^3 n \beta^3} + \frac{n^2 - 6n - 1}{3mn\beta} + O(1),$   $z_f(x^m) = \frac{4}{m^3 n \beta^3} - \frac{2 + n^2}{6mn\beta} + O(\beta).$
- We define the geometric entropy S<sup>P</sup><sub>G</sub> with fermions obeying the periodic
   b.c. in the time direction.
- The free energy and  $\Delta S_G = S_G S_G^P$ at high temperature limit  $F = -\frac{1}{12}\pi^2 N^2 T^4 \left(1 + \frac{N_f}{N}\right) V_{S^3}, \quad \Delta S_G = -\frac{\pi^2 N^2}{6\beta} \left(\frac{N_f}{N} + 1\right).$

The behavior related with the usual entropy

### Introducing chemical potential

• The Lagrangian of the hypermultiplet

$$\mathcal{L} = \int (Q_a^{\dagger} e^{-2V} Q_a + \tilde{Q}_a e^{2V} \tilde{Q}_a^{\dagger}) + \int d^2 \theta (\tilde{Q}_a \Phi Q_a) + h.c.$$

- We introduce the chemical potential conjugate to the following global symmetry
- Subgroup of R-symmetry  $U(I)_{J} \subseteq SU(2)_{R}$

$$U(1)_J: \quad \Phi \to \Phi(e^{-i\alpha}\theta), \quad V \to V(e^{-i\alpha}\theta),$$
$$Q \to e^{i\alpha}Q(e^{-i\alpha}\theta), \quad \tilde{Q} \to e^{i\alpha}\tilde{Q}(e^{-i\alpha}\theta),$$

• Baryonic  $U(I)_F$  subgroup in  $U(N_f)$  flavor symmetry

$$(Q_a, \tilde{Q}_a^{\dagger}) \to e^{i\alpha}(Q_a, \tilde{Q}_a^{\dagger})$$

### Geometric entropy at finite density

- We use the approximation neglecting the higher order of winding states (m>1)
- For U(I)<sub>j</sub> case, single particle partition function is replaced by  $u(x^m) = u_1(x^m) + (-1)^{m+1}u_2(x^m)$

$$v(x^{m}) = v_{B}(x^{m}) + (-1)^{m+1}v_{F}(x^{m}),$$
  
$$v_{B}(x) = 2\frac{x^{2}(1+2x^{n-1}-x^{n})}{(1-x)^{2}(1-x^{n})} + 2\frac{x(1+x^{n})}{(1-x)^{2}(1-x^{n})},$$

$$v_F(x) = 4 \frac{x^{n/2+1+\mu}}{(1-x)^2 (1-x^n)} + 4 \frac{x^{n/2+1-\mu}}{(1-x)^2 (1-x^n)},$$
  

$$f'(x^m) = f'_B(x^m) + (-1)^{m+1} f'_F(x^m),$$
  

$$f'_B(x) = 4 \frac{x^{1-\mu} (1+x^n)}{(1-x)^2 (1-x^n)}, \quad f'_F(x) = 8 \frac{x^{n/2+1}}{(1-x)^2 (1-x^n)}.$$

▶ Stability bounds  $\Delta > \mu Q$  (Q=1) mean  $\mu < I$ 

#### Geometric entropy at finite density

Plots of Geometric entropy  $S^{G}$  and  $dS^{G}/dT_{at \mu} = 1/2$ 



Geometric entropy can capture the third order phase transition.

#### Geometric entropy at finite density

> Plots of geometric entropy at T=0.3 as a function of  $\mu$ 



### Mass deformation for flavor

 single particle partition functions of bosons/fermions must be replaced by

$$f_B(x) = \sum_{l=0}^{\infty} l^2 e^{-\sqrt{l^2 + m^2}/T}, \ f_F(x) = \sum_{l=0}^{\infty} l(l+1) e^{-\sqrt{(l+1/2)^2 + m^2}/T}$$

An useful expression, Abel-Plana formula

$$\sum_{l=0}^{\infty} f(l) = \frac{1}{2} f(0) + \int_{0}^{\infty} f(x) dx + i \int_{0}^{\infty} \frac{f(it) - f(-it)}{e^{2\pi t} - 1} dt$$

#### then,

$$f_B(x) = m^2 T K_2(m/T) \dots,$$
  
$$f_F(x) = m^2 T K_2(m/T) - \frac{m}{4} K_1(m/T) \dots$$

## Chiral condensate for N=2 SYM with flavor

$$\left\langle \stackrel{-}{\psi} \psi \right\rangle_{1-loop}(m) = c = \frac{\partial}{\partial m} \log Z(m) = -\frac{\partial}{\partial m} \beta F$$

The chiral symmetry is restored in the massless limit or in  $m \rightarrow \infty$ limit ( $T \rightarrow 0$  limit)



#### Conclusion

- We analyzed the phase structure d=4 large N QCD like theory using the geometric entropy.
- We can capture the deconfinement phase transition as the third order phase transition using the geometric entropy.
- We enlarged our analysis for the finite density system. For the case  $2N \sim N_F$ , geometric entropy has interesting behavior.