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@ The Generalization of Parke-Taylor’s Formula Through 3-Loops
Q Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux

@ Colour & Kinematics: the Vernacular of the S-Matrix

@ Tree-Level Recursion: Making the Impossible, Possible

@ Momentum Twistors and Geometry: Trivializing Kinematics
© Beyond Trees: Recursion Relations for Loop-Amplitudes

@ The Loop Integrand in Momentum-Twistor Space

@ Pushing BCFW Forward to All-Loop Orders

@ The Geometry of Forward Limits
@ Local Loop Integrals for Scattering Amplitudes

@ Leading Singularities and Schubert Calculus

@ Manifestly-Finite Momentum-Twistor Integrals

@ Pushing the Analytic S-Matrix Forward
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MHV Amplitudes in Quantum Chromodynamics: A le
The Generalization of Parke-Taylor’s Formula Thr _00ps

Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to”
the amplitude for gg — gggg.
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the amplitude for gg — gggg.

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA
Received 13 September 1985

The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.
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MHV Amplitudes in Q

The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to”

the amplitude for gg — ggg9. Parke & Taylor, Nucl. hys. B269

@ 220 Feynman diagrams, thousands of terms

e used ‘N = 2 supersymmetry’ to relate it to

c.g., Aﬁ(g+7g+7¢+a¢+7¢_7¢_)
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Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our result not only an experimentalist’s, but also a
theorist’s delight.
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MHV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Parke and Taylor’s Heroic Computation: Six Months Later

Six months later, they had come upon a “guess”, not just for not their
amplitude but an infinite number of amplitudes! [PRL 56 (1986),2459]
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MHV Amplitudes in Quantum Chromodynamics: A le
The Generalization of Parke-Taylor’s Formula Thr _00ps

Pushing Parke and Taylor’s Amplitude Beyond Tree-Level

Recently, in a similarly heroic computation, Cristian Vergu determined the
next-to-next-to leading order correction to Parke-Taylor’s result for N' = 4:
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The two-loop MHV amplitudes in A = 4 supersymmetric
Yang-Mills theory

C. Vergu*

Physics Department, Brown University, Providence, RI 02912, USA

Abstract
We compute the even part of the planar two-loop MHV amplitude in A" = 4 supersymmetric

Yang-Mills theory, for an arbitrary number of external particles. The answer is expressed as a sum

of conformal integrals.
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The results presented in this paper hint that a different organization of the result may
be possible. For example, the coefficients written down using the square brackets symbols
can be assembled over a common denominator whose topology is that of a double pentagon
Sometimes, the coefficient of a given topology needs to be split into two contributions which

get assembled into different double pentagon topologies (see Eq. (72) for an example).
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MHYV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Pushing Parke-Taylor’s Formula Through 3-Loops:

More recently, these formulae have been considerably simplified
(and extended to three loops) [arXiv:1012.6032]:

R
(12)(23)---(n1)
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MHYV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Pushing Computational Boundaries for NMHV Amplitudes

Similar simplifications have also been found for amplitudes involving
3 minus-helicity gluons [arXiv:1012.6032]:
AP = AP x

1% June, 2011 ViU ar Quantum Field Theory and the Analytic S-Matrix



MHYV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Pushing Computational Boundaries for NMHV Amplitudes

Similar simplifications have also been found for amplitudes involving
3 minus-helicity gluons [arXiv:1012.6032]:
AP = AP x

E R[1ii+1j j+1]

i<j<i

1% June, 2011 IPMU Seminar Quantum Field Theory and the Analytic S-Matrix



MHYV Amplitudes in Quantum Chromodynamics: A Parable
The Generalization of Parke-Taylor’s Formula Through 3-Loops

Pushing Computational Boundaries for NMHV Amplitudes

Similar simplifications have also been found for amplitudes involving
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A%S) — A;Q)X i
. j
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3 minus-helicity gluons [arXiv:1012.6032]:
A(3 .A(2 i

i<j<i i<j<k<i ) i<j<i oy I
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Momentum Twistors and Geometry: Trivializing Kinematics

Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:
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By shuffling all colour-factors to the outside of every Feynman
diagram, we can write the amplitude* for any desired
colour-ordering in terms of any other.
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By shuffling all colour-factors to the outside of every Feynman
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colour-ordering in terms of any other.

Colour-ordered partial amplitudes

An({pa}) =) Te(T* -+ T) An(pay - - - » Pay,)

eg Ag(17,27 37,41 57,67,77,8%,97)
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0 3 1 .2
1 Al — i pa+pa Do — Wq
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a7 la asp <pa+lpa Py — i

Notice that
p'pu = det(p™®).

Quantum Field Theory and the Analytic S-Matrix
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0 .3 1_ ;2
1 ad — pa+pa Pq — tDg — yaya
P — P =p,0 = 1 . 9 = )\ )\
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Useful Lorentz-invariant scalars:

AL AL ALl
(ab) = v )\% , [ab] = 35 X%

(patp)? = (ab)lba] = s, {al b+ +0)ld] = (al (B)[b+.. +0e)|d].
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Momentum Twistors and Geometry: Trivializing Kinematics

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
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s561(56)(6 1) [23] [34] (1/(6 + 5)[4](5[(6 + 1)|2]
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4 4 1 4
AP (4, =+, =+, -) = (1+g7+g*) (46)" [13]

5456(45)(56) [12] [23] (4](5 + 6)[1](6](5 + 4)[3]

For 8-point N2MHY, there are 74 linearly-independent 40-term
identities connecting the different BCFW formulae.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
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Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

® Do = Ta+1 — g
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.
@ Dy = Tgi1 — Tq
@ scattering amplitudes turn out to be superconformal invariant
with respect to these dual-coordinates!
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: dual-coordinate x-space.

@ Dy = Tgi1 — Tq

@ scattering amplitudes turn out to be superconformal invariant
with respect to these dual-coordinates!

@ combined with the ordinary-space superconformal invariance,
scattering amplitudes are invariant under an infinite-dimensional
Yangian symmetry.

X6
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

1% June, 2011



Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux Colour & Kinemat ‘ernacular of the S-Matrix
Tree-Level Recursi Possible
ializing Kinematics

Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.
@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, Ze, Zq are linearly dependent.
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pa+ ... +pp)? =0<= (a—1abb+l) = 0.

X6 Z5 Zs

Ps Ps
X5 X

\_4\
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pg+ ... +pp)2 =0 <= (a—1abb+l) = 0.

Momentum Twistor Kinematics
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pg+ ... +pp)2 =0 <= (a—1abb+l) = 0.

Momentum Twistor Kinematics
@ momentum conservation and on-shell condition are trivial
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pg+ ... +pp)2 =0 <= (a—1abb+l) = 0.

Momentum Twistor Kinematics
@ momentum conservation and on-shell condition are trivial

o entire MHV amplitude arises as a Jacobian:
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pg+ ... +pp)2 =0 <= (a—1abb+l) = 0.

Momentum Twistor Kinematics

@ momentum conservation and on-shell condition are trivial

o entire MHV amplitude arises as a Jacobian:
64 Zz Pi
A(p17 o ’pn) = m/‘(zh ey Zn)
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Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition,
momentum conservation remains a non-trivial constraint.
Solution: momentum-twistor space.

@ Andrew Hodges: to make superconformal invariance manifest,
use the twistor space associated with dual coordinates:
momentum twistor space.

o (abced) =det(Zy Zy Z. Zg) = 0 <= the twistors
Loy Ly, ZLe, Zq are linearly dependent.

@ S0, (pg+ ... +pp)2 =0 <= (a—1abb+l) = 0.

Momentum Twistor Kinematics
@ momentum conservation and on-shell condition are trivial
o entire MHV amplitude arises as a Jacobian:

64 >ipi
A(p17"')pn) = mA(ZhaZn)
= AMEV (7, ....Z,)=1.
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW
of n,m
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Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  JT=(jj+)N(n—=1n1) and A= (nn=1)(jj+l1)
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  JT=(jj+)N(n—=1n1) and A= (nn=1)(jj+l1)
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.
e Contributions arise from factorization channels: (n1jj+1) =0

A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)
partitions N BCFW
ofmm  T=(jj+)N(n=1nl) and A= (nn=1)(jj+l1)

I’l—lc
n - Jj+tl
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e Contributions arise from factorization channels: (n 17 j+1) =0
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n 17 j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions N BCFW
ofmm  T=(jj+)N(n=1nl) and A= (nn=1)(jj+l1)
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n1j j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  T=(jj+)N(n=1nl) and A= (nn=1)(jj+l1)
The Most Useful Identity in Projective Geometry:
Zy(bcde) + Zy(cdea) + Z.(deab) + Zileabc) + Ze(abed) = 0.

— e
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n1j j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  JT=(jj+)N(n—=1n1) and A= (nn=1)(jj+l1)
The Most Useful Identity in Projective Geometry:
—Zg(bede) = Zy(cdea) + Z.(deab) + Zgleabe) + Z.(abed)

— e
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n1j j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  T=(jj+)N(n=1nl) and A= (nn=1)(jj+l1)
The Most Useful Identity in Projective Geometry:
—Zg(bede) — Zy(cdea) = Z(deab) + Zgleabe) + Z.(abced)
— 1o
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n1j j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  F=(jj+1)N(n=1nl) and A= (nn=1)(jj+11)
The Most Useful Identity in Projective Geometry:
J=(jj+1) N (n-1n1) = Z;(j+ln-1n1) + Zj (n-1n13)
— 1o
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Tree-Level BCEFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic,
the ‘naieve’ analytic continuation works: Z,, — Z,, + 2Z,_1.

e Contributions arise from factorization channels: (n1j j+1) =0
A= ST AT, 5, 0) Q) AT (T + 1, n— 1R)

partitions BCFW

ofmm  T=(jj+)N(n=1nl) and A= (nn=1)(jj+l1)
The Most Useful Identity in Projective Geometry:
n=(nn-1)(jj+11) = Z,(n-1jj+11) + Z,_1(j j+1 1n)
— 1o
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The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:

d4€1 (p1 + p2)?(p2 + p3)?
03(01 — p1)?(0y — p1 — p2)%(€1 + pa)?

>:< N /d4£2 (p1+p2)*(p2 + p3)?
03(la — p2)*(la — p1 — p2)% (2 + pa)?

4
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The Meaning of The Loop Integr and

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.
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The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

4 1
L

_ /d4L (p1 +p2)*(p2 + p3)?
LA(L — p1)*(L — p1 — p2)*(L + pa)?
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The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

4 1
L

_ /d4L (p1 +p2)*(p2 + p3)?
LA(L — p1)*(L — p1 — p2)*(L + pa)?

2
In dual coordinates, we find,
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The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

4 1
L

_ /d4L (p1 +p2)*(p2 + p3)?
LA(L — p1)*(L — p1 — p2)*(L + pa)?

2
In dual coordinates, we find,

2

z, :/d4x (21 — x3)* (22 — 24)
(x —21)%(x — 22)%(x — 23)2(x — x4)?
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The Meaning of The Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate
Feynman loop integrals:
At least for planar theories, the loop-integrand is unambiguous.

4 1
L

_ /d4L (p1 +p2)*(p2 + p3)?
LA(L — p1)*(L — p1 — p2)*(L + pa)?

2
In dual coordinates, we find,
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in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes 2 3 rd to All-Loop Orders
Th metry ard Limits

Integrals over Lines in Momentum-Twistor Space

Integration over all x corresponds to the integration over
all lines (Z 4 Zp) in momentum-twistor space.

d*Zad*Zp
d* =
/ “:’/vol(GLg X Darg)t /
AB

The propagators are

(x —x1)? <= (AB12) (x — x9)* <= (AB23) etc.

and the integral becomes

(12 34)2
/ (AB12)(AB 23)(AB 34)(AB 41)
AB
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The Loop Ir nd in Momentum-Twistor S
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushing BCFW Forward to All-Loop Orders
The Geometry of Forward Limits

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
I v L+ 20p-1.
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The Loop Integrand in Momentum-Twistor Space
Beyond Trees: Recursion Relations for Loop-Amplitudes Pushi CFW Forward to All-Loop Orders

The 1etry of Forward Limits

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
I v L+ 20p-1.

A =57 A (L5 QAT (T4, n— 1,7)
partitions . BCFW
ot J=(jj+) N (n=1n1)
A= mn=1)N(jj+l1)

BCFW
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e Loop Integrand in Momentum-Twistor
Beyond Trees: Recursion Relations for Loop-Amplitudes g BCFW Forward to All-Loop Orders

The Geometry of Forward Limits

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:
I v L+ 20p-1.

® The ordinary terms come from factorizations: (n1j j+1) = 0.

A= 57 A (L5 @ AT (T4, n— 1,7)

np,lp
partitions . BCFW
of mmt 7= (jj+1) N (n—=1n1)
A= mn=1)N(jj+l1)

20
BCFW

Quantum Field Theory and the Analytic S-Matrix
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oop Integrand in Momentum-Twistor

BCFW Forward to All-Loop Orders

The Geometry of Forward Limits

Beyond Trees: Recursion Relations for Loop-Amplitudes

The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

L= Zn+ 22n—1.
® The ordinary terms come from factorizations: (n1j j+1) =0

® The new terms come from cutting a propagator: (ABn 1) =0
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@ In \V = 4, these forward limits are always well-defined and finite

o the same has been proven for up to two-loops in any
supersymmetric theory
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@ In \V = 4, these forward limits are always well-defined and finite

o the same has been proven for up to two-loops in any
supersymmetric theory

e There is evidence that there exists a ‘smart forward limit’ that is
always finite and well-defined in any planar theory, extending the
all-loop recursion to even pure-glue (in the planar limit).
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The simplest one-loop amplitudes are the MHV amplitudes, which come from
the forward-limit of (n + 2)-point NMHYV tree-amplitudes:
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Following the Logic of Leading Singularities

These finite integrals are dramatically nicer than the more familiar scalar boxes.
Moreover, they suggest a natural ‘guess’ for MHV amplitudes [arXiv:1012.6032]:
(jk)*
12)(23)- (n1)

AD (T kT, ) =
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More Evidence for Underlying Elegance

Last year, Del Duca, Duhr, and Smirnov found an analytic formula for the
2-loop, 6-point MHV amplitude:
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