Refined topological string for Omega background

Yu Nakayama (Caltech)

in collaboration with Hirosi Ooguri

Motivation

- To understand gauge theory better (Low energy effective action, instanton, wall crossing)
- To understand string/quantum gravity better

(Counting black hole microstates, holomorphic anomaly)

 To understand math/geometry better (GW, DT theory, Calabi-Yau, wall crossing)

All are related via (refined) topological string

Refinement in the simplest We know Euler characteristic very well

$$\operatorname{Tr}(-1)^F = b_0 - b_1 + b_2 + \dots = \chi_X$$

Refined version:

 $\operatorname{Tr}_{BPS}(-1)^F y^J = b_0 - b_1 y + b_2 y^2 + \dots = P_X(y)$

Typically, much harder problem

Physicists approach to math $Tr(-1)^F = b_0 - b_1 + b_2 + \cdots = \chi_X$

Vacuum counting = SUSY path integral

$$\operatorname{Tr}(-1)^F e^{-\beta H} = \int \mathcal{D}X \mathcal{D}\psi e^{-S_{SUSY}} = \int R^n$$

The above example is closed within field theory.

$$\operatorname{Tr}_{1}(-1)^{F} = \int \mathcal{D}X_{1}e^{-S_{1}} = \int \mathcal{D}X_{2}e^{-S_{2}} = \operatorname{Tr}_{2}(-1)^{F}$$

Refined mathematics

- "Motivic" DT invariant
- "quantum" Langlands correspondence
- "beta-deformed" matrix model
- "Double periodic (elliptic)" multiple Gamma/Zeta function
- "quantum" Liouville theory / integrable system (AGT conjecture)
- "Refined" Chern-Simons theory (Khovanov homology)
- "Refined" counting of BPS states

Everything String theory (M-theory)

Without refinement, all the connections are explained (even proved?)

by using duality in string theory

 \rightarrow How about the refinement?

Each piece is understood, and experimentally they agree with each other...

But it lacks the blueprint! String definition is lacking!!!

Mystery of BPS counting Consider M-theory on Calabi-Yau X "Count BPS particles": $N_{\beta_i}^{J_1,J_2} \in \mathbf{Z}$ β : H₂(X,Z), J_1 , J_2 : "spin" of BPS particles (Lefschetz action)

$$F_{\text{ref}} = \sum_{i} N_i^{j_L, j_R} \int \frac{dt}{t} \operatorname{Tr}_{R_i} (-1)^{j_L + j_R} \frac{e^{-\mu_i t + i\epsilon_- j_L t + i\epsilon_+ j_R t}}{\sinh(\epsilon_1 t) \sinh(\epsilon_2 t)}$$

This formula must be the holy grail, or is it??

Unrefined holy grail

$$F_{unref} = \int \frac{ds}{s} \operatorname{Tr}_{R} \frac{(-1)^{J_{L}^{3} + J_{R}^{3}} e^{-sm^{2}} e^{-2s\epsilon J_{L}^{3}}}{(2\sinh(s\epsilon/2))(-2\sinh(s\epsilon/2))}$$

- This is the graviphoton corrected prepotential (2 graviton + 2g-2 graviphoton)
- SUSY version of Schwinger integral
- The prepotential is computed from topological string (= Gromov-Witten theory)
- This is also the Nekrasov partition function

Worldsheet instanton counting in 2D

= gauge instanton counting in 4D

Aim of the talk

I would like to propose a worldsheet formulation of the refined topological string theory

Stay tuned!

Refined topological string for Omega background

Yu Nakayama (Caltech)

in collaboration with Hirosi Ooguri

Nekrasov partition function

• Consider 5-dimensional N=2 gauge theory

$$Z(\epsilon_{+},\epsilon_{-}) = \text{Tr} \ (-1)^{F} e^{-\epsilon_{-}J_{-}^{3}} e^{-\epsilon_{+}(J_{+}^{3}+J_{R}^{3})}$$

$$Z(\epsilon_+, \epsilon_-) = \exp\left(-\frac{1}{\epsilon_+^2 - \epsilon_-^2} \sum_{g,n=0}^{\infty} \epsilon_-^{2g} \epsilon_+^{2n} F_{g,n}\right).$$

- F_{0,0} is identified with Seiberg-Witten prepotential
- Computed by localization (on instanton moduli space)
- What is the interpretation of F_{g,n} ?

Six dimensional Omega background

- Compactify heterotic string on K₃ x T₂
 (= six-dimensioanl (1,0) theory on T₂).
- Dual to type IIA (or M) on Calabi-Yau X $ds^{2} = (dx^{\mu} + \Omega^{\mu}dz + \bar{\Omega}^{\mu}d\bar{z})^{2} + dzd\bar{z}$
- Locally trivial
- We need further R-symmetry twist to preserve SUSY
- Compared with the KK ansatz

$$ds^{2} = dx^{2} + (dz + 2\bar{A}_{\mu}dx^{\mu})(d\bar{z} + 2A_{\mu}dx^{\mu}).$$

• Gauge field for STU, and graviphoton.

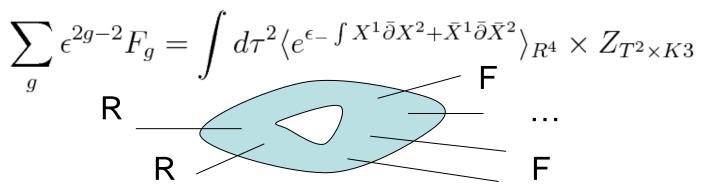
$$F^{G}_{\alpha\beta} = F^{T}_{\alpha\beta} = \frac{1}{2}F_{\alpha\beta},$$

$$F^{\bar{U}}_{\dot{\alpha}\dot{\beta}} = F^{\bar{S}}_{\dot{\alpha}\dot{\beta}} = \frac{1}{2}F_{\dot{\alpha}\dot{\beta}}.$$

$$\epsilon^{2}_{-} = \det F_{\alpha\beta}, \quad \epsilon^{2}_{+} = \det F_{\dot{\alpha}\dot{\beta}}.$$

Relation with (unrefined) topological string

• Compute 2 self-dual graviton, (2g-2) self-dual graviphoton at heterotic 1-loop



• LHS is the gravitphoton corrected prepotential (topological string amplitude)

$$\sum_{g} \epsilon_{-}^{2g-2} F_{g} = (-1)^{2j} \int_{0}^{\infty} \frac{dt}{t} \frac{\operatorname{tr} e^{-4t\epsilon_{-}J_{-}^{3}}}{(\sinh \epsilon_{-}t)^{2}} e^{-t\mu},$$

- RHS is sum of $\operatorname{tr}(-1)^{2j}e^{-2\epsilon J_{-}^{3}}e^{-\beta H}$
- Topological string = Nekrasov partition function

Refined case?

Refined Nekrasov partition function

$$F_{\text{ref}} = \sum_{i} N_i^{j_L, j_R} \int \frac{dt}{t} \operatorname{Tr}_{R_i} (-1)^{j_L + j_R} \frac{e^{-\mu_i t + i\epsilon_- j_L t + i\epsilon_+ j_R t}}{\sinh(\epsilon_1 t) \sinh(\epsilon_2 t)}$$

- Counting BPS particles with right SU(2) spin?
- What is the corresponding string background?
 - ASD graviphoton? (No SUSY?)
 - ASD vectormultiplet? (Antoniadis et al 2010)
 - Computes higher derivative F-terms
 - Interesting proposal but does not agree with Nekrasov's result...
- These approaches lack R-symmetry twist...

Flux + FI-term background in SUGRA

SUSY transformation

$$\begin{split} &\delta\psi^{i}_{\alpha\dot{\alpha}\beta} = \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + (F^{G}_{\alpha\beta}\delta^{i}_{j} + \epsilon_{\alpha\beta}P^{Gi}_{j})\zeta^{j}_{\dot{\alpha}}, \\ &\delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} = \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}} + (F^{G}_{\dot{\alpha}\dot{\beta}}\delta^{i}_{j} + \epsilon_{\dot{\alpha}\dot{\beta}}P^{Gi}_{j})\zeta^{j}_{\alpha}, \\ &\delta\lambda^{Ai}_{\alpha} = \partial_{\alpha\dot{\alpha}}t^{A}\zeta^{\dot{\alpha}i} + (F^{A}_{\alpha\beta}\delta^{i}_{j} + \epsilon_{\alpha\beta}P^{Ai}_{j})\zeta^{\beta j}, \\ &\delta\lambda^{\bar{A}i}_{\dot{\alpha}} = \partial_{\alpha\dot{\alpha}}t^{\bar{A}}\zeta^{\alpha i} + (F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}\delta^{i}_{j} + \epsilon_{\dot{\alpha}\dot{\beta}}P^{\bar{A}i}_{j})\zeta^{\dot{\beta}j}, \\ &SU(2)_{L}:\alpha, \quad SU(2)_{R}:\dot{\alpha}, \quad SU(2)_{I}:i \qquad \text{A: 1... } n_{v} \end{split}$$

- Hypermultiplet decouples
- Looking for SUSY configuration

1. Purely graviphoton

This is the original topological string configuration

$$\begin{split} \delta\psi^{i}_{\alpha\dot{\alpha}\beta} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + F^{G}_{\alpha\beta}\zeta^{i}_{\dot{\alpha}}, \\ \delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}}, \\ \zeta^{i}_{\alpha} &= \zeta^{(0)i}_{\alpha} - F^{G}_{\alpha\beta}x^{\beta\dot{\beta}}\zeta^{(0)i}_{\dot{\beta}}, \\ \zeta^{i}_{\dot{\alpha}} &= \zeta^{(0)i}_{\dot{\alpha}}, \end{split}$$

- Preserves 4 constant, 4 non-const SUSY $\{Q_{\alpha}^{i}, Q_{\dot{\beta}}^{j}\} = 2\epsilon^{ij}P_{\alpha\dot{\beta}},$ $\{P_{\alpha\dot{\beta}}, Q_{\dot{\beta}}^{i}\} = 2\epsilon_{\dot{\alpha}\dot{\beta}}F_{\alpha\beta}^{G}Q^{\beta i},$ $\{Q_{\dot{\alpha}}^{i}, Q_{\dot{\beta}}^{j}\} = 4\epsilon_{\dot{\alpha}\dot{\beta}}\epsilon^{ij}F_{\alpha\beta}^{G}M^{\alpha\beta},$
- Computes graviphoton corrected prepotential

2. SD graviphoton + ASD vector

Deformed topological string proposed by Antoniadis et al (2010).

$$\begin{split} \delta\psi^{i}_{\alpha\dot{\alpha}\beta} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + F^{G}_{\alpha\beta}\zeta^{i}_{\dot{\alpha}},\\ \delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}},\\ \delta\lambda^{\bar{A}i}_{\dot{\alpha}} &= F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}\zeta^{\dot{\beta}i}.\\ \zeta^{i}_{\alpha} &= \zeta^{(0)i}_{\alpha}, \zeta^{i}_{\dot{\alpha}} = 0 \end{split}$$

- Preserves 4 constant supercharges
- Computes higher derivative F-terms in ASD background

3. SD graviphoton + SD vector

Self-dual Omega background is an example

$$\begin{split} \delta\psi^{i}_{\alpha\dot{\alpha}\beta} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + F^{G}_{\alpha\beta}\zeta^{i}_{\dot{\alpha}}, \\ \delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} &= \partial_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}}, \\ \delta\lambda^{Ai}_{\alpha} &= \partial_{\alpha\dot{\alpha}}t^{A}\zeta^{\dot{\alpha}i} + F^{A}_{\alpha\beta}\zeta^{\beta i} \end{split}$$

$$\begin{split} \zeta^i_{\alpha} &= -F^G_{\alpha\beta} x^{\beta\dot{\beta}} \zeta^{(0)i}_{\dot{\beta}}, \\ \zeta^i_{\dot{\alpha}} &= \zeta^{(0)i}_{\dot{\alpha}}, \end{split} \qquad t^A = t^A_0 + A^{G\mu} A^A_\mu. \end{split}$$

- Preserves 4 non-const supercharges
- Nekrasov's Omega background:

$$ds^{2} = (dx^{\mu} + \Omega^{\mu}dz)^{2} + dzd\bar{z}$$

$$= dx^{2} + 2\Omega_{\mu}dx^{\mu}dz + 4\Omega_{\mu}\Omega^{\mu}dzdz + dzd\bar{z}.$$

R-twist and FI-term

The key object in refined topological string (refined Nekrasov's theory) is FI-term (R-twist)

- Only defined for non-compact limit (M_{pl} → ∞)
- R-twist needs (of course!) R-symmetry
- R-symmetry presents only when theory is non-compact
- So is FI-term
- Twisting by R-symmetry FI-term

4. Refined Omega background

R-twist ⇔ FI-term is needed to realize refined Omega background

$$\begin{split} \delta\psi^{i}_{\alpha\dot{\alpha}\beta} &= \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + F^{G}_{\alpha\beta}\zeta^{i}_{\dot{\alpha}}, \\ \delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} &= \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}}, \\ \delta\lambda^{Ai}_{\alpha} &= \partial_{\alpha\dot{\alpha}}t^{A}\zeta^{\dot{\alpha}i} + (F^{A}_{\alpha\beta} + P^{Ai}_{j})\zeta^{j}_{\alpha}, \\ \delta\lambda^{\bar{A}i}_{\dot{\alpha}} &= (F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}\delta^{i}_{j} + \epsilon_{\dot{\alpha}\dot{\beta}}P^{\bar{A}i}_{j})\zeta^{\dot{\beta}j}, \\ &= A^{G}_{\alpha\dot{\alpha}}\zeta^{(0)\dot{\alpha}i}, \quad \zeta^{i}_{\dot{\alpha}} &= \zeta^{(0)i}_{\dot{\alpha}}. \quad (F^{\bar{A}} + P^{A})\zeta^{(0)} = 0 \end{split}$$

Preserves 2 non-const supercharges

 ζ^i_{α}

 Nekrasov computed partition function with this geometry 5. Refined topological string We can preserve the additional 2 const SUSY

$$\begin{split} \delta\psi^{i}_{\alpha\dot{\alpha}\beta} &= \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\beta} + F^{G}_{\alpha\beta}\zeta^{i}_{\dot{\alpha}},\\ \delta\psi^{i}_{\alpha\dot{\alpha}\dot{\beta}} &= \nabla_{\alpha\dot{\alpha}}\zeta^{i}_{\dot{\beta}},\\ \delta\lambda^{Ai}_{\alpha} &= \partial_{\alpha\dot{\alpha}}t^{A}\zeta^{\dot{\alpha}i} + (F^{A}_{\alpha\beta} + P^{Ai}_{j})\zeta^{j}_{\alpha},\\ \delta\lambda^{\bar{A}i}_{\dot{\alpha}} &= (F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}\delta^{i}_{j} + \epsilon_{\dot{\alpha}\dot{\beta}}P^{\bar{A}i}_{j})\zeta^{\dot{\beta}j},\\ \delta\lambda^{\bar{A}i}_{\dot{\alpha}} &= (F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}\delta^{i}_{j} + \epsilon_{\dot{\alpha}\dot{\beta}}P^{\bar{A}i}_{j})\zeta^{\dot{\beta}j},\\ &= \zeta^{(0)i}_{\alpha} - A^{G}_{\alpha\dot{\alpha}}\zeta^{(0)\dot{\alpha}i}, \quad \zeta^{i}_{\dot{\alpha}} &= \zeta^{(0)i}_{\dot{\alpha}}. \quad (F^{\bar{A}} + P^{A})\zeta^{(0)} = 0\\ &= 0 \end{split}$$

Preserves 2 const and 2 non-const SUSY

 ζ^i_{α}

Analogue of pure graviphoton (topological string) for unrefined Omega background.

Summary of SUGRA background

fields turned on	$\zeta_{lpha}^{(0)i}$	$\zeta^{(0)i}_{\dot{lpha}}$	
$F^{G}_{lphaeta}$	1	1	topological string $(\epsilon_+ = 0)$
$F^G_{lphaeta}, F^{ar{A}}_{\dot{lpha}\dot{eta}}$	1	0	discussed in [AHTN]
$F^G_{lphaeta}, F^A_{lphaeta}, \overleftarrow{\partial} t^A$	0	1	Omega ($\epsilon_+ = 0$)
$F^{G}_{\alpha\beta}, F^{\bar{A}}_{\alpha\beta}, F^{\bar{A}}_{\dot{\alpha}\dot{\beta}}, P^{A}, \partial t^{A}$	0	1/2	Omega $(\epsilon_+ \neq 0)$
$F^G_{\alpha\beta}, F^A_{\alpha\beta}, F^{\overline{A}}_{\dot{\alpha}\dot{\beta}}, P^A, \partial t^A$	1/2	1/2	topological string $(\epsilon_+ \neq 0)$

- Topological string background is different from Nekrasov's Omega background
- Nevertheless we may extract the same physical quantity (prepotential vs partition function)

Heterotic worldsheet construction

Heterotic string on $T_2 \times K_3$

• Consider generic (4,0) compactification

We have universal 3 (+1) vector multiplets

- Complex structure (T), Kahler moduli (U), and dilaton (S)
- $$\begin{split} F^G_- &= (\partial_{[\mu,}g_{\nu]z} + \partial_{[\mu,}B_{\nu]z})_{-}, \quad F^G_+ = (\partial_{[\mu,}g_{\nu]\bar{z}} + \partial_{[\mu,}B_{\nu]\bar{z}})_{+}, \\ F^T_- &= (\partial_{[\mu,}g_{\nu]z} \partial_{[\mu,}B_{\nu]z})_{-}, \quad F^T_+ = (\partial_{[\mu,}g_{\nu]\bar{z}} \partial_{[\mu,}B_{\nu]\bar{z}})_{+}, \\ F^U_- &= (\partial_{[\mu,}g_{\nu]\bar{z}} \partial_{[\mu,}B_{\nu]\bar{z}})_{-}, \quad F^U_+ = (\partial_{[\mu,}g_{\nu]z} \partial_{[\mu,}B_{\nu]z})_{+}, \\ F^S_- &= (\partial_{[\mu,}g_{\nu]\bar{z}} + \partial_{[\mu,}B_{\nu]\bar{z}})_{-}, \quad F^S_+ = (\partial_{[\mu,}g_{\nu]z} + \partial_{[\mu,}B_{\nu]z})_{+}, \end{split}$$
- Note that SD part and ASD part has a different combination

R-symmetry and FI terms

• Assume K3 has an R-symmetry (must be non-compact)

 J_I^3 : Bosonic R-current in left mover (SUSY side) $J_{N=4}^3$: SU(2) current in N=4 SCA $J_I^3 + J_{N=4}^3$: physical (BRST invariant)

We can construct the vertex operator for the FI terms from any right-moving current \mathcal{J}_A

vector multiplet:

 $V_{D_A} = (J_I^3 + J_{SU(2)}^3)\mathcal{J}_A \quad \text{FI-term}$ $A_\mu \partial X^\mu \mathcal{J}_A \qquad \text{gauge field}$ $\partial Z \mathcal{J}_A \qquad \text{scalar field}$

FI terms in universal multiplets

$$\begin{array}{ll} (A^T_{\mu})_{-}\partial X^{\mu}\bar{\partial}Z, & (A^T_{\mu})_{+}\partial X^{\mu}\bar{\partial}\bar{Z}, \\ (A^U_{\mu})_{-}\partial X^{\mu}\bar{\partial}\bar{Z}, & (A^U_{\mu})_{+}\partial X^{\mu}\bar{\partial}Z. \end{array}$$

→ $(A_{\mu}^{T})_{-}$ and $(A_{\mu}^{U})_{+}$ have the same FI-term coupled to $(J_{I}^{3} + J_{N=4}^{3})\bar{\partial}Z$

FI-terms are not independent

Similarly $(A_{\mu}^{T})_{+}$ and $(A_{\mu}^{U})_{-}$ have the same FI-term coupled to $(J_{I}^{3} + J_{N=4}^{3})\overline{\partial}\overline{Z}$

Refined topological string bcg

1. Metric deformation

$$\epsilon_{-} = (\partial_{[\mu, g_{\nu]z}})_{-} = F_{-}^{G} + F_{-}^{T},$$

$$\epsilon_{+} = (\partial_{[\mu, g_{\nu]z}})_{+} = F_{+}^{U} + F_{+}^{S}.$$

- 2. To preserve 2 const, 2 non-const SUSY $Det P^A = Det F^A$
- 3. FI terms are not independent $P^T = P^{\overline{U}}$
- 4. We don't introduce P^S

$$\textbf{ > Unique choice } \begin{array}{c} F_{-}^{G} = \epsilon_{-} - \epsilon_{+}, \\ F_{-}^{T} = F_{+}^{U} = \epsilon_{+}. \end{array} P^{T} = P^{\bar{U}} = \epsilon_{+} \end{array}$$

Test of the proposal

Refined topological string bcg

We have computed the refined topological string amplitude in the zero slope limit (from heterotic string theory)

For a hypermultiplet

$$\int_0^\infty \frac{dt}{t} \frac{e^{-\mu t}}{\sinh(\epsilon_- + \epsilon_+)t \sinh(\epsilon_- - \epsilon_+)t},$$

For a vectormultiplet

$$\int_0^\infty \frac{dt}{t} \frac{-2\cosh(2\epsilon_+ t)e^{-\mu t}}{\sinh(\epsilon_- + \epsilon_+)t\,\sinh(\epsilon_- - \epsilon_+)t}.$$

Features of amplitudes

- FI-term gives the correct R-twist in the partition function $\rightarrow -2\cos(\epsilon_+ t)$ factor in vector multiplet (missing in Antoniadis et al)
- It has the symmetry $\epsilon_{\pm} \rightarrow -\epsilon_{\pm}$
- This must be a symmetry of Nekrasov's partition function (not at all manifest in other approaches: beta deformed matrix model etc)

Summary and Outlook

Summary

- Proposed SUSY background for refined topological string theory
- Computed in the heterotic string in zeroslope limit.
- Agreed with Nekrasov's refined partition function
- Full string computation?
- Type II setup?
- Holomorphic anomaly?