ABCD of 4d/2d Correspondence

Aug 30, 2011 IPMU

Jaewon Song California Institute of Technology

based on arXiv:1012.4468,1107.0973 with L. Hollands and C. Keller

AGT correspondence

- $Z_{4d}(\mathcal{C}, a, m, \epsilon) = Z_{2d}(\mathcal{C}, h_a, h_m, c)$
- 4d: N=2 Generalized quiver gauge theories T(C) of A_N type
- 2d: Liouville/Toda theory on C
- Nekrasov Partition function on $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ or S^4 = Correlation function
- Chiral/Full

Why?

The theories of class S

- Pick a 'gauge' group G=A, D, E.
- Riemann surface C, possibly with punctures.
- Punctures are decorated according to the choice of G.
- A pair of pants decomposition gives a weakly coupled description of the theory.

Riemann surface to quiver/conformal block

Generalizing AGT

- A_N (N>I) theories [Mironov-Morozov²], [Wyllard]
- Non-conformal cases [Gaiotto], [Taki]
- Insertion of non-local BPS operators [AGGTV], [DGG], ...
- D_N theories [Hollands-Keller-JS]
- A₁ Sicilian theories [Hollands-Keller-JS]

Trifundamental (T2)

- It's a Half-hypermultiplet.
 - Same matter content as a N=1 chiral multiplet
 - Has to be massless
 - Consistent only if it's in a pseudo-real representation of the gauge group

The three roads to trifundamentals

- U(2)³ : Not pseudo-real. Can't use it.
- Sp(1)³ : No direct G-curve realization
- Sp(I)xSO(4): Can't probe full parameter space

D_N-Theories of class S

- G=SO(2N) theories
- Can also realize G=Sp(N-I), SO(2N-I)
- SO-Sp quivers
- D2: SO(4), Sp(1), SO(3)

• Instanton Counting for Sp(1) vs SU(2). $Z_{Sp(1)}(q, a, m) \neq Z_{SU(2)}(q, a, m)$???

- Instanton Counting for Sp(1) vs SU(2). $Z_{Sp(1)}(q, a, m) \neq Z_{SU(2)}(q, a, m)$???
- Instanton counting with Sp-SO, Sp(1)³ Halfhypermultiplets

- Instanton Counting for Sp(1) vs SU(2). $Z_{Sp(1)}(q, a, m) \neq Z_{SU(2)}(q, a, m) ???$
- Instanton counting with Sp-SO, Sp(1)³ Halfhypermultiplets
- Z_2 -automorphism of $W(D_n)$ -algebra

- Instanton Counting for Sp(1) vs SU(2). $Z_{Sp(1)}(q, a, m) \neq Z_{SU(2)}(q, a, m) ???$
- Instanton counting with Sp-SO, Sp(1)³ Halfhypermultiplets
- Z_2 -automorphism of $W(D_n)$ -algebra
- Asymmetry of the conformal block for the trifundamental

Summary

 The Nekrasov partition function for the different realization of the same theory agrees once it's written in terms of IR variables. (QFT lesson 101)

Summary

• UV-UV map between parameters can be understood geometrically in terms of a map between the moduli spaces of Gaiotto curves.

Summary

 AGT correspondence is extended and tested to the D-series and Sicilian quivers with bi/trifundamental half-hypers.

break

Table of Contents

• 4d story

- ABCD of instanton counting
- UV vs IR and Geometry
- half-hypermultiplets
- 2d story
 - Z_2 -Twist of $W(D_n)$ algebra
 - Asymmetry of trifund conformal block

blackboard