Green-Schwarz Superstring
with Conformal Symmetry

Yoichi Kazama

(Univ. of Tokyo, Komaba)
at

IPMU, July 5, 2011

With Naoto Yokoi, Prog. Theor. Phys. 125 (2011) 265 (arXiv:1008.4655)



1 Introduction and summary

1.1 Motivation

AdS/CFT

One of the most profound structures in physics
¢ Many pieces of “evidence”
¢ Many “applications” (AdS/QCD, AdS/CMT, etc. )
But still no real understanding

¢ Strong/weak duality:
Open-closed duality cannot be the whole story

¢ No basic dynamical picture has been identified
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Common tentative strategy:

¢ Postpone the dynamical understanding.

¢ Understand each side separately and find precise isomorphic struc-
tures.

Understanding of the string side is slow

Need to solve closed string theory in curved space with RR flux
Basic objects one wants to compute = boundary correlation functions

To be compared to SYM correlators

g i V% of composite operators
3
1 \Z

¢ RR flux is crucially important <= D-branes
gy, N = 4mgs N = fi"‘/(x'2 (balance between gravity and RR flux)

¢ RR (bispinor) fields are difficult to handle in RNS formalism
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Advent of D-brane = Decline of RNS, revival of GS, emergence of
PS (pure spinor)

Papers after 1995 with title containing

RNS 26
Green-Schwarz 70
Pure spinor 96

Q  “GS type” formalisms with increasing manifest symmetries

GSLC — S}SSLC — GSDS — PSJ

conformal inv
SLC gauge: ')/C‘tﬁHAﬁ = 0 (fix k-symmetry only)
LC gauge: ~1.04% =0and XT(7,0) =t + p*r
of

DS=double spinor formalism (Aisaka and Kazama, 2005 )

® PS has been powerful for higher loop amplitudes in flat space.
Not sufficiently developed to handle curved background
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e (GSyc is most physical: Suitable for analyzing the physical spectrum, both in
flat space and in curved space (e.g. PP-wave background (Metsaev) )

Lack of conformal symmetry = Not suited for correlation functions

o | GSgic

Has conformal symmetry lacking in GSyc.
Can be used for curved background
—Superstring in PP-wave background (Kazama and Yokoi, (2008))
Conformal symmetry is non-trivial: Left- and right-moving modes are
coupled on the worldsheet, as in AdS5 x S°.
Quantum Virasoro algebra is established.

Exact spectrum is reproduced.

But we found that only surprisingly little has been known about this

theory, even in flat spacetime !

e Structures of quatum symmetries of the theory have not been
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clarified

e Vertex operators have not been constructed

— G Sg1c appears to be useful for Super SFT!

It should be worthwhile to

lay the systematic and comprehensive foundation of

the Green-Schwarz superstring
with conformal symmetry

the knowledge of which should be useful in future applications.

IBaba, Ishibashi, Murakami (2009 ~ )
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1.2 Brief summary of results

1. Clarification of complete gauge fixing procedure with compensating

transformations

2. Systematic phase space quantization which automatically incorporates

the effect of compensating transformations

3. Clarification of the structure of the quantum Virasoro algebra and its

relation to the supersymmetry algebra
T(z) =111 (2)II (2) + %(HI(z))2 — %SaOSa(z) —1—382 InIT"
Q= / [dz] (cT + bcdc)
{Qaa Qb} — 2\/§5abp+ {Qaa Qb} — 27abp
{Qa> Qy} = —2V28,,p™ + {Q, 5ab/[d2](2)}
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4. Clarification of the quantum super-Poincaré algebra

In particular
a1 = oL [aw (P)G'S)a(3S)a(w) )
M M }_1Q’ 2/[d | < (IT+(w))* )_f
I- .1 — _jol/4 w b(w)(5'S)a(w)
[M ’ Qa} — -Qa ( 2 )/[d ] { (H+(w))3/2

5. Construction of the vertex operators for the super-Maxwell multiplet

from first principle
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Vi(u) = / [dz] ek X() {ua (—iz—l/‘*\/ﬁ Sa(z))

é . -3 4(’7I5)a ;(z) . (2734 ('715>a R;(z)
pu (e OO 4 (27) R

ViB(C) = /[dz] e X ) [C_ I (z) + ¢ (HI(Z) — iRI(z)>

. 1T R;(2) 1 R! Ry(2)
+ 11— - _
+6 ( B+ 96 II+

(kIH ) ﬁ_’;jn ) (Z))] (RI — kJS,yIJS)

— k™ kT (2) —

6. Construction of exact quantum similarity transformation connecting

the LC gauge and the SLC gauge quantities
An application:  Construction of fermionic DDF operator for the first

time
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Plan of the talk and topics discussed

1. Introduction and summary

2. Classical action and the symmetries of the GS super-
string

3. Gauge-fixing and compensating transformation
4. Phase space formulation and quantization

5. Structure of the quantum symmetry algebras
6. Vertex operators for massless states

7. Similarity transformation to the LC gauge and construc-
tion of the DDF operators

8. Discussions
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2 Classical action and the symmetries of the GS super-
string

O Classical Lagrangian for type IIB GS string :

Lgs =Lk + Lwz
T . . N 1 N
L = —5\/ —QQZ]HzHHuj s Lwz =Te" (Hébwuj + iwiuwuj)
Building blocks

o = 9, X* - W (i=1,2, p=0n~09)
WA = i04349,04, (A =1,2)

—~—

Wt =w"+w*, Wl=w*_—_w*

(2 (] (] 2

of
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Symmetries

® Worldsheet reparametrization

® larget space Lorentz invariance

e Supersymmetry

5X9A: 2, 0, XH = Z ixy+e4
A

L is invariant but Ly z transforms into a total derivative (<= Fierz )
5x£WZ: 81 (XlaAif + XZQAiZ)
. i 2 _
A(lxz — —¢TeY (H;L + sz” + ngl”) (’)’“91)a
L 2 _
ACZXz = 1T eY (H;” -+ le“ -+ ng“) (,mez)a

These formulas are needed for construction of supercurrents.
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e x symmetry (off-shell)

6,04 = (v)*’kft, S XM =) i04546.6%

5.(v/=59%) = /=g h*

where  h* = 8i (P{'0,0'k" + P*9,0°k>)

P are projection operators

Pz‘j_l ij 4 €'
=727 T U

K parameters must satisfy the conditions

P_T_JFL;ZO, PYk? =0
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3 Gauge-fixing and compensating transformation

Wish to keep conformal invariance intact.

3.1 Conformal gauge-fixing

Fix reparametrization invariance by the conformal gauge condition
V—g9” =n"
This breaks k-invariance

= Modify K-transformation by a compensating reparametrization § +£* = f*(&)
such that

(0 +35)/—gg7 =0
This is achieved by the choice
fj — D_la,;hij .
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Modified k-transformations are
5.0 = 604 + £'0,04,

5. XM =) i045+500% + f1o; X"
A

3.2 Semi-light-cone (SLC) gauge fixing

Fix K symmetry by SLC gauge conditions

- a « 64
0=0 & 6 =0, (9 :<0Ad>)

Lagrangian simplifies drastically
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T . . |
L = -5 20, XT0'X™ + 9, X'0'X" — 20, X" ) "i6*50'0"
A
LWZ = ’iTGijaiX—i— Z nAHAf‘y_(‘?jHA ) (’)71 = —12 = ]_)
A

® Unlike in the LC gauge, there is no fermion kinetic term.

e Nevertheless, X* and 04 satisfy free field equations of motion.

3.2.1 Supersymmetry in SLC gauge

Write SUSY transformation for 84 in SO(8) basis as

‘n-SUSY”  §,04% = n®
“e-SUSY” 5.04¢ = ¢4

SLC gauge is violated by e-SUSY => Keep SLC gauge by additional k-transf.
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Parameter for the compensating k-transformation should be determined by the

requirement

5.0 = (62 + 6,)04% = e + (ITH'v,x"")*= 0

Solution: .
1,0 1,1 5a6€1b
K, =K, = .
24/20,. X+
KJ?’O = —K,z.’l — 5d6€2b
“ “ 2v/20_X+
Modified e-SUSY transformations:
: o, X1 .
5691a — 1 abé.. + E1c
(7 ) bc\/§8+X+ )
: o_X1 .
56920, — 1 ab(s.. 620
) “V20_X+
6. X" =ie?y'64,
o, X1 o_X1
6. X~ =i 9L~1 el + (921 &2
i(0°7 € )8+X++Z( V)5 X+
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Classical supercharges in SLC gauge take the form
Ql = —4v2i / do0'To_X+
Q% = —4v2i / do0>*Td, X"

Q: = —4i(F ) / do0’To_X1

Q
Q- I
|

—4i(’71)ab/d002bT8+XI

3.2.2 Lorentz symmetry in SLC gauge

Before gauge-fixing the Lorentz transformations are of the familiar form:
1
OXH = §£pa (WWXU — n“UXp)

1
004 = —€po (177) 50"
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Transformation with the parameter £;_ breaks SLC gauge condition

— Compensate with a k-transformation

: : 1 : . :
0= 0, 04" = (8¢,_ + 07, )04 = &1 (v'7) 04" — T 62wt

b
Solution
1,0 . 0 61—(v'7)b.0'C
K (€I—) — ’
49, X+
"{'2',0(6 ) — 6ab€I— (71_)b302c
a &I 40_X+
Modified €7_ transformations for 64® and X ~
1 9,.Xx7
5/4, Hla J-Inl\a B
Er— \/5 6_|_X+ (7 Y ) S ’
1 o_X"/
514; 920, J—IHZ a B
Er— \/5 8_X+ (7 Y ) €
1 8_|_XJ 8_ J
5/4: X = 91—][——91 02—JI——92 B
£r— \/5 <8_|_X+ v —I_ 8_ + Yo €I



The SLC-conformal gauge fixed action is still fully invariant under the

modified super-Poincaré transformations

But in the Lagrangian formulation they are rather complicated and

not easy to deal with.

Situation is much better in the phase space formulation
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4 Phase space formulation

4.1 Poisson-Dirac backet and quantization

Bosonic momenta

P =T9 X"
P~ =T[0 X~ —2v2i(019,6! + 620_67)]
Pl =T§yx"!

Fermionic momenta

pd = ivV2T (X" — nad1 X104 = inT404
where 7t = V2(PT — nsTO, X™)

<> constraints

d? = p? —int04 =0
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Poisson brackets:
{X'(o,t), P/ (0’ 1)}, = 6"76(c — o)
{X*(o,t), PT(c',t)}, = (0 — o)
{Hf(a', t), pbB(a", t)}P = —6486,40(0c — o)
rest = 0
df form the second class algebra
{d}o,t),dl (o' 1)}, = 2i6*Pnt (0, t)d(0 — o)

Define Dirac bracket in the usual way. Then, Hf's become self-conjugate

A By 1 i(sAB(sab P
{0:(0,t),0; (o', 1)}, = 2 Ao, t)5(0' — o)
Apparent difficulty:
_ 1
(X (0,t),02(c’,t)}, = _\/§7T+A(0', t)Hfﬁ(a —o')# 0
1
{P(0,1),0; (", 1)}, = V2rtA(o, t)ef(a,’tw(a —7NAe
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Cured by the use of @f defined by
e = vV2rtagl
= Dirac brackets become canonical for (X*, P#, ©4)

Quantization at equal time is straight-forward: [A, B} =1 {A, B},

1
XH"(o,0) = ZX“e_m" = xt + 24, Z ( a“‘e_m" + a“’em")

n#0 n
PH 0) = PH —ino __ p# 1 n, —ino — U _INo
n 5 n#0

Sa(0,0) =) Sane™™7,  84(0,0) = > Sone™
where

S.(c,0) = ivV27 ©%(0,0),  S,(0,0) = iv2r Bl(—0,0)
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Phase space fields are related to those in the canonical quantization scheme by

(bcan(o-a t): eth¢phase(0'7 O)e_th

This holds even for non-linear theory. For the present case,

H = 6p*+ (o apn + &2 &n + 1Su-nSan + 180, -nSan)

We will use canonical fields in the Euclidean worldsheet (7 = it,z = e

n>1

T—|—’I,O', z =

e” " ) such as

1 1
XH¥(z,2) =t — iﬁgp“(lnz + 1n 2) + @4, Z (—anz_" + —54,,2‘")

nzo \T n

Chiral fields:
1
XH(z) = zM — il2pH In z + il Z —akz™"
n

IT"(2)

n#0
Z alz™" " =i toXH"(2), Sa(z) = Z Sanz "2
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4.2 Compensating transformation in the phase space formulation

Compensating transformations =- Stay on the gauge slice chosen

Phase space formulation: Dirac bracket does this automatically

Pedagogical demonstration

Consider a system with a conjugate pair:  {¢(x), 7w (y)}p = 0(x — y).

Assume

e Invariance under a gauge transf. generated by a first class constraint ® (¢, 7) (x)

e 7 gauge-invariant global sym. generator U: < {®;,U}, =0

e Impose gauge condition ®5(x) = 0 such that {®;(x), ®;(y)}p = €;C(x)0(x—
y) #0

e U breaks the gauge condition d.®P2(x) = {P2(x),eU}p #0
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To preserve the gauge condition, modify U — U + AU: AU = compen-

sating gauge generator

AU = /dya(y)@l(y)

Must choose o such that

(5 + 5079 D3 () = € {@3(2), U + AU},

total
560(1

=€e(1®2(2),U}p — a(z)C(x)) = 0
= a(x) = C1(x) {P2(x),U}p. Then, (using {®1,U}p, =10)
LR (@) = ¢ {F (), Ubp + ¢ [ dy {F@), ®:0)}p C'(0) {22(0), Ul
a(y)

e [{F(w» U}~ [ dy (F@), )} O @) {25(w), U}

—€;;C~1(y)

=€e{F(z),U}p //
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5 Structure of the quantum symmetry algebras

5.1 \Virasoro algebra and BRST symmetry

5.1.1 Classical Virasoro algebra

By a standard procedure we obtain

1 1 1 i

T, = — = — ("I~ + —II; + -S%8,5°

+=5(H+P) 271'( s I+25815)
1 1 [en 1~y i

T =—(H—-P)=—(II"II" + -II? — —-S'8 Sl)
(" =P) 2«( Tyt T YA

Modes of Ty satisfy the classical Virasoro algebras

1 :
T, — L:te—zn(t:I:a)
R

1
(L2,0%), = m —m)LE,,,  (L5,L7), =0

m-+n ?
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5.1.2 Quantum Virasoro algebra and BRST operator

Naive Virasoro operator in the holomorphic sector:

T(2) = T ()T (2) + o (T(2))" — , 8,05,(2)

Basic OPE's
XH(2) XY (w) ~ =" 1In(z — w)
.Es uv v
XH()I (w) ~ 2 ()T (w) ~
z —w (z — w)?
5ab

Sa(2)Sp(w) ~

zZ — w
Central charge: 10p050n + % X 8 fermion = 14

T()T(w) = 14/2 n 2T (w) +8T(w)

(z—w)* (z—w)? z—w
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Modify T'(z) so that we get ¢ = 26 (Berkovits and Marchioro: looks ad hoc)

T@):nﬁ@ﬂr@o+%aﬂu»?—;%a%@0+%ﬁmnﬁ

2
azmlﬁﬂ=éﬂn+"(an+)

I1+ I1+
e II™ is no longer a primary

Genuine primary of dimension 1 is

) _ 1871t (8IIth)?

. 1
I = +8|—) = — —
" ( 2(Ih)? T ()

211+
= Nilpotent BRST operator

Q= /[dz] (cT + bedc)
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5.2 Quantum Super-Poincaré algebra

5.2.1 Quantum SUSY algebra

Noether charges in SLC gauge (for the left-sector)

Qo = —p/[dZ]\/Tﬁ(Z) Sa(2),  Qa= —p/[ ) YarS" (%)

V/2I1% (2)
(p = 23/468—1/2)

Quantum SUSY algebra:

{Qaa Qb} — 2\/§5abp+ ’ {Qa7 Qb} — Z’Yabp
1 1
{Qd9 Qb}: pz(sdi) /[dw]m (5(1—[[)2 — 55 0S* — 582 In H+>

= —2v25,;p +p%5,; [ [dw]T

1 /1 1 1
T=11"+— (-(IP’)2 — —5°98*——9%In H+)
I+ \ 2 2 2

e IT"7 is not quite equal to T and 7 (2)7 (w) ~ O (regular)
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Introduce new BRST operator
Q= [@aT(@e), @ =0 (=TETw) ~0)
Then, [[dw]T is “BRST-exact"

/ dw] T = {Q, / [dw]b(w)}, b(2)e(w) ~ ﬁ dim (b, ¢) = (1, 0)

Relation to the usual Q:
efQe B =Q = /[dz](cT + bcdc)
where R = /[dz]cb InIT*

Under this transformation: —%82 InlII- €7 — —|—%82 InIIt €T
So we UNDERSTAND the origin of +%82 InIIt in T

The extra term is (Q-exact

{Qc’w Qb} — _2\/§5ai)p_ + {Qv 2Z/§5al}/[dz]l—f+(z)}
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5.2.2 Quantum Lorentz algebra

O A technical trick for using OPE method with chiral fields:
Structure of the bosonic part of the Lorentz generator Mg~
Mp" = My'p + MY + MY

where

TRy __ Tt Y Vo oM
My =~ E n(a nor — o ol
n>1
- 1 1
pv _E :_ —U —v —V =
n>1

o Mg, MY and ME” separately satisfy the Lorentz algebra.
e “Chiral” expression like 1 [[dz](X*II¥ — X"“II*)(z) is bad because
- XH*(z) ©Inz: not a genuine conformal field
— Regularization In z — In(z + €) gives %M&% + M
This does not satisfy the Lorentz algebra
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Trick
Use a new coordinate field X#*(z) in place of X*(2):

;(“(z)z 22t + XH(2), XH(z) =1 Z a“z_"
n;é0

Then, we can make use of much of the chiral OPE technique (details omitted).

Quantum generators in the “left sector”

o M7 and M+ are simple:
/ [dz] { XIHJ (z) — )O(JHI(z)) — isa Sl Sb(z)}
M#+ = / [dz] {i(X“H“L(z) _ 5’(+Hu(z))}
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e M~ receives quantum correction?

M= =M"" + AM'

1 e ° i (7'8)a(7" S)all" (2)
M'~ = / dz] { =(X'TI (2) — x 1! -
2] {2( (2) O+ T
, OIT!
AM-= — / dz] L)
2 I1+(2)
A M~ can be understood as coming from the replacement
. 1
I~ — I =II" 4+ 9° (21_[—+) = genuine primary field
o o o 1
X - X =X —1 (—)
211+

*Kunitomo-Mizoguchi (2007) for D = 4, 6.
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Most non-trivial check
M=, M /[d 1H+H (w)(7'9)a (¥ S)a(w)
(IT+(w))*
1HIHK(w)(’YJS)a(’7KS)a(w) n LITIT® (w) (7'S)a (7% S) a(w)

4 (IT+ (w))* 4 (IT+ (w))?

191 (w) — I0I (w) | 1 1 (718)a(7?S)a(w)
T @) +2{0 <H+<w)>}< IT* () )
1 { 5 <(’715)a(’7KS)a(w)>} ((WJS)b('?KS)B(w))

16 I+ (w) IT+(w)

1 HKHL(w) IK JL b
) 1<<H+<w>>2>{ Sa(1) (717 771)" 8" )}

1 Sa(w) IK JK S°(w)

T s {8 <H+(w))} () b{a <H+(w)>}

1 IT* (w) IT" (w) IK _JL

§ 5{3<H+<w>>} <H+<w>> A >]

Needs a lot of Fierz id’s.
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M=, M7 =0+ {Q, ¥}

[idu <b(w)('7’S)a(’7J;S‘)a(w)>
(IT* (w))

v =

N |

5.2.3 Spinorial property of supercharges ([Lorentz, SUSY])

Must check that the supercharges transform like spinors, possibly up to a BRST
exact term.

Most non-trivial is [MI_, Qa} which should vanish.
~ . I~ (1S), (w) 1II*IIX (518), (w)
I O o— (L / a - a
[M ’ Qa] — ( 02" 4) /[dw] { \/ﬁ + 2 (H+)3/2

21 (OI1)" (7'5), (w) _ 7(9°I") ('), (w) | 8( 1 )(7_’15)&("0)
16 @n” (11+)*/3 2 \II*(w))  VITF

7
E
1o ((va) y(74S); <w)> ( 7 8)a (w))
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M=, Q. =0+ 1(Q, ®

— (—ji9l/4 b(w)(S’IS)d(’w)
= (—1%2 )/ { (H+('w))3/2

So we have now understood how quantum super-Poincaré algebra

is realized in the SLC-conformal gauge.
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6 Vertex operators for massless open string states

& on-shell super-Maxwell multiplet in10D (AF, ™)

Principle for the construction of vertex operators

¢ BRST invariance

¢ Form appropriate representation of the super-Poincaré algebra
up to BRST-exact terms

These requirements will indeed fix the vertex operators, albeit in fairly intricate

manner
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6.1 General form of the BRST invariant vertex operators

We will construct the integrated vertex operators V' = [[dz]U(z):

Requirement

e U(z) = primary operator of dimension 1
e Manifest SO(8) covariance
e M ™~ boost symmetry

boost charges

Xt kt et 41

Xk~ ¢ s —1
XLkl ¢! .o

u® . —1/2

u® @ +1/2

S, : 0
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Most general form of the boson emission vertex

Vs(¢) = / [dz] enX"(%) {C‘ ATI*(z) + ¢' (BII'(2) + C R'(2))

. 1! RI(z2) R' R (2)
_|_ —
+ ¢ (DH (2) + B+ F——

LY kR (2) + Z (k1T g@iﬂ") (z)) }

where

R = k;8~17s

Most general form of the fermion emission vertex

Vir(u) = / [dz] eifnX" () {ua (G\/ﬁsa(z))
L (K (779), '(z) (3'9), Rf(z>> }

VTE ViTF
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Ve and VF must transform into each other under SUSY as

[naQaa VB(C)] — VF({")7 [naQaa VF(u)] — _VB(C:)
€Qiy VB(C)] = Vr(a), [€Qa, Vr(u)] = —V5(C)

up to possible BRST exact terms.

o (, 1, etc: SUSY-transformed wave functions
e Vp and Vp are both bosonic operators

e Minus signs on Vg on the RHS are important for consistency *

e Existence of %82 InTI" in T(2) = exp(itk™ X ) is not a primary.
At present, we need to impose kT = 0 to avoid this complication, as in LC

gauge (= discussion at the end. )

3[GSW] (for LC vertices) misses this point.
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6.2 SUSY transformation of the wave functions ¢*, u?, u?

It is dictated by the SUSY transformation for 10D super-Maxwell fields:
SA* = ieTHyp = ie® (V") o5 ¥’
1 1 o
59 = S Fu e = Fuy ()" o€
Make Fourier transforms

A(2) = [[dk] ¢ (k)™
PY(x) = /[dk] u®(k)e™™ = Grassmann odd

Transformations for SO(8) components
n-SUSY

¢t =0, 8,(7 =iV ua, 8,¢" = in"Lu’
Syu® = ikrCy (Y et + i (kT¢T — kT¢T) n°
Soul = iv2 (k'¢T — k¢ (9 on®
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e-SUSY
5.t = —iv2etu;, 6. =0, cf = i€ty u®
Seu® =iv2 (k¢ — K1¢T) (v ne,
d.u’ = iki(y ('yI ) i€ —z( ¢t —k+C )
On-shell conditions
k.k* =2kTk™ + E'k' =0
kuCt = kT¢CT +ECH KT =0
V2ktTug + kIS/Ibui’ =0
—V2k~ u, + k'~ Ibu =0
In the frame where k™ = 0, these equations become
'kl =0, k¢t +Ek¢!=0,
kIﬁ/ibui’ = 0, V2k~u, = kI'yabu
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6.3 n-SUSY

First, study [n°Q., VB({)] = Vr(u)

This gives the relations
21C = —i@, 271D =iG, 271D = V2K,
2ME = ivV2K, 21F =iv2L

Next, study [7°Qa, Vi(u)] = —Vi(C). This gives the relations
_ivV2A =21G@, —iB =21K, —iC =2131L

Fix overall normalization by B = 1. Then, the relations above give

1
F=——,

1 1
A=1, B=1, C=—--, D=1, E=
4 96

Za
L1 . .3 .2_%
G=—12"14, K=—2"14, L =1

12
e Vp(u) is completely fixed.

e The coefficients Y and Z in Vp({) are not yet determined.
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6.4 SUSY

Next examine the action of e-SUSY

[ aQaa VF(’U’)}
[eana VB(C)]

— VB(E)

o’?
‘?

After considerable computation using various non-trivial spinor identities, we can
bring [eQ, VF(u)] into the form

1TI,RI 1 RIRI>

[€Q, Vir(u)] = / [dw] ™% | =i (e7'u) <HI—1RI) + V2 (eu) ( T 96 ToF

— V2 (eu) {% (HI_IITI - ng) +0 (\/L—J - H:/ikIHI \/2_ <\/1_) H

This is not equal to —VB(é)
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Take

U p(e, u) = / (daw] (—i\/§ rff—f‘(‘z)eikxm)) (ew)

Then, after some computation we get

€Q, Vi(u)] + Vi(6) — {Q, r(e, u)}
(kIHI ) (k S117 )

I+

= (—z\/i) /[dw] e X (eu) [(Y + k™ kI + (Z + 1)

This vanishes if Y = Z = —1
= Vp(({) is completely fixed and we have

€'Qas Vi(u)] = — VB(E) +1{Q, Yr(e,u)}
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Final results for Vz(u) and Vg(():

Vi(u) = / [dz] ethX () {ua (—7: 2~ VAVITT S’a(z))

12

VITT VI
V() = [ ldz] e [c 11 () + ¢! (Th(2) - JRi(2))

ot (i (22 619,

1T R;(2) 1 R Ry(2)
4 TI+ 96 II+
(k1Y) (ksI17) (2) )]

+ ¢t (ﬂ‘(z) +

— k™ kT (2) — —

)

e They reuduce to LC gauge vertex operators upon
H+(z) — p+7 C+ — 0

sp-4'7




Consistency check:

We still have to check [€*Qq4, VB (C)] - V()

After some non-trivial computation, we find

€Qu, VB(C)] = Vr(a) + {Q, ¥p(e, <)}

with

1
Tp(e, ¢) = —2Y/4¢H %d’w (kI <i;+§?),/g(w) eik'X(“’)>
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7  Similarity transformation to the LC gauge
and construction of the DDF operators

7.1 Similarity transformation to the LC gauge

We will show: cohomology of Q of SLC gauge = LC gauge states
by constructing explicit quantum similarity transformation connecting

the two.

7.1.1 Method

Recall

Q= / (dz] (T + bedc) (2)

T(z) =11 (2)II (2) + %(HI(z))2 — %Saasa(z) —I—%BQ InIT"
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Q S [[dz]cIITII™ part contains the simple nilpotent operator §

d = pt Z C_nol,
n#0

which satisfies the relations

5,63 = 0
[59 ai_n} — p+nc—n ’ {59 C—n} =0
{57 b—n} — p+a:n ’ [67 a:n] =0

<> Unphysical modes (by,, cp, &, @ )pnzo form a quartet with respect to 9

We will construct a quantum similarity transformation

Q — 6—5(5 + Qlc)es

1
Qic = ¢o Ep“pu + Z aI_nai + Z nS%, S,

n>1 n>1
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Separate the zero-mode and the non-zero mode parts of the unphysical fields as

i i
H(z) = = +11(), I (x) = +117(2)

b .
c(z) = coz + &(z), b(z) = Z—‘; + b(2)
Assign no-zero degrees to unphysical parts

deg(II1) = 2, deg(II™) = —2
deg(¢) =1, deg(b) = —1, deg(rest) = 0

Decompose Q) according to the degree:

Q=901+ Qo+ di+dy+ds+ e>3
Physical dof's are in Qg
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| .
5=p" /[dz];él_[_ =pt Z c_pox,,
n#0

1 .

QO = Cyp (5 -+ /[dZ]Z(T(O) — b@é))
d, = / [dz](eT© + bcoeé)

L .
ds = by /[dz];cac

1 _.
ds =p~ /[dz]—él’[+

z

€>3= E €2n+1

n>1
where
1 O
dz]c-0° InIT" = n

/[ z]c2 n 60+7;ez 11
1 —1)n1 I+ "

ey = /[dz]cozw = —Cy, €apt1 = (=1) /[dz]azé z , (n > 1)
2 2n pt
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Seek similarity transformation to remove the parts with positive degrees as

() Q=€+ Qu)e™ =5+ Qo+ [+ Qo R + 1[5+ Qo, R, R + -

Decompose the operator R according to the degree:
R=R,+Rs+ R4+ ---

Equation (%) above becomes (AB means [A, B})

Q=0+Qy+di+ds+ (ds+e3)+e4+---
1
= 5‘|‘Q0‘|‘5R2 ‘|‘§R3+Q0Rg‘|‘5R4+QOR3‘|‘§(5R2)R2—|—°--

1 2 e
3

Problem: Find R,,’s which solve the infinite number of equations

dl — (SRQ
dy = 0R3 + QR

1
d3 -+ €3 = 6R4 -+ Q()Rg —+ 5(5R2)R2 etc.
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Two basic ingredients for the solution:
¢ & has the homotopy operator K = # 2 n0 %afnbn

- R 1
N = 0K = Z : (c_nby + —afna;) :
n#0 n
For O which satisfies @ = 0 and NO = nO,n # 0,

]_ A ]_ A ]_ A
O=-NO==-(K)O=§ <—K(’))
n n n

0-homology is trivial for non-zero N-number sector.
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¢ Degree-wise relations from the nilpotency Q2 = 0 (shown up to

degree 2)
(E_z) 52 =0
(E-1) 0Qo =0

1
(Eo) 5%(2)/+5d1 =0

(El) Q(())dl —|—5d2 — 0

1
(E3) 6(ds+ es) + Qods + 5d1d1 =0, etc.

Solution at low degrees

e dd; = 0 = d; = 6(Kd;). Compare with di = 6R,. We get
R, = Kd; + 6 X5,

o 0do=0=dy =96 (%Kdz) One can show: Qg R = 0 for X3 = 0.
Hence dy = 6 Rj5. Thus we get R3 = K d» + 6 X,
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7.1.2 Solution up to degree 10

> 1. 1 + Ttot
R2 —I— R3 s Kdl —|— —Kdz = —+ —a_kLkO
2 P k;éok
1
R4:’I"4, R5:O, RG——’I“G, R7: )
1
Rg =0, Ro=0, R10=—8’V10

where

_ (=1)"

" 2n(n —1)(ph)"

[(a+)n]m o Z a/;':_la’—:z T a’_<|3_n
>oi ki=m
® One can prove Ry,11 = 0 for n > 2
® Very hard to guess the pattern for Rs,, for n > 2.

[(@™)"o, n>2
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7.1.3 Exact form of the similarity transformation

Consider an ansatz of the form

Q =¢e 2t R (5 4+ Qo) e
e~R N

where R is taken to be of the form

— Z £2nr2n

n>2
Exact answer: & = (—1)"
2T
R= )"ry, = [ [d
> - /i Z]Zzn(n_1> ( )

=~ / [dz][£(2) + (1 — £(2)) In(1 — £(2))]

where f(2z) = 2117 (2) /p™.
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Check of the formula

Use general Baker-Campbell-Hausdorff formula

eret= eP
1 zln z
E= X+ / dtp (e* e’ ) p,  P(z) =
0 z—1
We can then show
cBeRatRs — oM _  RatRs+R
R — + Z(—l)”_1(2n + 1)Bnr2(2n—|—1)

n>1
B,, = Bernoulli numbers: By =1/6, By = 1/30, B3 = 1/42, etc.
Then we get

R +1 ! +1 +
=r —T¢ — =T -7
4 26 610 614

which reproduces the degree-wise computation.
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Remaining similarity transformation

We must further remove the unphysical part still remaining in Q:

Qo O coN = ¢ Z (aJ_rnoz,; +a” o + ne_pb, + nb_ncn)
n>1

This is achieved by an additional similarity transformation:
e K (6 + Qo)e™™ =5 + Qu

~ 1 ~ ~
EFZafnbn, N ={k,s|
n#0

1
Qic= co | =P"Pp + Z ol ol + Z nS® S,

2 n>1 n>1

Cohomology of Q;. = LC physical states
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7.2 An Application of the similarity transformation
— Construction of the DDF operators—

Physical oscillators of LC gauge (C%Iza S
J similarity transformation
DDF oscillators of SLC gauge (A£9 S?,,)

Ly A}] = |[Lm,SE] =0
(AL AT ] =66, 0mo, {S%,SP 1 = 8%, mo

7.2.1 Basic idea

For bosonic string, DDF operator A was shown (Aisaka and Kazama, 2004) to

be connected to LC gauge basic oscillator by a similarity transformation as
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inetT /pT X
Al = eme"/PT AT |
Ai: e_RaIeR /[dT] ei”TBTXI(T)ei(”/p+)X+(T)

R=R;+ R; = Z o.ﬁ_,{:Lmt
k;éo

(Zero-mode phase is necessary for A£ to commute with Virasoro. )
itot _ ib+ig _|_ if

~b I I
Li=p o+ - E :ak n®u,n

n;éO
L= Z nc_nbrin
n7£0
Tl _
n;éO

This formula is valid also for GS in SLC gauge.
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For GS superstring in SLC gauge, we should be able to construct fermionic DDF

operator as well by the same similarity transformation (including ii)

it ot & ot
Sg,, — pinz /D SZ — eine /D e RSgeR

Explicit form of Sj}; ?

| ow order calculation:

St = /[dT]ei”T (Sa(T) — [R, S%(T)] + E[R, (R, S%(T)]] + - - )

) 2

. INT oa ﬂ v+ 1 i v+ 2

_/[dT]e S (T)(1+p+x +—p+aT - <p+> (X
8p+2( X+)2 287'(X+)2 T )

Much more complicated than the structure of Afz.
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Guess for the exact result:

-\ 1/2
. o v 8, X+
(%) S = e HS%H = [dT]e“’”ez("/er)XJr 1+ S (T)

Including the zero-mode phase part,

Se

/[dT]e’("/p+)X+\/ +S5%T)

n \/F

7.2.2 Proof of the formula (x)

The following simple but new powerful theorem is crucial in proving the guess

above.
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Set-up of the theorem:

Let the mode operators ¢,, and X, enjoy the following commutation relations

with a set of operators Ly:

[Lis pn]= —(n + (1 — h)k)drik
[Lks Xn]= — (1 + k) Xntk

These relations are isomorphic to those for

L;, = Virasoro operators

¢, = mode of a primary field ¢(7) of dimension h

Xrn = mode of a primary field x(7) of dimension O
But we do not require the algebra of Lj themselves.
We will consider the fields ¢(7) and x(7) defined by

S(T) =S e, x(1) = xne

sp-64



Now define the operator T, with finite x(7), as

T, =1 Z ,X—kLk
k

Theorem:

T, generates a finite operator-dependent conformal transformation of ¢(7)
associated with 7 — 7" = 7 — x(7), as

exg(T)e X = ¢/(7)
where ¢'(7')(d7")" = ¢(7)(dT)".

Remarks:

e It is crucial that x(7) is an operator, not a c-number function.

® Proof is rather involved. ldea is to introduce a parameter A and study the cou-
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pled non-linear differential equations, with respect to 7 and A, for the quantities

fOuT) =exp(r)e X, g\, T1) = eMix(r)e Mx

We can apply the theorem above with

~ g 1

Li= L,  ¢(r)=8%r), x(r)=-X"(1)/p", h= 5
X (1) N dr’ - 9. X+t

pt dr pt

Then the theorem immediately gives us the result of the exact similarity transfor-

T =1 —x(r) =7+

mation as
e RS (r)er = S (1)

It is then not difficult to show that S’“(7) is exactly the same function as
SUT) = ), S%e™""", where S? was defined previously in (x).

~

1/2
. . : 0, XT
(%) S = e ES%F = [dT]eZ”Te’(”/p+)X+ 1+ S(T)
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8 Discussions

We have layed the foundation of the quantum GS superstring in the
SLC gauge, where the conformal invariance is retained.

¢ Structures of the quantum symmetry algebras are clarified

¢ Vertex operators for massless states are constructed

¢ Similarity transformation connecting LC and SLC gauges is constructed
Important remaining problem

O Vertex operator for k* # 0
Relation to the work of Baba-Ishibashi-Murakami [BIM] *

[BIM] wished to realize “dimensional regularization” for LC-SFT.

< Non-critical LC-SFT < Lorentz non-invariant

4Baba-Ishibashi-Murakami, 0909.4675
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= Non-standard worldsheet theory for X+ when covariantized: “X*-CFT”

d — 26

TZM =TT 5, — {X*, 2} (Schwarzian derivative)

o d—26 BX+t 3 /92XT\°
= Mg — T 5

12 0X™T 0X™

e For d = 14 (effective dimension for GS superstring),
I, =1~ =TI + 8%(1/2I1") = primary of dimension 1

and T2{M = TCZ = IITII~ + 10% InIT*

e [BIM] claims that they can compute the amplitudes containing the vertex op
ez‘k+X—_
In operator formalism, it is hard to define this vertex, because the OPE of X~

with itself is singular and operator-valued:
1 1

X (2) X~ (w) ~ (z — w)20X*+(2)0X+(w)

® Important to understand how the BIM procedure can be imple-
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mented in operator formalism.

Hope to report progress on this and related matters

in the near future
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