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ring Field Theory?

ic description of all excitations of a
osed) at once.

 its various critical points describe

physics of diverse D-brane backgrounds, and
~ hence possibly also COLOR.



Ightning review of OSFT

Open string field theory uses the following data
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Gauge symmetry

uge gauge symmetry

oV = (Q B A -+ UxA—AxWU :

ded that the star product is associative, Qg acts as a
led derivation and < . > has properties of integration.

Note that there is a gauge symmetry for gauge symmetry
s0 one expects infinite tower of ghosts - indeed they can
be naturally incorporated by lifting the ghost number
restriction on the string field.



Witten's star product

Defined by gluing three
strings:

(A 2

(01 % Uy) [X ()] = / D X vertap] U1 X (0)] T [X (o)

It used to be a very
complicated definition...



= The elements of string field star algebra are states
in the BCFT, they can be identified with a piece
of a worldsheet.

= By performing the path integral on the glued
surface in two steps, one sees that in fact:

K L)g > .

|01) * |Dg) = |Pre™




Len s star product as operator
multiplication

st seen that the star product obeys

01) * |g) = |1 i).

nd therefore states [RatEl vt

obey

The star product and operator multiplication
are thus isomorphic!



sUrVey of known solutions

Opl + U 5T =0

achyon vacuum, marginal
ilson line and rolling tachyon),

4 ‘acuuin in various gauges,
ginal deformations (one simple type for regular
5, another for general case).

D solution still missing (cf. recent work by
‘Maccaferri and Bonora et al.)

= Other solutions missing completely, such as flux
solutions.



olution for every BCFT?

e that we have a pair of boundary
dition changing operators o;, 0z such that

en the simplest possible solution of strin
leld theory equations of motion is m
provided it is non-singular. In fact it is almost
always singular, an example when it is non-

singular would be a light-like Wilson line A0 X*
with

|Kiermaier,Okawal]



ution for every BCFT?

neral marginal deformations more
ersion is needed. Such solutions

ere constructed by Kiermaier and Okawa. (See
so their paper with Soler.)

] known solutions of string field theory are of
form

well defined operators.

= In this talk we will present some new solutions
of this form where U and U™ are formed from
Virasoro generators and b,c ghosts.



itive energy solutions?

1 years many classical solutions
eld theory (OSFT) have been
ically, or analytically.

ommon feature of all these solutions is
eir energy relative to the perturbative
1m is always negative.

Is there a fundamental reason for this?

" Is the string field big enough?



pimpletsubsector of the star
algebra

algebra is formed by vertex operators and the
operator K. The simplest subalgebra relevant for
tachyon condensation is therefore spanned by K and c.

Let us be more generous and add an operator B such
that OB=K.

The building elements thus obey

@ The derivative Q acts as

QB =K, Qpc=cKec.

_C"




cal solutions

anding lets us construct solutions to
notion [OFNIEREREHN casily.

It does not take much tryi ng 10 rJnrJ HE:

simplest solution is ¥ = ac — cf

Here F=F(K) is arbitrary
Okawa 2006 (generalizing M.S. 2005)



Ye to look for solutions?

] such solutions has not been completely
classified yet, although we are getting closer (Rastell;
rler; ML.S.).

t us restrict our attention to different choices of F(K)
y.

t us call a state geometric if F(K) is of the form

F(K) = / dof(a)e "
Jo

where f(a) is a tempered distribution.

=@ Restricting to “absolutely integrable” distributions one
gets the notion of L,-safe geometric states.



re to look for solutions?

e spaces of distributions are (Schwartz, 1950)

D c S Cc Diw C Dy C B C B C Oy C €&
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g ¢ © c D, c Dy, c B cB c S cD
) 1 < p<g< oo

The space guarantees that
- the Fock space coefficients are finite
is closed under convolution

@ Interms of Laplace transform: F(K) must be
holomorphic for Re(K)>0 and bounded by a
polynomial there. Demanding that the polynomial is
just a constant we would get a nice Banach algebra: the
so called Hardy space H”.



ynakes solutions nontrivial ?

e state is trivial if LVACEsRE® is well defined

ere is another useful criterion. One can look at the
cohomology of the theory around a given solution. It is
given by an operator m

@ The cohomology is formallﬁ trivialized by an operator

which obeys




jfe5es of universal solutions

e order of zero of 1-F? at K=0 is of higher
e solution is not quite well defined, formally it
d correspond to negative number of D-branes.

1 When 1-F2 blows up at K=0 the solution describes
- multi-brane configuration as we will demonstrate.



nples so far

... trivial solution

... ‘tachyon vacuum’ only ¢
and K turned on

. MS. ‘05

... Erler, M.S. 09 - the
simplest solution so far



Pramultiple-brane solutions

te an energy of the general solution

here for quite some time, but
3k seemed daunting. Recently we addressed the

om with M. Murata.



WramMultiple-brane solutions

= Let us compute an energy of such a general

(1-() = A(> <K,,(

i—l—C)BHR>+<A(1—()

solution

G

G=1-F?

where

(F\, Fy, Fy, Fy) = { Fi(K)cFy(K)cFy(K)cFy(K)cB)



WIEnultiple-brane solutions

= Assuming that all F; are L-safe and geometric,
we can compute this basic correlator by writing

<€70:1R Cefo:zﬁ L_‘Efa'gﬁ CE*&;J\ CB)
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WIEnultiple-brane solutions

= To re-express <F,, F,, F;, F, > in terms of F's one
can use a simple trick of writing

e
1 = d‘-} o s— tlz 5 ¢
0 oo 2T

and find

(Fi, Fy, Fs, Fy) / / 272 s [ FIARFEE, + FIA(FRFY)F,

47r3
+FA F)Fg)F4 F1F2F3AF4+F1F)A(F3F4)—|—F1F)A(F3F4)

+AFFyFiFy + (sFy + Fl)FZAFSFdl] ; (2.10)

where




PHanvitiple-brane solutions

&= [he kinetic term after some contour
manipulations (and computer algebra)
becomes

/ ds %)"Tz { (20, — s0y) ( 3, Gl )} .

The second term is effectively a total derivative
which vanishes for G ~ 1 +O(1/z). The final
result for the energy is thus R f

Vol 272 c

where C runs up the imaginary axis, bypassing
possible singularity at the origin on the left,
and closes at infinity in the Re z < 0 plane.



WIEnultiple-brane solutions

To get further support let us look at the Ellwood
invariant (or Hashimoto-Itzhaki-Gaiotto-Rastelli-Sen-Zwiebach
invariant) . Ellwood proposed that for general OSFT
solutions it would obey

(I]ecVa(i)|T) = AFH(Va) — A5 (Va)

let us calculate the LHS:

< c@Va(i)eF BeF? > / dov / dB =—p3 )E (@) F(B) (Va(i) Ypmsr
F(0)0F2(0) AS“’L. 1)

IO F2 =1+ az" + Oz

TR italo £ (0)0F2(0) = —




nultiple-brane solutions

ular for the energy (as measured by the
graviton coupling) we find

sult? Assuming holomorphicity at infinity
and Re z>0 half plane we can prove that




iuitiple-brane solutions

narize our assumptions:

| and 1/| G| are bounded by a
lynomial in Re z > ¢ for all ¢ >0. This is a
eaker condition than L,-safety.

3) G —1 as z —o. This is a ‘no identity’
criterion.

K
U=c— Be(l —
= Be

G)



oM ments on level expansion

ible to have inverse powers of K ?

en though G(z)= z" violates the no-identity criterion.

= The coefficient of c; | 0> diverges for negative n<-4. This
is good, as we do not like “ghost branes’ as solutions of
OSFT. Cases n=-2 and n=-3 should be ruled out

separately, n=-1 is allowed (tachyon vacuum).



O ments on level expansion

= To study other coefficients we can easily compute the
overlap

\

o 1 o0 1 e e .
< O |cK g (ﬂ dt Tr (Eﬂ K/ “oe KR2.K" 1 Bee m)
N 0

(n—1)!

,and V is a matter field of scaling
dimension hy,. The ghosts contribute 1/t?, so the
integral is perfectly convergent. For [sRleoleeatek
the integral however diverges for n>3 as [iatet
so that ghost coefficients starting with
c, | 0> are divergent.




ments on level expansion

t promising candidate for the n+1 brane
ion is ed by taking a “power’ of the simple
olution of Erler and M.S.”09:

1 level truncation we find for the tachyon coefficient

doing the integrals over wedge lengths a, 3
t=10.372994

= Applying the s-z trick the same way as for the energy
we get an extra contribution from the pole at zero:
t=0.372994 - 0.588638 = -0.215644. The s-z trick

suggests an existence of a “‘phantom’.



rily the Chern-Simons action gives qu
S for pu re (e»fg—y gauge configurations. £
can be Shiown 16 holdimoere genefaJJ y

I'hen

P

In particular, rormally

—~

— |

lized

Similar property.

v
i
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This 3"'9()')3'3 that ould .‘O’ Inte f()r‘—‘i'&f]
2.~ two D-brane solution | r'm y We are trying tc .
‘;rast tais JOIJJLQL Ire oy romH Iing therenergy rigorou I/ 20 £
and by working out the spectrum. i
lan Ellwood, M.S. in progress : :
. . A \L'x‘ ‘ N SR \
W o ceting, 2006 SRR <« 0 \\8‘:
B s
N |



PO E newest developments

= New regularization: shift K — K+¢

= We geta phantom:

\I;I:rhantom — - F ( K y ) Be F([.L' + e )

1 — F?(K +¢)

= For the B, gauge vacuum this gives correct:
energy, Ellwood invariant, curly L, and square
L, level expansion coefficients !

@ But it also works for [l (1—e %) 1 IR




hat next ?

etail level expansion.
ing a phantom term?
hich the level expansion is fully

ossible to fin
ns?

r twist symmetric

t the cohomology around these solutions. (We
en some hints that we indeed get (n+1)? copies
iginal cohomology.) But more work is needed!

- Find other solutions which increase the energy !



